Abstract

We investigate the use of wetting films to significantly improve the imaging performance of lensfree pixel super-resolution on-chip microscopy, achieving < 1 µm spatial resolution over a large imaging area of ~24 mm2. Formation of an ultra-thin wetting film over the specimen effectively creates a micro-lens effect over each object, which significantly improves the signal-to-noise-ratio and therefore the resolution of our lensfree images. We validate the performance of this approach through lensfree on-chip imaging of various objects having fine morphological features (with dimensions of e.g., ≤0.5 µm) such as Escherichia coli (E. coli), human sperm, Giardia lamblia trophozoites, polystyrene micro beads as well as red blood cells. These results are especially important for the development of highly sensitive field-portable microscopic analysis tools for resource limited settings.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
    [CrossRef] [PubMed]
  2. S. W. Hell, “Toward fluorescence nanoscopy,” Nat. Biotechnol. 21(11), 1347–1355 (2003).
    [CrossRef] [PubMed]
  3. M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. U.S.A. 102(37), 13081–13086 (2005).
    [CrossRef] [PubMed]
  4. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
    [CrossRef] [PubMed]
  5. M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
    [CrossRef] [PubMed]
  6. S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91(11), 4258–4272 (2006).
    [CrossRef] [PubMed]
  7. E. Chung, D. Kim, Y. Cui, Y.-H. Kim, and P. T. C. So, “Two-dimensional standing wave total internal reflection fluorescence microscopy: superresolution imaging of single molecular and biological specimens,” Biophys. J. 93(5), 1747–1757 (2007).
    [CrossRef] [PubMed]
  8. W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4(9), 717–719 (2007).
    [CrossRef] [PubMed]
  9. R. P. J. Barretto, B. Messerschmidt, and M. J. Schnitzer, “In vivo fluorescence imaging with high-resolution microlenses,” Nat. Methods 6(7), 511–512 (2009).
    [CrossRef] [PubMed]
  10. K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature 458(7242), 1145–1149 (2009).
    [CrossRef] [PubMed]
  11. W. Hübner, G. P. McNerney, P. Chen, B. M. Dale, R. E. Gordon, F. Y. S. Chuang, X.-D. Li, D. M. Asmuth, T. Huser, and B. K. Chen, “Quantitative 3D video microscopy of HIV transfer across T cell virological synapses,” Science 323(5922), 1743–1747 (2009).
    [CrossRef] [PubMed]
  12. M. Bonnet, A. Ramsay, W. Githui, L. Gagnidze, F. Varaine, and P. J. Guerin, “Bleach sedimentation: an opportunity to optimize smear microscopy for tuberculosis diagnosis in settings of high prevalence of HIV,” Clin. Infect. Dis. 46(11), 1710–1716 (2008).
    [CrossRef] [PubMed]
  13. T. Nakada, H. Matsuzawa, H. Igarashi, Y. Fujii, and I. L. Kwee, “In vivo visualization of senile-plaque-like pathology in Alzheimer’s disease patients by MR microscopy on a 7T system,” J. Neuroimaging 18(2), 125–129 (2008).
    [CrossRef] [PubMed]
  14. D. V. Patel and C. N. J. McGhee, “In vivo confocal microscopy of corneal stromal nerves in patients with peripheral neuropathy,” Arch. Neurol. 66(9), 1179–1180, author reply 1180 (2009).
    [CrossRef] [PubMed]
  15. M. Selvarajah, K. Nicholls, T. D. Hewitson, and G. J. Becker, “Targeted urine microscopy in Anderson-Fabry Disease: a cheap, sensitive and specific diagnostic technique,” Nephrol. Dial. Transplant. (2011). doi:10.1093/ndt/gfr084.
  16. T. Kojima, Y. Matsumoto, M. Dogru, and K. Tsubota, “The application of in vivo laser scanning confocal microscopy as a tool of conjunctival in vivo cytology in the diagnosis of dry eye ocular surface disease,” Mol. Vis. 16, 2457–2464 (2010).
    [PubMed]
  17. A. Sartori, A. Mallet, E. Veiga, M. Bonazzi, S. Mostowy, L. Dortet, W. Baumeister, and P. Cossart, “Correlative Light/Electron Microscopy: a Tool for Investigating Infectious Diseases,” MAM 15(S2), 862 (2009).
    [CrossRef]
  18. Y. R. Shea, J. L. Davis, L. Huang, J. A. Kovacs, H. Masur, F. Mulindwa, S. Opus, Y. Chow, and P. R. Murray, “High sensitivity and specificity of acid-fast microscopy for diagnosis of pulmonary tuberculosis in an African population with a high prevalence of human immunodeficiency virus,” J. Clin. Microbiol. 47(5), 1553–1555 (2009).
    [CrossRef] [PubMed]
  19. S.-R. Wu, R. Loving, B. Lindqvist, H. Hebert, P. J. B. Koeck, M. Sjoberg, and H. Garoff, “Single-particle cryoelectron microscopy analysis reveals the HIV-1 spike as a tripod structure,” Proc. Natl. Acad. Sci. U.S.A. 107(44), 18844–18849 (2010).
    [CrossRef] [PubMed]
  20. B. J. Marais, W. Brittle, K. Painczyk, A. C. Hesseling, N. Beyers, E. Wasserman, D. van Soolingen, and R. M. Warren, “Use of light-emitting diode fluorescence microscopy to detect acid-fast bacilli in sputum,” Clin. Infect. Dis. 47(2), 203–207 (2008).
    [CrossRef] [PubMed]
  21. D. C. Essaka, J. White, P. Rathod, C. D. Whitmore, O. Hindsgaul, M. M. Palcic, and N. J. Dovichi, “Monitoring the uptake of glycosphingolipids in Plasmodium falciparum-infected erythrocytes using both fluorescence microscopy and capillary electrophoresis with laser-induced fluorescence detection,” Anal. Chem. 82(23), 9955–9958 (2010).
    [CrossRef] [PubMed]
  22. M. Krause, P. Rosch, B. Radt, and J. Popp, “Localizing and identifying living bacteria in an abiotic environment by a combination of Raman and fluorescence microscopy,” Anal. Chem. 80(22), 8568–8575 (2008).
    [CrossRef] [PubMed]
  23. S. E.-D. Hassan, S. I. Okoued, M. A. Mudathir, and E. M. Malik, “Testing the sensitivity and specificity of the fluorescence microscope (Cyscope) for malaria diagnosis,” Malar. J. 9(1), 88 (2010).
    [CrossRef] [PubMed]
  24. W. Bishara, U. Sikora, O. Mudanyali, T.-W. Su, O. Yaglidere, S. Luckhart, and A. Ozcan, “Holographic pixel super-resolution in portable lensless on-chip microscopy using a fiber-optic array,” Lab Chip 11(7), 1276–1279 (2011).
    [CrossRef] [PubMed]
  25. W. Bishara, T.-W. Su, A. F. Coskun, and A. Ozcan, “Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution,” Opt. Express 18(11), 11181–11191 (2010).
    [CrossRef] [PubMed]
  26. W. Bishara, H. Zhu, and A. Ozcan, “Holographic opto-fluidic microscopy,” Opt. Express 18(26), 27499–27510 (2010).
    [CrossRef] [PubMed]
  27. S. O. Isikman, W. Bishara, S. Mavandadi, F. W. Yu, S. Feng, R. Lau, and A. Ozcan, “Lens-free optical tomographic microscope with a large imaging volume on a chip,” Proc. Natl. Acad. Sci. U.S.A. 108(18), 7296–7301 (2011).
    [CrossRef] [PubMed]
  28. E. Cuche, F. Bevilacqua, and C. Depeursinge, “Digital holography for quantitative phase-contrast imaging,” Opt. Lett. 24(5), 291–293 (1999).
    [CrossRef] [PubMed]
  29. F. Dubois, L. Joannes, and J. C. Legros, “Improved three-dimensional imaging with a digital holography microscope with a source of partial spatial coherence,” Appl. Opt. 38(34), 7085–7094 (1999).
    [CrossRef] [PubMed]
  30. W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. U.S.A. 98(20), 11301–11305 (2001).
    [CrossRef] [PubMed]
  31. G. Pedrini and H. J. Tiziani, “Short-coherence digital microscopy by use of a lensless holographic imaging system,” Appl. Opt. 41(22), 4489–4496 (2002).
    [CrossRef] [PubMed]
  32. L. Repetto, E. Piano, and C. Pontiggia, “Lensless digital holographic microscope with light-emitting diode illumination,” Opt. Lett. 29(10), 1132–1134 (2004).
    [CrossRef] [PubMed]
  33. T.-C. Poon, “Recent progress in optical scanning holography,” J. Hologr. Speckle 1(1), 6–25 (2004).
    [CrossRef]
  34. B. Javidi, I. Moon, S. K. Yeom, and E. Carapezza, “Three-dimensional imaging and recognition of microorganism using single-exposure on-line (SEOL) digital holography,” Opt. Express 13(12), 4492–4506 (2005).
    [CrossRef] [PubMed]
  35. C. J. Mann, L. F. Yu, C. M. Lo, and M. K. Kim, “High-resolution quantitative phase-contrast microscopy by digital holography,” Opt. Express 13(22), 8693–8698 (2005).
    [CrossRef] [PubMed]
  36. J. Rosen, G. Indebetouw, and G. Brooker, “Homodyne scanning holography,” Opt. Express 14(10), 4280–4285 (2006).
    [CrossRef] [PubMed]
  37. J. Garcia-Sucerquia, W. Xu, M. H. Jericho, and H. J. Kreuzer, “Immersion digital in-line holographic microscopy,” Opt. Lett. 31(9), 1211–1213 (2006).
    [CrossRef] [PubMed]
  38. G. Popescu, T. Ikeda, R. R. Dasari, and M. S. Feld, “Diffraction phase microscopy for quantifying cell structure and dynamics,” Opt. Lett. 31(6), 775–777 (2006).
    [CrossRef] [PubMed]
  39. F. Dubois, C. Yourassowsky, O. Monnom, J.-C. Legros, O. Debeir, P. Van Ham, R. Kiss, and C. Decaestecker, “Digital holographic microscopy for the three-dimensional dynamic analysis of in vitro cancer cell migration,” J. Biomed. Opt. 11(5), 054032 (2006).
    [CrossRef] [PubMed]
  40. A. Stern and B. Javidi, “Theoretical analysis of three-dimensional imaging and recognition of microorganisms using single-exposure on-line (SEOL) holographic microscope,” J. Opt. Soc. Am. A 24(1), 163–168 (2007).
    [CrossRef]
  41. S. S. Kou and C. J. R. Sheppard, “Imaging in digital holographic microscopy,” Opt. Express 15(21), 13640–13648 (2007).
    [CrossRef] [PubMed]
  42. J. Rosen and G. Brooker, “Non-scanning motionless fluorescence three-dimensional holographic microscopy,” Nat. Photonics 2(3), 190–195 (2008).
    [CrossRef]
  43. U. Gopinathan, G. Pedrini, and W. Osten, “Coherence effects in digital in-line holographic microscopy,” J. Opt. Soc. Am. A 25(10), 2459–2466 (2008).
    [CrossRef] [PubMed]
  44. V. Mico, Z. Zalevsky, C. Ferreira, and J. García, “Superresolution digital holographic microscopy for three-dimensional samples,” Opt. Express 16(23), 19260–19270 (2008).
    [CrossRef] [PubMed]
  45. M. Paturzo, F. Merola, S. Grilli, S. De Nicola, A. Finizio, and P. Ferraro, “Super-resolution in digital holography by a two-dimensional dynamic phase grating,” Opt. Express 16(21), 17107–17118 (2008).
    [CrossRef] [PubMed]
  46. N. T. Shaked and J. Rosen, “Multiple-viewpoint projection holograms synthesized by spatially incoherent correlation with broadband functions,” J. Opt. Soc. Am. A 25(8), 2129–2138 (2008).
    [CrossRef] [PubMed]
  47. D. J. Brady, K. Choi, D. L. Marks, R. Horisaki, and S. Lim, “Compressive holography,” Opt. Express 17(15), 13040–13049 (2009).
    [CrossRef] [PubMed]
  48. T. R. Hillman, T. Gutzler, S. A. Alexandrov, and D. D. Sampson, “High-resolution, wide-field object reconstruction with synthetic aperture Fourier holographic optical microscopy,” Opt. Express 17(10), 7873–7892 (2009).
    [CrossRef] [PubMed]
  49. L. Waller, Y. Luo, S. Y. Yang, and G. Barbastathis, “Transport of intensity phase imaging in a volume holographic microscope,” Opt. Lett. 35(17), 2961–2963 (2010).
    [CrossRef] [PubMed]
  50. N. T. Shaked, T. M. Newpher, M. D. Ehlers, and A. Wax, “Parallel on-axis holographic phase microscopy of biological cells and unicellular microorganism dynamics,” Appl. Opt. 49(15), 2872–2878 (2010).
    [CrossRef] [PubMed]
  51. D. Bonn, J. Eggers, J. Indekeu, J. Meunier, and E. Rolley, “Wetting and spreading,” Rev. Mod. Phys. 81(2), 739–805 (2009).
    [CrossRef]
  52. P. de Gennes, “Wetting: statics and dynamics,” Rev. Mod. Phys. 57(3), 827–863 (1985).
    [CrossRef]
  53. V. M. Starov, M. G. Velarde, and C. J. Radke, Wetting and Spreading Dynamics (CRC Press, 2007).
  54. N. A. Stelmashenko, J. P. Craven, A. M. Donald, E. M. Terentjev, and B. L. Thiel, “Topographic contrast of partially wetting water droplets in environmental scanning electron microscopy,” J. Microsc. 204(2), 172–183 (2001).
    [CrossRef] [PubMed]
  55. Q. F. Wei, R. R. Mather, A. F. Fotheringham, and R. D. Yang, “Dynamic Wetting of Fibers Observed in an Environmental Scanning Electron Microscope,” Text. Res. J. 73(6), 557–561 (2003).
    [CrossRef]
  56. E. Bormashenko, Y. Bormashenko, T. Stein, G. Whyman, R. Pogreb, and Z. Barkay, “Environmental scanning electron microscopy study of the fine structure of the triple line and cassie-wenzel wetting transition for sessile drops deposited on rough polymer substrates,” Langmuir 23(8), 4378–4382 (2007).
    [CrossRef] [PubMed]
  57. C. P. Allier, G. Hiernard, V. Poher, and J. M. Dinten, “Bacteria detection with thin wetting film lensless imaging,” Biomed. Opt. Express 1(3), 762–770 (2010).
    [CrossRef] [PubMed]
  58. C. P. Allier, V. Poher, J. G. Coutard, G. Hiernard, and J. M. Dinten, “Thin wetting film lensless imaging,” in Proceedings of the SPIE (2011), pp. 790608–790608–8.
  59. O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10(11), 1417–1428 (2010).
    [CrossRef] [PubMed]
  60. S. Seo, S. O. Isikman, I. Sencan, O. Mudanyali, T.-W. Su, W. Bishara, A. Erlinger, and A. Ozcan, “High-throughput lens-free blood analysis on a chip,” Anal. Chem. 82(11), 4621–4627 (2010).
    [CrossRef] [PubMed]
  61. O. Mudanyali, C. Oztoprak, D. Tseng, A. Erlinger, and A. Ozcan, “Detection of waterborne parasites using field-portable and cost-effective lensfree microscopy,” Lab Chip 10(18), 2419–2423 (2010).
    [CrossRef] [PubMed]
  62. T.-W. Su, A. Erlinger, D. Tseng, and A. Ozcan, “Compact and light-weight automated semen analysis platform using lensfree on-chip microscopy,” Anal. Chem. 82(19), 8307–8312 (2010).
    [CrossRef] [PubMed]
  63. D. Tseng, O. Mudanyali, C. Oztoprak, S. O. Isikman, I. Sencan, O. Yaglidere, and A. Ozcan, “Lensfree microscopy on a cellphone,” Lab Chip 10(14), 1787–1792 (2010).
    [CrossRef] [PubMed]
  64. G. Stybayeva, O. Mudanyali, S. Seo, J. Silangcruz, M. Macal, E. Ramanculov, S. Dandekar, A. Erlinger, A. Ozcan, and A. Revzin, “Lensfree holographic imaging of antibody microarrays for high-throughput detection of leukocyte numbers and function,” Anal. Chem. 82(9), 3736–3744 (2010).
    [CrossRef] [PubMed]
  65. R. C. Hardie, K. J. Barnard, and E. E. Armstrong, “Joint MAP registration and high-resolution image estimation using a sequence of undersampled images,” IEEE Trans. Image Process. 6(12), 1621–1633 (1997).
    [CrossRef] [PubMed]
  66. S. C. Park, M. K. Park, and M. G. Kang, “Super-resolution image reconstruction: a technical overview,” IEEE Signal Process. Mag. 20(3), 21–36 (2003).
    [CrossRef]
  67. N. A. Woods, N. P. Galatsanos, and A. K. Katsaggelos, “Stochastic methods for joint registration, restoration, and interpolation of multiple undersampled images,” IEEE Trans. Image Process. 15(1), 201–213 (2006).
    [CrossRef] [PubMed]
  68. R. C. Hardie, “High-resolution image reconstruction from a sequence of rotated and translated frames and its application to an infrared imaging system,” Opt. Eng. 37(1), 247 (1998).
    [CrossRef]

2011 (3)

M. Selvarajah, K. Nicholls, T. D. Hewitson, and G. J. Becker, “Targeted urine microscopy in Anderson-Fabry Disease: a cheap, sensitive and specific diagnostic technique,” Nephrol. Dial. Transplant. (2011). doi:10.1093/ndt/gfr084.

W. Bishara, U. Sikora, O. Mudanyali, T.-W. Su, O. Yaglidere, S. Luckhart, and A. Ozcan, “Holographic pixel super-resolution in portable lensless on-chip microscopy using a fiber-optic array,” Lab Chip 11(7), 1276–1279 (2011).
[CrossRef] [PubMed]

S. O. Isikman, W. Bishara, S. Mavandadi, F. W. Yu, S. Feng, R. Lau, and A. Ozcan, “Lens-free optical tomographic microscope with a large imaging volume on a chip,” Proc. Natl. Acad. Sci. U.S.A. 108(18), 7296–7301 (2011).
[CrossRef] [PubMed]

2010 (15)

W. Bishara, T.-W. Su, A. F. Coskun, and A. Ozcan, “Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution,” Opt. Express 18(11), 11181–11191 (2010).
[CrossRef] [PubMed]

W. Bishara, H. Zhu, and A. Ozcan, “Holographic opto-fluidic microscopy,” Opt. Express 18(26), 27499–27510 (2010).
[CrossRef] [PubMed]

S.-R. Wu, R. Loving, B. Lindqvist, H. Hebert, P. J. B. Koeck, M. Sjoberg, and H. Garoff, “Single-particle cryoelectron microscopy analysis reveals the HIV-1 spike as a tripod structure,” Proc. Natl. Acad. Sci. U.S.A. 107(44), 18844–18849 (2010).
[CrossRef] [PubMed]

D. C. Essaka, J. White, P. Rathod, C. D. Whitmore, O. Hindsgaul, M. M. Palcic, and N. J. Dovichi, “Monitoring the uptake of glycosphingolipids in Plasmodium falciparum-infected erythrocytes using both fluorescence microscopy and capillary electrophoresis with laser-induced fluorescence detection,” Anal. Chem. 82(23), 9955–9958 (2010).
[CrossRef] [PubMed]

S. E.-D. Hassan, S. I. Okoued, M. A. Mudathir, and E. M. Malik, “Testing the sensitivity and specificity of the fluorescence microscope (Cyscope) for malaria diagnosis,” Malar. J. 9(1), 88 (2010).
[CrossRef] [PubMed]

T. Kojima, Y. Matsumoto, M. Dogru, and K. Tsubota, “The application of in vivo laser scanning confocal microscopy as a tool of conjunctival in vivo cytology in the diagnosis of dry eye ocular surface disease,” Mol. Vis. 16, 2457–2464 (2010).
[PubMed]

L. Waller, Y. Luo, S. Y. Yang, and G. Barbastathis, “Transport of intensity phase imaging in a volume holographic microscope,” Opt. Lett. 35(17), 2961–2963 (2010).
[CrossRef] [PubMed]

N. T. Shaked, T. M. Newpher, M. D. Ehlers, and A. Wax, “Parallel on-axis holographic phase microscopy of biological cells and unicellular microorganism dynamics,” Appl. Opt. 49(15), 2872–2878 (2010).
[CrossRef] [PubMed]

C. P. Allier, G. Hiernard, V. Poher, and J. M. Dinten, “Bacteria detection with thin wetting film lensless imaging,” Biomed. Opt. Express 1(3), 762–770 (2010).
[CrossRef] [PubMed]

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10(11), 1417–1428 (2010).
[CrossRef] [PubMed]

S. Seo, S. O. Isikman, I. Sencan, O. Mudanyali, T.-W. Su, W. Bishara, A. Erlinger, and A. Ozcan, “High-throughput lens-free blood analysis on a chip,” Anal. Chem. 82(11), 4621–4627 (2010).
[CrossRef] [PubMed]

O. Mudanyali, C. Oztoprak, D. Tseng, A. Erlinger, and A. Ozcan, “Detection of waterborne parasites using field-portable and cost-effective lensfree microscopy,” Lab Chip 10(18), 2419–2423 (2010).
[CrossRef] [PubMed]

T.-W. Su, A. Erlinger, D. Tseng, and A. Ozcan, “Compact and light-weight automated semen analysis platform using lensfree on-chip microscopy,” Anal. Chem. 82(19), 8307–8312 (2010).
[CrossRef] [PubMed]

D. Tseng, O. Mudanyali, C. Oztoprak, S. O. Isikman, I. Sencan, O. Yaglidere, and A. Ozcan, “Lensfree microscopy on a cellphone,” Lab Chip 10(14), 1787–1792 (2010).
[CrossRef] [PubMed]

G. Stybayeva, O. Mudanyali, S. Seo, J. Silangcruz, M. Macal, E. Ramanculov, S. Dandekar, A. Erlinger, A. Ozcan, and A. Revzin, “Lensfree holographic imaging of antibody microarrays for high-throughput detection of leukocyte numbers and function,” Anal. Chem. 82(9), 3736–3744 (2010).
[CrossRef] [PubMed]

2009 (9)

D. Bonn, J. Eggers, J. Indekeu, J. Meunier, and E. Rolley, “Wetting and spreading,” Rev. Mod. Phys. 81(2), 739–805 (2009).
[CrossRef]

D. J. Brady, K. Choi, D. L. Marks, R. Horisaki, and S. Lim, “Compressive holography,” Opt. Express 17(15), 13040–13049 (2009).
[CrossRef] [PubMed]

T. R. Hillman, T. Gutzler, S. A. Alexandrov, and D. D. Sampson, “High-resolution, wide-field object reconstruction with synthetic aperture Fourier holographic optical microscopy,” Opt. Express 17(10), 7873–7892 (2009).
[CrossRef] [PubMed]

A. Sartori, A. Mallet, E. Veiga, M. Bonazzi, S. Mostowy, L. Dortet, W. Baumeister, and P. Cossart, “Correlative Light/Electron Microscopy: a Tool for Investigating Infectious Diseases,” MAM 15(S2), 862 (2009).
[CrossRef]

Y. R. Shea, J. L. Davis, L. Huang, J. A. Kovacs, H. Masur, F. Mulindwa, S. Opus, Y. Chow, and P. R. Murray, “High sensitivity and specificity of acid-fast microscopy for diagnosis of pulmonary tuberculosis in an African population with a high prevalence of human immunodeficiency virus,” J. Clin. Microbiol. 47(5), 1553–1555 (2009).
[CrossRef] [PubMed]

D. V. Patel and C. N. J. McGhee, “In vivo confocal microscopy of corneal stromal nerves in patients with peripheral neuropathy,” Arch. Neurol. 66(9), 1179–1180, author reply 1180 (2009).
[CrossRef] [PubMed]

R. P. J. Barretto, B. Messerschmidt, and M. J. Schnitzer, “In vivo fluorescence imaging with high-resolution microlenses,” Nat. Methods 6(7), 511–512 (2009).
[CrossRef] [PubMed]

K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature 458(7242), 1145–1149 (2009).
[CrossRef] [PubMed]

W. Hübner, G. P. McNerney, P. Chen, B. M. Dale, R. E. Gordon, F. Y. S. Chuang, X.-D. Li, D. M. Asmuth, T. Huser, and B. K. Chen, “Quantitative 3D video microscopy of HIV transfer across T cell virological synapses,” Science 323(5922), 1743–1747 (2009).
[CrossRef] [PubMed]

2008 (9)

M. Bonnet, A. Ramsay, W. Githui, L. Gagnidze, F. Varaine, and P. J. Guerin, “Bleach sedimentation: an opportunity to optimize smear microscopy for tuberculosis diagnosis in settings of high prevalence of HIV,” Clin. Infect. Dis. 46(11), 1710–1716 (2008).
[CrossRef] [PubMed]

T. Nakada, H. Matsuzawa, H. Igarashi, Y. Fujii, and I. L. Kwee, “In vivo visualization of senile-plaque-like pathology in Alzheimer’s disease patients by MR microscopy on a 7T system,” J. Neuroimaging 18(2), 125–129 (2008).
[CrossRef] [PubMed]

M. Krause, P. Rosch, B. Radt, and J. Popp, “Localizing and identifying living bacteria in an abiotic environment by a combination of Raman and fluorescence microscopy,” Anal. Chem. 80(22), 8568–8575 (2008).
[CrossRef] [PubMed]

B. J. Marais, W. Brittle, K. Painczyk, A. C. Hesseling, N. Beyers, E. Wasserman, D. van Soolingen, and R. M. Warren, “Use of light-emitting diode fluorescence microscopy to detect acid-fast bacilli in sputum,” Clin. Infect. Dis. 47(2), 203–207 (2008).
[CrossRef] [PubMed]

J. Rosen and G. Brooker, “Non-scanning motionless fluorescence three-dimensional holographic microscopy,” Nat. Photonics 2(3), 190–195 (2008).
[CrossRef]

U. Gopinathan, G. Pedrini, and W. Osten, “Coherence effects in digital in-line holographic microscopy,” J. Opt. Soc. Am. A 25(10), 2459–2466 (2008).
[CrossRef] [PubMed]

V. Mico, Z. Zalevsky, C. Ferreira, and J. García, “Superresolution digital holographic microscopy for three-dimensional samples,” Opt. Express 16(23), 19260–19270 (2008).
[CrossRef] [PubMed]

M. Paturzo, F. Merola, S. Grilli, S. De Nicola, A. Finizio, and P. Ferraro, “Super-resolution in digital holography by a two-dimensional dynamic phase grating,” Opt. Express 16(21), 17107–17118 (2008).
[CrossRef] [PubMed]

N. T. Shaked and J. Rosen, “Multiple-viewpoint projection holograms synthesized by spatially incoherent correlation with broadband functions,” J. Opt. Soc. Am. A 25(8), 2129–2138 (2008).
[CrossRef] [PubMed]

2007 (5)

A. Stern and B. Javidi, “Theoretical analysis of three-dimensional imaging and recognition of microorganisms using single-exposure on-line (SEOL) holographic microscope,” J. Opt. Soc. Am. A 24(1), 163–168 (2007).
[CrossRef]

S. S. Kou and C. J. R. Sheppard, “Imaging in digital holographic microscopy,” Opt. Express 15(21), 13640–13648 (2007).
[CrossRef] [PubMed]

E. Bormashenko, Y. Bormashenko, T. Stein, G. Whyman, R. Pogreb, and Z. Barkay, “Environmental scanning electron microscopy study of the fine structure of the triple line and cassie-wenzel wetting transition for sessile drops deposited on rough polymer substrates,” Langmuir 23(8), 4378–4382 (2007).
[CrossRef] [PubMed]

E. Chung, D. Kim, Y. Cui, Y.-H. Kim, and P. T. C. So, “Two-dimensional standing wave total internal reflection fluorescence microscopy: superresolution imaging of single molecular and biological specimens,” Biophys. J. 93(5), 1747–1757 (2007).
[CrossRef] [PubMed]

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4(9), 717–719 (2007).
[CrossRef] [PubMed]

2006 (8)

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[CrossRef] [PubMed]

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
[CrossRef] [PubMed]

S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91(11), 4258–4272 (2006).
[CrossRef] [PubMed]

J. Rosen, G. Indebetouw, and G. Brooker, “Homodyne scanning holography,” Opt. Express 14(10), 4280–4285 (2006).
[CrossRef] [PubMed]

J. Garcia-Sucerquia, W. Xu, M. H. Jericho, and H. J. Kreuzer, “Immersion digital in-line holographic microscopy,” Opt. Lett. 31(9), 1211–1213 (2006).
[CrossRef] [PubMed]

G. Popescu, T. Ikeda, R. R. Dasari, and M. S. Feld, “Diffraction phase microscopy for quantifying cell structure and dynamics,” Opt. Lett. 31(6), 775–777 (2006).
[CrossRef] [PubMed]

F. Dubois, C. Yourassowsky, O. Monnom, J.-C. Legros, O. Debeir, P. Van Ham, R. Kiss, and C. Decaestecker, “Digital holographic microscopy for the three-dimensional dynamic analysis of in vitro cancer cell migration,” J. Biomed. Opt. 11(5), 054032 (2006).
[CrossRef] [PubMed]

N. A. Woods, N. P. Galatsanos, and A. K. Katsaggelos, “Stochastic methods for joint registration, restoration, and interpolation of multiple undersampled images,” IEEE Trans. Image Process. 15(1), 201–213 (2006).
[CrossRef] [PubMed]

2005 (3)

2004 (2)

2003 (4)

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[CrossRef] [PubMed]

S. W. Hell, “Toward fluorescence nanoscopy,” Nat. Biotechnol. 21(11), 1347–1355 (2003).
[CrossRef] [PubMed]

Q. F. Wei, R. R. Mather, A. F. Fotheringham, and R. D. Yang, “Dynamic Wetting of Fibers Observed in an Environmental Scanning Electron Microscope,” Text. Res. J. 73(6), 557–561 (2003).
[CrossRef]

S. C. Park, M. K. Park, and M. G. Kang, “Super-resolution image reconstruction: a technical overview,” IEEE Signal Process. Mag. 20(3), 21–36 (2003).
[CrossRef]

2002 (1)

2001 (2)

N. A. Stelmashenko, J. P. Craven, A. M. Donald, E. M. Terentjev, and B. L. Thiel, “Topographic contrast of partially wetting water droplets in environmental scanning electron microscopy,” J. Microsc. 204(2), 172–183 (2001).
[CrossRef] [PubMed]

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. U.S.A. 98(20), 11301–11305 (2001).
[CrossRef] [PubMed]

1999 (2)

1998 (1)

R. C. Hardie, “High-resolution image reconstruction from a sequence of rotated and translated frames and its application to an infrared imaging system,” Opt. Eng. 37(1), 247 (1998).
[CrossRef]

1997 (1)

R. C. Hardie, K. J. Barnard, and E. E. Armstrong, “Joint MAP registration and high-resolution image estimation using a sequence of undersampled images,” IEEE Trans. Image Process. 6(12), 1621–1633 (1997).
[CrossRef] [PubMed]

1985 (1)

P. de Gennes, “Wetting: statics and dynamics,” Rev. Mod. Phys. 57(3), 827–863 (1985).
[CrossRef]

Alexandrov, S. A.

Allier, C. P.

Armstrong, E. E.

R. C. Hardie, K. J. Barnard, and E. E. Armstrong, “Joint MAP registration and high-resolution image estimation using a sequence of undersampled images,” IEEE Trans. Image Process. 6(12), 1621–1633 (1997).
[CrossRef] [PubMed]

Asmuth, D. M.

W. Hübner, G. P. McNerney, P. Chen, B. M. Dale, R. E. Gordon, F. Y. S. Chuang, X.-D. Li, D. M. Asmuth, T. Huser, and B. K. Chen, “Quantitative 3D video microscopy of HIV transfer across T cell virological synapses,” Science 323(5922), 1743–1747 (2009).
[CrossRef] [PubMed]

Badizadegan, K.

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4(9), 717–719 (2007).
[CrossRef] [PubMed]

Barbastathis, G.

Barkay, Z.

E. Bormashenko, Y. Bormashenko, T. Stein, G. Whyman, R. Pogreb, and Z. Barkay, “Environmental scanning electron microscopy study of the fine structure of the triple line and cassie-wenzel wetting transition for sessile drops deposited on rough polymer substrates,” Langmuir 23(8), 4378–4382 (2007).
[CrossRef] [PubMed]

Barnard, K. J.

R. C. Hardie, K. J. Barnard, and E. E. Armstrong, “Joint MAP registration and high-resolution image estimation using a sequence of undersampled images,” IEEE Trans. Image Process. 6(12), 1621–1633 (1997).
[CrossRef] [PubMed]

Barretto, R. P. J.

R. P. J. Barretto, B. Messerschmidt, and M. J. Schnitzer, “In vivo fluorescence imaging with high-resolution microlenses,” Nat. Methods 6(7), 511–512 (2009).
[CrossRef] [PubMed]

Bates, M.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
[CrossRef] [PubMed]

Baumeister, W.

A. Sartori, A. Mallet, E. Veiga, M. Bonazzi, S. Mostowy, L. Dortet, W. Baumeister, and P. Cossart, “Correlative Light/Electron Microscopy: a Tool for Investigating Infectious Diseases,” MAM 15(S2), 862 (2009).
[CrossRef]

Becker, G. J.

M. Selvarajah, K. Nicholls, T. D. Hewitson, and G. J. Becker, “Targeted urine microscopy in Anderson-Fabry Disease: a cheap, sensitive and specific diagnostic technique,” Nephrol. Dial. Transplant. (2011). doi:10.1093/ndt/gfr084.

Betzig, E.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[CrossRef] [PubMed]

Bevilacqua, F.

Beyers, N.

B. J. Marais, W. Brittle, K. Painczyk, A. C. Hesseling, N. Beyers, E. Wasserman, D. van Soolingen, and R. M. Warren, “Use of light-emitting diode fluorescence microscopy to detect acid-fast bacilli in sputum,” Clin. Infect. Dis. 47(2), 203–207 (2008).
[CrossRef] [PubMed]

Bishara, W.

W. Bishara, U. Sikora, O. Mudanyali, T.-W. Su, O. Yaglidere, S. Luckhart, and A. Ozcan, “Holographic pixel super-resolution in portable lensless on-chip microscopy using a fiber-optic array,” Lab Chip 11(7), 1276–1279 (2011).
[CrossRef] [PubMed]

S. O. Isikman, W. Bishara, S. Mavandadi, F. W. Yu, S. Feng, R. Lau, and A. Ozcan, “Lens-free optical tomographic microscope with a large imaging volume on a chip,” Proc. Natl. Acad. Sci. U.S.A. 108(18), 7296–7301 (2011).
[CrossRef] [PubMed]

W. Bishara, T.-W. Su, A. F. Coskun, and A. Ozcan, “Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution,” Opt. Express 18(11), 11181–11191 (2010).
[CrossRef] [PubMed]

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10(11), 1417–1428 (2010).
[CrossRef] [PubMed]

S. Seo, S. O. Isikman, I. Sencan, O. Mudanyali, T.-W. Su, W. Bishara, A. Erlinger, and A. Ozcan, “High-throughput lens-free blood analysis on a chip,” Anal. Chem. 82(11), 4621–4627 (2010).
[CrossRef] [PubMed]

W. Bishara, H. Zhu, and A. Ozcan, “Holographic opto-fluidic microscopy,” Opt. Express 18(26), 27499–27510 (2010).
[CrossRef] [PubMed]

Bonazzi, M.

A. Sartori, A. Mallet, E. Veiga, M. Bonazzi, S. Mostowy, L. Dortet, W. Baumeister, and P. Cossart, “Correlative Light/Electron Microscopy: a Tool for Investigating Infectious Diseases,” MAM 15(S2), 862 (2009).
[CrossRef]

Bonifacino, J. S.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[CrossRef] [PubMed]

Bonn, D.

D. Bonn, J. Eggers, J. Indekeu, J. Meunier, and E. Rolley, “Wetting and spreading,” Rev. Mod. Phys. 81(2), 739–805 (2009).
[CrossRef]

Bonnet, M.

M. Bonnet, A. Ramsay, W. Githui, L. Gagnidze, F. Varaine, and P. J. Guerin, “Bleach sedimentation: an opportunity to optimize smear microscopy for tuberculosis diagnosis in settings of high prevalence of HIV,” Clin. Infect. Dis. 46(11), 1710–1716 (2008).
[CrossRef] [PubMed]

Bormashenko, E.

E. Bormashenko, Y. Bormashenko, T. Stein, G. Whyman, R. Pogreb, and Z. Barkay, “Environmental scanning electron microscopy study of the fine structure of the triple line and cassie-wenzel wetting transition for sessile drops deposited on rough polymer substrates,” Langmuir 23(8), 4378–4382 (2007).
[CrossRef] [PubMed]

Bormashenko, Y.

E. Bormashenko, Y. Bormashenko, T. Stein, G. Whyman, R. Pogreb, and Z. Barkay, “Environmental scanning electron microscopy study of the fine structure of the triple line and cassie-wenzel wetting transition for sessile drops deposited on rough polymer substrates,” Langmuir 23(8), 4378–4382 (2007).
[CrossRef] [PubMed]

Brady, D. J.

Brittle, W.

B. J. Marais, W. Brittle, K. Painczyk, A. C. Hesseling, N. Beyers, E. Wasserman, D. van Soolingen, and R. M. Warren, “Use of light-emitting diode fluorescence microscopy to detect acid-fast bacilli in sputum,” Clin. Infect. Dis. 47(2), 203–207 (2008).
[CrossRef] [PubMed]

Brooker, G.

J. Rosen and G. Brooker, “Non-scanning motionless fluorescence three-dimensional holographic microscopy,” Nat. Photonics 2(3), 190–195 (2008).
[CrossRef]

J. Rosen, G. Indebetouw, and G. Brooker, “Homodyne scanning holography,” Opt. Express 14(10), 4280–4285 (2006).
[CrossRef] [PubMed]

Carapezza, E.

Chen, B. K.

W. Hübner, G. P. McNerney, P. Chen, B. M. Dale, R. E. Gordon, F. Y. S. Chuang, X.-D. Li, D. M. Asmuth, T. Huser, and B. K. Chen, “Quantitative 3D video microscopy of HIV transfer across T cell virological synapses,” Science 323(5922), 1743–1747 (2009).
[CrossRef] [PubMed]

Chen, P.

W. Hübner, G. P. McNerney, P. Chen, B. M. Dale, R. E. Gordon, F. Y. S. Chuang, X.-D. Li, D. M. Asmuth, T. Huser, and B. K. Chen, “Quantitative 3D video microscopy of HIV transfer across T cell virological synapses,” Science 323(5922), 1743–1747 (2009).
[CrossRef] [PubMed]

Choi, K.

Choi, W.

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4(9), 717–719 (2007).
[CrossRef] [PubMed]

Chow, Y.

Y. R. Shea, J. L. Davis, L. Huang, J. A. Kovacs, H. Masur, F. Mulindwa, S. Opus, Y. Chow, and P. R. Murray, “High sensitivity and specificity of acid-fast microscopy for diagnosis of pulmonary tuberculosis in an African population with a high prevalence of human immunodeficiency virus,” J. Clin. Microbiol. 47(5), 1553–1555 (2009).
[CrossRef] [PubMed]

Chuang, F. Y. S.

W. Hübner, G. P. McNerney, P. Chen, B. M. Dale, R. E. Gordon, F. Y. S. Chuang, X.-D. Li, D. M. Asmuth, T. Huser, and B. K. Chen, “Quantitative 3D video microscopy of HIV transfer across T cell virological synapses,” Science 323(5922), 1743–1747 (2009).
[CrossRef] [PubMed]

Chung, E.

E. Chung, D. Kim, Y. Cui, Y.-H. Kim, and P. T. C. So, “Two-dimensional standing wave total internal reflection fluorescence microscopy: superresolution imaging of single molecular and biological specimens,” Biophys. J. 93(5), 1747–1757 (2007).
[CrossRef] [PubMed]

Coskun, A. F.

Cossart, P.

A. Sartori, A. Mallet, E. Veiga, M. Bonazzi, S. Mostowy, L. Dortet, W. Baumeister, and P. Cossart, “Correlative Light/Electron Microscopy: a Tool for Investigating Infectious Diseases,” MAM 15(S2), 862 (2009).
[CrossRef]

Craven, J. P.

N. A. Stelmashenko, J. P. Craven, A. M. Donald, E. M. Terentjev, and B. L. Thiel, “Topographic contrast of partially wetting water droplets in environmental scanning electron microscopy,” J. Microsc. 204(2), 172–183 (2001).
[CrossRef] [PubMed]

Cuche, E.

Cui, Y.

E. Chung, D. Kim, Y. Cui, Y.-H. Kim, and P. T. C. So, “Two-dimensional standing wave total internal reflection fluorescence microscopy: superresolution imaging of single molecular and biological specimens,” Biophys. J. 93(5), 1747–1757 (2007).
[CrossRef] [PubMed]

Dale, B. M.

W. Hübner, G. P. McNerney, P. Chen, B. M. Dale, R. E. Gordon, F. Y. S. Chuang, X.-D. Li, D. M. Asmuth, T. Huser, and B. K. Chen, “Quantitative 3D video microscopy of HIV transfer across T cell virological synapses,” Science 323(5922), 1743–1747 (2009).
[CrossRef] [PubMed]

Dandekar, S.

G. Stybayeva, O. Mudanyali, S. Seo, J. Silangcruz, M. Macal, E. Ramanculov, S. Dandekar, A. Erlinger, A. Ozcan, and A. Revzin, “Lensfree holographic imaging of antibody microarrays for high-throughput detection of leukocyte numbers and function,” Anal. Chem. 82(9), 3736–3744 (2010).
[CrossRef] [PubMed]

Dasari, R. R.

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4(9), 717–719 (2007).
[CrossRef] [PubMed]

G. Popescu, T. Ikeda, R. R. Dasari, and M. S. Feld, “Diffraction phase microscopy for quantifying cell structure and dynamics,” Opt. Lett. 31(6), 775–777 (2006).
[CrossRef] [PubMed]

Davidson, M. W.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[CrossRef] [PubMed]

Davis, J. L.

Y. R. Shea, J. L. Davis, L. Huang, J. A. Kovacs, H. Masur, F. Mulindwa, S. Opus, Y. Chow, and P. R. Murray, “High sensitivity and specificity of acid-fast microscopy for diagnosis of pulmonary tuberculosis in an African population with a high prevalence of human immunodeficiency virus,” J. Clin. Microbiol. 47(5), 1553–1555 (2009).
[CrossRef] [PubMed]

de Gennes, P.

P. de Gennes, “Wetting: statics and dynamics,” Rev. Mod. Phys. 57(3), 827–863 (1985).
[CrossRef]

De Nicola, S.

Debeir, O.

F. Dubois, C. Yourassowsky, O. Monnom, J.-C. Legros, O. Debeir, P. Van Ham, R. Kiss, and C. Decaestecker, “Digital holographic microscopy for the three-dimensional dynamic analysis of in vitro cancer cell migration,” J. Biomed. Opt. 11(5), 054032 (2006).
[CrossRef] [PubMed]

Decaestecker, C.

F. Dubois, C. Yourassowsky, O. Monnom, J.-C. Legros, O. Debeir, P. Van Ham, R. Kiss, and C. Decaestecker, “Digital holographic microscopy for the three-dimensional dynamic analysis of in vitro cancer cell migration,” J. Biomed. Opt. 11(5), 054032 (2006).
[CrossRef] [PubMed]

Depeursinge, C.

Dinten, J. M.

Dogru, M.

T. Kojima, Y. Matsumoto, M. Dogru, and K. Tsubota, “The application of in vivo laser scanning confocal microscopy as a tool of conjunctival in vivo cytology in the diagnosis of dry eye ocular surface disease,” Mol. Vis. 16, 2457–2464 (2010).
[PubMed]

Donald, A. M.

N. A. Stelmashenko, J. P. Craven, A. M. Donald, E. M. Terentjev, and B. L. Thiel, “Topographic contrast of partially wetting water droplets in environmental scanning electron microscopy,” J. Microsc. 204(2), 172–183 (2001).
[CrossRef] [PubMed]

Dortet, L.

A. Sartori, A. Mallet, E. Veiga, M. Bonazzi, S. Mostowy, L. Dortet, W. Baumeister, and P. Cossart, “Correlative Light/Electron Microscopy: a Tool for Investigating Infectious Diseases,” MAM 15(S2), 862 (2009).
[CrossRef]

Dovichi, N. J.

D. C. Essaka, J. White, P. Rathod, C. D. Whitmore, O. Hindsgaul, M. M. Palcic, and N. J. Dovichi, “Monitoring the uptake of glycosphingolipids in Plasmodium falciparum-infected erythrocytes using both fluorescence microscopy and capillary electrophoresis with laser-induced fluorescence detection,” Anal. Chem. 82(23), 9955–9958 (2010).
[CrossRef] [PubMed]

Dubois, F.

F. Dubois, C. Yourassowsky, O. Monnom, J.-C. Legros, O. Debeir, P. Van Ham, R. Kiss, and C. Decaestecker, “Digital holographic microscopy for the three-dimensional dynamic analysis of in vitro cancer cell migration,” J. Biomed. Opt. 11(5), 054032 (2006).
[CrossRef] [PubMed]

F. Dubois, L. Joannes, and J. C. Legros, “Improved three-dimensional imaging with a digital holography microscope with a source of partial spatial coherence,” Appl. Opt. 38(34), 7085–7094 (1999).
[CrossRef] [PubMed]

Eggers, J.

D. Bonn, J. Eggers, J. Indekeu, J. Meunier, and E. Rolley, “Wetting and spreading,” Rev. Mod. Phys. 81(2), 739–805 (2009).
[CrossRef]

Ehlers, M. D.

Erlinger, A.

G. Stybayeva, O. Mudanyali, S. Seo, J. Silangcruz, M. Macal, E. Ramanculov, S. Dandekar, A. Erlinger, A. Ozcan, and A. Revzin, “Lensfree holographic imaging of antibody microarrays for high-throughput detection of leukocyte numbers and function,” Anal. Chem. 82(9), 3736–3744 (2010).
[CrossRef] [PubMed]

S. Seo, S. O. Isikman, I. Sencan, O. Mudanyali, T.-W. Su, W. Bishara, A. Erlinger, and A. Ozcan, “High-throughput lens-free blood analysis on a chip,” Anal. Chem. 82(11), 4621–4627 (2010).
[CrossRef] [PubMed]

O. Mudanyali, C. Oztoprak, D. Tseng, A. Erlinger, and A. Ozcan, “Detection of waterborne parasites using field-portable and cost-effective lensfree microscopy,” Lab Chip 10(18), 2419–2423 (2010).
[CrossRef] [PubMed]

T.-W. Su, A. Erlinger, D. Tseng, and A. Ozcan, “Compact and light-weight automated semen analysis platform using lensfree on-chip microscopy,” Anal. Chem. 82(19), 8307–8312 (2010).
[CrossRef] [PubMed]

Essaka, D. C.

D. C. Essaka, J. White, P. Rathod, C. D. Whitmore, O. Hindsgaul, M. M. Palcic, and N. J. Dovichi, “Monitoring the uptake of glycosphingolipids in Plasmodium falciparum-infected erythrocytes using both fluorescence microscopy and capillary electrophoresis with laser-induced fluorescence detection,” Anal. Chem. 82(23), 9955–9958 (2010).
[CrossRef] [PubMed]

Fang-Yen, C.

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4(9), 717–719 (2007).
[CrossRef] [PubMed]

Feld, M. S.

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4(9), 717–719 (2007).
[CrossRef] [PubMed]

G. Popescu, T. Ikeda, R. R. Dasari, and M. S. Feld, “Diffraction phase microscopy for quantifying cell structure and dynamics,” Opt. Lett. 31(6), 775–777 (2006).
[CrossRef] [PubMed]

Feng, S.

S. O. Isikman, W. Bishara, S. Mavandadi, F. W. Yu, S. Feng, R. Lau, and A. Ozcan, “Lens-free optical tomographic microscope with a large imaging volume on a chip,” Proc. Natl. Acad. Sci. U.S.A. 108(18), 7296–7301 (2011).
[CrossRef] [PubMed]

Ferraro, P.

Ferreira, C.

Finizio, A.

Fotheringham, A. F.

Q. F. Wei, R. R. Mather, A. F. Fotheringham, and R. D. Yang, “Dynamic Wetting of Fibers Observed in an Environmental Scanning Electron Microscope,” Text. Res. J. 73(6), 557–561 (2003).
[CrossRef]

Fujii, Y.

T. Nakada, H. Matsuzawa, H. Igarashi, Y. Fujii, and I. L. Kwee, “In vivo visualization of senile-plaque-like pathology in Alzheimer’s disease patients by MR microscopy on a 7T system,” J. Neuroimaging 18(2), 125–129 (2008).
[CrossRef] [PubMed]

Gagnidze, L.

M. Bonnet, A. Ramsay, W. Githui, L. Gagnidze, F. Varaine, and P. J. Guerin, “Bleach sedimentation: an opportunity to optimize smear microscopy for tuberculosis diagnosis in settings of high prevalence of HIV,” Clin. Infect. Dis. 46(11), 1710–1716 (2008).
[CrossRef] [PubMed]

Galatsanos, N. P.

N. A. Woods, N. P. Galatsanos, and A. K. Katsaggelos, “Stochastic methods for joint registration, restoration, and interpolation of multiple undersampled images,” IEEE Trans. Image Process. 15(1), 201–213 (2006).
[CrossRef] [PubMed]

García, J.

Garcia-Sucerquia, J.

Garoff, H.

S.-R. Wu, R. Loving, B. Lindqvist, H. Hebert, P. J. B. Koeck, M. Sjoberg, and H. Garoff, “Single-particle cryoelectron microscopy analysis reveals the HIV-1 spike as a tripod structure,” Proc. Natl. Acad. Sci. U.S.A. 107(44), 18844–18849 (2010).
[CrossRef] [PubMed]

Girirajan, T. P. K.

S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91(11), 4258–4272 (2006).
[CrossRef] [PubMed]

Githui, W.

M. Bonnet, A. Ramsay, W. Githui, L. Gagnidze, F. Varaine, and P. J. Guerin, “Bleach sedimentation: an opportunity to optimize smear microscopy for tuberculosis diagnosis in settings of high prevalence of HIV,” Clin. Infect. Dis. 46(11), 1710–1716 (2008).
[CrossRef] [PubMed]

Goda, K.

K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature 458(7242), 1145–1149 (2009).
[CrossRef] [PubMed]

Gopinathan, U.

Gordon, R. E.

W. Hübner, G. P. McNerney, P. Chen, B. M. Dale, R. E. Gordon, F. Y. S. Chuang, X.-D. Li, D. M. Asmuth, T. Huser, and B. K. Chen, “Quantitative 3D video microscopy of HIV transfer across T cell virological synapses,” Science 323(5922), 1743–1747 (2009).
[CrossRef] [PubMed]

Grilli, S.

Guerin, P. J.

M. Bonnet, A. Ramsay, W. Githui, L. Gagnidze, F. Varaine, and P. J. Guerin, “Bleach sedimentation: an opportunity to optimize smear microscopy for tuberculosis diagnosis in settings of high prevalence of HIV,” Clin. Infect. Dis. 46(11), 1710–1716 (2008).
[CrossRef] [PubMed]

Gustafsson, M. G. L.

M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. U.S.A. 102(37), 13081–13086 (2005).
[CrossRef] [PubMed]

Gutzler, T.

Hardie, R. C.

R. C. Hardie, “High-resolution image reconstruction from a sequence of rotated and translated frames and its application to an infrared imaging system,” Opt. Eng. 37(1), 247 (1998).
[CrossRef]

R. C. Hardie, K. J. Barnard, and E. E. Armstrong, “Joint MAP registration and high-resolution image estimation using a sequence of undersampled images,” IEEE Trans. Image Process. 6(12), 1621–1633 (1997).
[CrossRef] [PubMed]

Hassan, S. E.-D.

S. E.-D. Hassan, S. I. Okoued, M. A. Mudathir, and E. M. Malik, “Testing the sensitivity and specificity of the fluorescence microscope (Cyscope) for malaria diagnosis,” Malar. J. 9(1), 88 (2010).
[CrossRef] [PubMed]

Hebert, H.

S.-R. Wu, R. Loving, B. Lindqvist, H. Hebert, P. J. B. Koeck, M. Sjoberg, and H. Garoff, “Single-particle cryoelectron microscopy analysis reveals the HIV-1 spike as a tripod structure,” Proc. Natl. Acad. Sci. U.S.A. 107(44), 18844–18849 (2010).
[CrossRef] [PubMed]

Hell, S. W.

S. W. Hell, “Toward fluorescence nanoscopy,” Nat. Biotechnol. 21(11), 1347–1355 (2003).
[CrossRef] [PubMed]

Hess, H. F.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[CrossRef] [PubMed]

Hess, S. T.

S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91(11), 4258–4272 (2006).
[CrossRef] [PubMed]

Hesseling, A. C.

B. J. Marais, W. Brittle, K. Painczyk, A. C. Hesseling, N. Beyers, E. Wasserman, D. van Soolingen, and R. M. Warren, “Use of light-emitting diode fluorescence microscopy to detect acid-fast bacilli in sputum,” Clin. Infect. Dis. 47(2), 203–207 (2008).
[CrossRef] [PubMed]

Hewitson, T. D.

M. Selvarajah, K. Nicholls, T. D. Hewitson, and G. J. Becker, “Targeted urine microscopy in Anderson-Fabry Disease: a cheap, sensitive and specific diagnostic technique,” Nephrol. Dial. Transplant. (2011). doi:10.1093/ndt/gfr084.

Hiernard, G.

Hillman, T. R.

Hindsgaul, O.

D. C. Essaka, J. White, P. Rathod, C. D. Whitmore, O. Hindsgaul, M. M. Palcic, and N. J. Dovichi, “Monitoring the uptake of glycosphingolipids in Plasmodium falciparum-infected erythrocytes using both fluorescence microscopy and capillary electrophoresis with laser-induced fluorescence detection,” Anal. Chem. 82(23), 9955–9958 (2010).
[CrossRef] [PubMed]

Horisaki, R.

Huang, L.

Y. R. Shea, J. L. Davis, L. Huang, J. A. Kovacs, H. Masur, F. Mulindwa, S. Opus, Y. Chow, and P. R. Murray, “High sensitivity and specificity of acid-fast microscopy for diagnosis of pulmonary tuberculosis in an African population with a high prevalence of human immunodeficiency virus,” J. Clin. Microbiol. 47(5), 1553–1555 (2009).
[CrossRef] [PubMed]

Hübner, W.

W. Hübner, G. P. McNerney, P. Chen, B. M. Dale, R. E. Gordon, F. Y. S. Chuang, X.-D. Li, D. M. Asmuth, T. Huser, and B. K. Chen, “Quantitative 3D video microscopy of HIV transfer across T cell virological synapses,” Science 323(5922), 1743–1747 (2009).
[CrossRef] [PubMed]

Huser, T.

W. Hübner, G. P. McNerney, P. Chen, B. M. Dale, R. E. Gordon, F. Y. S. Chuang, X.-D. Li, D. M. Asmuth, T. Huser, and B. K. Chen, “Quantitative 3D video microscopy of HIV transfer across T cell virological synapses,” Science 323(5922), 1743–1747 (2009).
[CrossRef] [PubMed]

Igarashi, H.

T. Nakada, H. Matsuzawa, H. Igarashi, Y. Fujii, and I. L. Kwee, “In vivo visualization of senile-plaque-like pathology in Alzheimer’s disease patients by MR microscopy on a 7T system,” J. Neuroimaging 18(2), 125–129 (2008).
[CrossRef] [PubMed]

Ikeda, T.

Indebetouw, G.

Indekeu, J.

D. Bonn, J. Eggers, J. Indekeu, J. Meunier, and E. Rolley, “Wetting and spreading,” Rev. Mod. Phys. 81(2), 739–805 (2009).
[CrossRef]

Isikman, S. O.

S. O. Isikman, W. Bishara, S. Mavandadi, F. W. Yu, S. Feng, R. Lau, and A. Ozcan, “Lens-free optical tomographic microscope with a large imaging volume on a chip,” Proc. Natl. Acad. Sci. U.S.A. 108(18), 7296–7301 (2011).
[CrossRef] [PubMed]

D. Tseng, O. Mudanyali, C. Oztoprak, S. O. Isikman, I. Sencan, O. Yaglidere, and A. Ozcan, “Lensfree microscopy on a cellphone,” Lab Chip 10(14), 1787–1792 (2010).
[CrossRef] [PubMed]

S. Seo, S. O. Isikman, I. Sencan, O. Mudanyali, T.-W. Su, W. Bishara, A. Erlinger, and A. Ozcan, “High-throughput lens-free blood analysis on a chip,” Anal. Chem. 82(11), 4621–4627 (2010).
[CrossRef] [PubMed]

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10(11), 1417–1428 (2010).
[CrossRef] [PubMed]

Jalali, B.

K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature 458(7242), 1145–1149 (2009).
[CrossRef] [PubMed]

Javidi, B.

Jericho, M. H.

J. Garcia-Sucerquia, W. Xu, M. H. Jericho, and H. J. Kreuzer, “Immersion digital in-line holographic microscopy,” Opt. Lett. 31(9), 1211–1213 (2006).
[CrossRef] [PubMed]

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. U.S.A. 98(20), 11301–11305 (2001).
[CrossRef] [PubMed]

Joannes, L.

Kang, M. G.

S. C. Park, M. K. Park, and M. G. Kang, “Super-resolution image reconstruction: a technical overview,” IEEE Signal Process. Mag. 20(3), 21–36 (2003).
[CrossRef]

Katsaggelos, A. K.

N. A. Woods, N. P. Galatsanos, and A. K. Katsaggelos, “Stochastic methods for joint registration, restoration, and interpolation of multiple undersampled images,” IEEE Trans. Image Process. 15(1), 201–213 (2006).
[CrossRef] [PubMed]

Khademhosseini, B.

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10(11), 1417–1428 (2010).
[CrossRef] [PubMed]

Kim, D.

E. Chung, D. Kim, Y. Cui, Y.-H. Kim, and P. T. C. So, “Two-dimensional standing wave total internal reflection fluorescence microscopy: superresolution imaging of single molecular and biological specimens,” Biophys. J. 93(5), 1747–1757 (2007).
[CrossRef] [PubMed]

Kim, M. K.

Kim, Y.-H.

E. Chung, D. Kim, Y. Cui, Y.-H. Kim, and P. T. C. So, “Two-dimensional standing wave total internal reflection fluorescence microscopy: superresolution imaging of single molecular and biological specimens,” Biophys. J. 93(5), 1747–1757 (2007).
[CrossRef] [PubMed]

Kiss, R.

F. Dubois, C. Yourassowsky, O. Monnom, J.-C. Legros, O. Debeir, P. Van Ham, R. Kiss, and C. Decaestecker, “Digital holographic microscopy for the three-dimensional dynamic analysis of in vitro cancer cell migration,” J. Biomed. Opt. 11(5), 054032 (2006).
[CrossRef] [PubMed]

Koeck, P. J. B.

S.-R. Wu, R. Loving, B. Lindqvist, H. Hebert, P. J. B. Koeck, M. Sjoberg, and H. Garoff, “Single-particle cryoelectron microscopy analysis reveals the HIV-1 spike as a tripod structure,” Proc. Natl. Acad. Sci. U.S.A. 107(44), 18844–18849 (2010).
[CrossRef] [PubMed]

Kojima, T.

T. Kojima, Y. Matsumoto, M. Dogru, and K. Tsubota, “The application of in vivo laser scanning confocal microscopy as a tool of conjunctival in vivo cytology in the diagnosis of dry eye ocular surface disease,” Mol. Vis. 16, 2457–2464 (2010).
[PubMed]

Kou, S. S.

Kovacs, J. A.

Y. R. Shea, J. L. Davis, L. Huang, J. A. Kovacs, H. Masur, F. Mulindwa, S. Opus, Y. Chow, and P. R. Murray, “High sensitivity and specificity of acid-fast microscopy for diagnosis of pulmonary tuberculosis in an African population with a high prevalence of human immunodeficiency virus,” J. Clin. Microbiol. 47(5), 1553–1555 (2009).
[CrossRef] [PubMed]

Krause, M.

M. Krause, P. Rosch, B. Radt, and J. Popp, “Localizing and identifying living bacteria in an abiotic environment by a combination of Raman and fluorescence microscopy,” Anal. Chem. 80(22), 8568–8575 (2008).
[CrossRef] [PubMed]

Kreuzer, H. J.

J. Garcia-Sucerquia, W. Xu, M. H. Jericho, and H. J. Kreuzer, “Immersion digital in-line holographic microscopy,” Opt. Lett. 31(9), 1211–1213 (2006).
[CrossRef] [PubMed]

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. U.S.A. 98(20), 11301–11305 (2001).
[CrossRef] [PubMed]

Kwee, I. L.

T. Nakada, H. Matsuzawa, H. Igarashi, Y. Fujii, and I. L. Kwee, “In vivo visualization of senile-plaque-like pathology in Alzheimer’s disease patients by MR microscopy on a 7T system,” J. Neuroimaging 18(2), 125–129 (2008).
[CrossRef] [PubMed]

Lau, R.

S. O. Isikman, W. Bishara, S. Mavandadi, F. W. Yu, S. Feng, R. Lau, and A. Ozcan, “Lens-free optical tomographic microscope with a large imaging volume on a chip,” Proc. Natl. Acad. Sci. U.S.A. 108(18), 7296–7301 (2011).
[CrossRef] [PubMed]

Legros, J. C.

Legros, J.-C.

F. Dubois, C. Yourassowsky, O. Monnom, J.-C. Legros, O. Debeir, P. Van Ham, R. Kiss, and C. Decaestecker, “Digital holographic microscopy for the three-dimensional dynamic analysis of in vitro cancer cell migration,” J. Biomed. Opt. 11(5), 054032 (2006).
[CrossRef] [PubMed]

Li, X.-D.

W. Hübner, G. P. McNerney, P. Chen, B. M. Dale, R. E. Gordon, F. Y. S. Chuang, X.-D. Li, D. M. Asmuth, T. Huser, and B. K. Chen, “Quantitative 3D video microscopy of HIV transfer across T cell virological synapses,” Science 323(5922), 1743–1747 (2009).
[CrossRef] [PubMed]

Lim, S.

Lindqvist, B.

S.-R. Wu, R. Loving, B. Lindqvist, H. Hebert, P. J. B. Koeck, M. Sjoberg, and H. Garoff, “Single-particle cryoelectron microscopy analysis reveals the HIV-1 spike as a tripod structure,” Proc. Natl. Acad. Sci. U.S.A. 107(44), 18844–18849 (2010).
[CrossRef] [PubMed]

Lindwasser, O. W.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[CrossRef] [PubMed]

Lippincott-Schwartz, J.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[CrossRef] [PubMed]

Lo, C. M.

Loving, R.

S.-R. Wu, R. Loving, B. Lindqvist, H. Hebert, P. J. B. Koeck, M. Sjoberg, and H. Garoff, “Single-particle cryoelectron microscopy analysis reveals the HIV-1 spike as a tripod structure,” Proc. Natl. Acad. Sci. U.S.A. 107(44), 18844–18849 (2010).
[CrossRef] [PubMed]

Luckhart, S.

W. Bishara, U. Sikora, O. Mudanyali, T.-W. Su, O. Yaglidere, S. Luckhart, and A. Ozcan, “Holographic pixel super-resolution in portable lensless on-chip microscopy using a fiber-optic array,” Lab Chip 11(7), 1276–1279 (2011).
[CrossRef] [PubMed]

Lue, N.

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4(9), 717–719 (2007).
[CrossRef] [PubMed]

Luo, Y.

Macal, M.

G. Stybayeva, O. Mudanyali, S. Seo, J. Silangcruz, M. Macal, E. Ramanculov, S. Dandekar, A. Erlinger, A. Ozcan, and A. Revzin, “Lensfree holographic imaging of antibody microarrays for high-throughput detection of leukocyte numbers and function,” Anal. Chem. 82(9), 3736–3744 (2010).
[CrossRef] [PubMed]

Malik, E. M.

S. E.-D. Hassan, S. I. Okoued, M. A. Mudathir, and E. M. Malik, “Testing the sensitivity and specificity of the fluorescence microscope (Cyscope) for malaria diagnosis,” Malar. J. 9(1), 88 (2010).
[CrossRef] [PubMed]

Mallet, A.

A. Sartori, A. Mallet, E. Veiga, M. Bonazzi, S. Mostowy, L. Dortet, W. Baumeister, and P. Cossart, “Correlative Light/Electron Microscopy: a Tool for Investigating Infectious Diseases,” MAM 15(S2), 862 (2009).
[CrossRef]

Mann, C. J.

Marais, B. J.

B. J. Marais, W. Brittle, K. Painczyk, A. C. Hesseling, N. Beyers, E. Wasserman, D. van Soolingen, and R. M. Warren, “Use of light-emitting diode fluorescence microscopy to detect acid-fast bacilli in sputum,” Clin. Infect. Dis. 47(2), 203–207 (2008).
[CrossRef] [PubMed]

Marks, D. L.

Mason, M. D.

S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91(11), 4258–4272 (2006).
[CrossRef] [PubMed]

Masur, H.

Y. R. Shea, J. L. Davis, L. Huang, J. A. Kovacs, H. Masur, F. Mulindwa, S. Opus, Y. Chow, and P. R. Murray, “High sensitivity and specificity of acid-fast microscopy for diagnosis of pulmonary tuberculosis in an African population with a high prevalence of human immunodeficiency virus,” J. Clin. Microbiol. 47(5), 1553–1555 (2009).
[CrossRef] [PubMed]

Mather, R. R.

Q. F. Wei, R. R. Mather, A. F. Fotheringham, and R. D. Yang, “Dynamic Wetting of Fibers Observed in an Environmental Scanning Electron Microscope,” Text. Res. J. 73(6), 557–561 (2003).
[CrossRef]

Matsumoto, Y.

T. Kojima, Y. Matsumoto, M. Dogru, and K. Tsubota, “The application of in vivo laser scanning confocal microscopy as a tool of conjunctival in vivo cytology in the diagnosis of dry eye ocular surface disease,” Mol. Vis. 16, 2457–2464 (2010).
[PubMed]

Matsuzawa, H.

T. Nakada, H. Matsuzawa, H. Igarashi, Y. Fujii, and I. L. Kwee, “In vivo visualization of senile-plaque-like pathology in Alzheimer’s disease patients by MR microscopy on a 7T system,” J. Neuroimaging 18(2), 125–129 (2008).
[CrossRef] [PubMed]

Mavandadi, S.

S. O. Isikman, W. Bishara, S. Mavandadi, F. W. Yu, S. Feng, R. Lau, and A. Ozcan, “Lens-free optical tomographic microscope with a large imaging volume on a chip,” Proc. Natl. Acad. Sci. U.S.A. 108(18), 7296–7301 (2011).
[CrossRef] [PubMed]

McGhee, C. N. J.

D. V. Patel and C. N. J. McGhee, “In vivo confocal microscopy of corneal stromal nerves in patients with peripheral neuropathy,” Arch. Neurol. 66(9), 1179–1180, author reply 1180 (2009).
[CrossRef] [PubMed]

McNerney, G. P.

W. Hübner, G. P. McNerney, P. Chen, B. M. Dale, R. E. Gordon, F. Y. S. Chuang, X.-D. Li, D. M. Asmuth, T. Huser, and B. K. Chen, “Quantitative 3D video microscopy of HIV transfer across T cell virological synapses,” Science 323(5922), 1743–1747 (2009).
[CrossRef] [PubMed]

Meinertzhagen, I. A.

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. U.S.A. 98(20), 11301–11305 (2001).
[CrossRef] [PubMed]

Merola, F.

Messerschmidt, B.

R. P. J. Barretto, B. Messerschmidt, and M. J. Schnitzer, “In vivo fluorescence imaging with high-resolution microlenses,” Nat. Methods 6(7), 511–512 (2009).
[CrossRef] [PubMed]

Meunier, J.

D. Bonn, J. Eggers, J. Indekeu, J. Meunier, and E. Rolley, “Wetting and spreading,” Rev. Mod. Phys. 81(2), 739–805 (2009).
[CrossRef]

Mico, V.

Monnom, O.

F. Dubois, C. Yourassowsky, O. Monnom, J.-C. Legros, O. Debeir, P. Van Ham, R. Kiss, and C. Decaestecker, “Digital holographic microscopy for the three-dimensional dynamic analysis of in vitro cancer cell migration,” J. Biomed. Opt. 11(5), 054032 (2006).
[CrossRef] [PubMed]

Moon, I.

Mostowy, S.

A. Sartori, A. Mallet, E. Veiga, M. Bonazzi, S. Mostowy, L. Dortet, W. Baumeister, and P. Cossart, “Correlative Light/Electron Microscopy: a Tool for Investigating Infectious Diseases,” MAM 15(S2), 862 (2009).
[CrossRef]

Mudanyali, O.

W. Bishara, U. Sikora, O. Mudanyali, T.-W. Su, O. Yaglidere, S. Luckhart, and A. Ozcan, “Holographic pixel super-resolution in portable lensless on-chip microscopy using a fiber-optic array,” Lab Chip 11(7), 1276–1279 (2011).
[CrossRef] [PubMed]

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10(11), 1417–1428 (2010).
[CrossRef] [PubMed]

S. Seo, S. O. Isikman, I. Sencan, O. Mudanyali, T.-W. Su, W. Bishara, A. Erlinger, and A. Ozcan, “High-throughput lens-free blood analysis on a chip,” Anal. Chem. 82(11), 4621–4627 (2010).
[CrossRef] [PubMed]

D. Tseng, O. Mudanyali, C. Oztoprak, S. O. Isikman, I. Sencan, O. Yaglidere, and A. Ozcan, “Lensfree microscopy on a cellphone,” Lab Chip 10(14), 1787–1792 (2010).
[CrossRef] [PubMed]

G. Stybayeva, O. Mudanyali, S. Seo, J. Silangcruz, M. Macal, E. Ramanculov, S. Dandekar, A. Erlinger, A. Ozcan, and A. Revzin, “Lensfree holographic imaging of antibody microarrays for high-throughput detection of leukocyte numbers and function,” Anal. Chem. 82(9), 3736–3744 (2010).
[CrossRef] [PubMed]

O. Mudanyali, C. Oztoprak, D. Tseng, A. Erlinger, and A. Ozcan, “Detection of waterborne parasites using field-portable and cost-effective lensfree microscopy,” Lab Chip 10(18), 2419–2423 (2010).
[CrossRef] [PubMed]

Mudathir, M. A.

S. E.-D. Hassan, S. I. Okoued, M. A. Mudathir, and E. M. Malik, “Testing the sensitivity and specificity of the fluorescence microscope (Cyscope) for malaria diagnosis,” Malar. J. 9(1), 88 (2010).
[CrossRef] [PubMed]

Mulindwa, F.

Y. R. Shea, J. L. Davis, L. Huang, J. A. Kovacs, H. Masur, F. Mulindwa, S. Opus, Y. Chow, and P. R. Murray, “High sensitivity and specificity of acid-fast microscopy for diagnosis of pulmonary tuberculosis in an African population with a high prevalence of human immunodeficiency virus,” J. Clin. Microbiol. 47(5), 1553–1555 (2009).
[CrossRef] [PubMed]

Murray, P. R.

Y. R. Shea, J. L. Davis, L. Huang, J. A. Kovacs, H. Masur, F. Mulindwa, S. Opus, Y. Chow, and P. R. Murray, “High sensitivity and specificity of acid-fast microscopy for diagnosis of pulmonary tuberculosis in an African population with a high prevalence of human immunodeficiency virus,” J. Clin. Microbiol. 47(5), 1553–1555 (2009).
[CrossRef] [PubMed]

Nakada, T.

T. Nakada, H. Matsuzawa, H. Igarashi, Y. Fujii, and I. L. Kwee, “In vivo visualization of senile-plaque-like pathology in Alzheimer’s disease patients by MR microscopy on a 7T system,” J. Neuroimaging 18(2), 125–129 (2008).
[CrossRef] [PubMed]

Newpher, T. M.

Nicholls, K.

M. Selvarajah, K. Nicholls, T. D. Hewitson, and G. J. Becker, “Targeted urine microscopy in Anderson-Fabry Disease: a cheap, sensitive and specific diagnostic technique,” Nephrol. Dial. Transplant. (2011). doi:10.1093/ndt/gfr084.

Oh, C.

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10(11), 1417–1428 (2010).
[CrossRef] [PubMed]

Oh, S.

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4(9), 717–719 (2007).
[CrossRef] [PubMed]

Okoued, S. I.

S. E.-D. Hassan, S. I. Okoued, M. A. Mudathir, and E. M. Malik, “Testing the sensitivity and specificity of the fluorescence microscope (Cyscope) for malaria diagnosis,” Malar. J. 9(1), 88 (2010).
[CrossRef] [PubMed]

Olenych, S.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[CrossRef] [PubMed]

Opus, S.

Y. R. Shea, J. L. Davis, L. Huang, J. A. Kovacs, H. Masur, F. Mulindwa, S. Opus, Y. Chow, and P. R. Murray, “High sensitivity and specificity of acid-fast microscopy for diagnosis of pulmonary tuberculosis in an African population with a high prevalence of human immunodeficiency virus,” J. Clin. Microbiol. 47(5), 1553–1555 (2009).
[CrossRef] [PubMed]

Osten, W.

Ozcan, A.

W. Bishara, U. Sikora, O. Mudanyali, T.-W. Su, O. Yaglidere, S. Luckhart, and A. Ozcan, “Holographic pixel super-resolution in portable lensless on-chip microscopy using a fiber-optic array,” Lab Chip 11(7), 1276–1279 (2011).
[CrossRef] [PubMed]

S. O. Isikman, W. Bishara, S. Mavandadi, F. W. Yu, S. Feng, R. Lau, and A. Ozcan, “Lens-free optical tomographic microscope with a large imaging volume on a chip,” Proc. Natl. Acad. Sci. U.S.A. 108(18), 7296–7301 (2011).
[CrossRef] [PubMed]

W. Bishara, T.-W. Su, A. F. Coskun, and A. Ozcan, “Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution,” Opt. Express 18(11), 11181–11191 (2010).
[CrossRef] [PubMed]

S. Seo, S. O. Isikman, I. Sencan, O. Mudanyali, T.-W. Su, W. Bishara, A. Erlinger, and A. Ozcan, “High-throughput lens-free blood analysis on a chip,” Anal. Chem. 82(11), 4621–4627 (2010).
[CrossRef] [PubMed]

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10(11), 1417–1428 (2010).
[CrossRef] [PubMed]

O. Mudanyali, C. Oztoprak, D. Tseng, A. Erlinger, and A. Ozcan, “Detection of waterborne parasites using field-portable and cost-effective lensfree microscopy,” Lab Chip 10(18), 2419–2423 (2010).
[CrossRef] [PubMed]

T.-W. Su, A. Erlinger, D. Tseng, and A. Ozcan, “Compact and light-weight automated semen analysis platform using lensfree on-chip microscopy,” Anal. Chem. 82(19), 8307–8312 (2010).
[CrossRef] [PubMed]

D. Tseng, O. Mudanyali, C. Oztoprak, S. O. Isikman, I. Sencan, O. Yaglidere, and A. Ozcan, “Lensfree microscopy on a cellphone,” Lab Chip 10(14), 1787–1792 (2010).
[CrossRef] [PubMed]

G. Stybayeva, O. Mudanyali, S. Seo, J. Silangcruz, M. Macal, E. Ramanculov, S. Dandekar, A. Erlinger, A. Ozcan, and A. Revzin, “Lensfree holographic imaging of antibody microarrays for high-throughput detection of leukocyte numbers and function,” Anal. Chem. 82(9), 3736–3744 (2010).
[CrossRef] [PubMed]

W. Bishara, H. Zhu, and A. Ozcan, “Holographic opto-fluidic microscopy,” Opt. Express 18(26), 27499–27510 (2010).
[CrossRef] [PubMed]

Oztoprak, C.

D. Tseng, O. Mudanyali, C. Oztoprak, S. O. Isikman, I. Sencan, O. Yaglidere, and A. Ozcan, “Lensfree microscopy on a cellphone,” Lab Chip 10(14), 1787–1792 (2010).
[CrossRef] [PubMed]

O. Mudanyali, C. Oztoprak, D. Tseng, A. Erlinger, and A. Ozcan, “Detection of waterborne parasites using field-portable and cost-effective lensfree microscopy,” Lab Chip 10(18), 2419–2423 (2010).
[CrossRef] [PubMed]

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10(11), 1417–1428 (2010).
[CrossRef] [PubMed]

Painczyk, K.

B. J. Marais, W. Brittle, K. Painczyk, A. C. Hesseling, N. Beyers, E. Wasserman, D. van Soolingen, and R. M. Warren, “Use of light-emitting diode fluorescence microscopy to detect acid-fast bacilli in sputum,” Clin. Infect. Dis. 47(2), 203–207 (2008).
[CrossRef] [PubMed]

Palcic, M. M.

D. C. Essaka, J. White, P. Rathod, C. D. Whitmore, O. Hindsgaul, M. M. Palcic, and N. J. Dovichi, “Monitoring the uptake of glycosphingolipids in Plasmodium falciparum-infected erythrocytes using both fluorescence microscopy and capillary electrophoresis with laser-induced fluorescence detection,” Anal. Chem. 82(23), 9955–9958 (2010).
[CrossRef] [PubMed]

Park, M. K.

S. C. Park, M. K. Park, and M. G. Kang, “Super-resolution image reconstruction: a technical overview,” IEEE Signal Process. Mag. 20(3), 21–36 (2003).
[CrossRef]

Park, S. C.

S. C. Park, M. K. Park, and M. G. Kang, “Super-resolution image reconstruction: a technical overview,” IEEE Signal Process. Mag. 20(3), 21–36 (2003).
[CrossRef]

Patel, D. V.

D. V. Patel and C. N. J. McGhee, “In vivo confocal microscopy of corneal stromal nerves in patients with peripheral neuropathy,” Arch. Neurol. 66(9), 1179–1180, author reply 1180 (2009).
[CrossRef] [PubMed]

Patterson, G. H.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[CrossRef] [PubMed]

Paturzo, M.

Pedrini, G.

Piano, E.

Pogreb, R.

E. Bormashenko, Y. Bormashenko, T. Stein, G. Whyman, R. Pogreb, and Z. Barkay, “Environmental scanning electron microscopy study of the fine structure of the triple line and cassie-wenzel wetting transition for sessile drops deposited on rough polymer substrates,” Langmuir 23(8), 4378–4382 (2007).
[CrossRef] [PubMed]

Poher, V.

Pontiggia, C.

Poon, T.-C.

T.-C. Poon, “Recent progress in optical scanning holography,” J. Hologr. Speckle 1(1), 6–25 (2004).
[CrossRef]

Popescu, G.

Popp, J.

M. Krause, P. Rosch, B. Radt, and J. Popp, “Localizing and identifying living bacteria in an abiotic environment by a combination of Raman and fluorescence microscopy,” Anal. Chem. 80(22), 8568–8575 (2008).
[CrossRef] [PubMed]

Radt, B.

M. Krause, P. Rosch, B. Radt, and J. Popp, “Localizing and identifying living bacteria in an abiotic environment by a combination of Raman and fluorescence microscopy,” Anal. Chem. 80(22), 8568–8575 (2008).
[CrossRef] [PubMed]

Ramanculov, E.

G. Stybayeva, O. Mudanyali, S. Seo, J. Silangcruz, M. Macal, E. Ramanculov, S. Dandekar, A. Erlinger, A. Ozcan, and A. Revzin, “Lensfree holographic imaging of antibody microarrays for high-throughput detection of leukocyte numbers and function,” Anal. Chem. 82(9), 3736–3744 (2010).
[CrossRef] [PubMed]

Ramsay, A.

M. Bonnet, A. Ramsay, W. Githui, L. Gagnidze, F. Varaine, and P. J. Guerin, “Bleach sedimentation: an opportunity to optimize smear microscopy for tuberculosis diagnosis in settings of high prevalence of HIV,” Clin. Infect. Dis. 46(11), 1710–1716 (2008).
[CrossRef] [PubMed]

Rathod, P.

D. C. Essaka, J. White, P. Rathod, C. D. Whitmore, O. Hindsgaul, M. M. Palcic, and N. J. Dovichi, “Monitoring the uptake of glycosphingolipids in Plasmodium falciparum-infected erythrocytes using both fluorescence microscopy and capillary electrophoresis with laser-induced fluorescence detection,” Anal. Chem. 82(23), 9955–9958 (2010).
[CrossRef] [PubMed]

Repetto, L.

Revzin, A.

G. Stybayeva, O. Mudanyali, S. Seo, J. Silangcruz, M. Macal, E. Ramanculov, S. Dandekar, A. Erlinger, A. Ozcan, and A. Revzin, “Lensfree holographic imaging of antibody microarrays for high-throughput detection of leukocyte numbers and function,” Anal. Chem. 82(9), 3736–3744 (2010).
[CrossRef] [PubMed]

Rolley, E.

D. Bonn, J. Eggers, J. Indekeu, J. Meunier, and E. Rolley, “Wetting and spreading,” Rev. Mod. Phys. 81(2), 739–805 (2009).
[CrossRef]

Rosch, P.

M. Krause, P. Rosch, B. Radt, and J. Popp, “Localizing and identifying living bacteria in an abiotic environment by a combination of Raman and fluorescence microscopy,” Anal. Chem. 80(22), 8568–8575 (2008).
[CrossRef] [PubMed]

Rosen, J.

Rust, M. J.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
[CrossRef] [PubMed]

Sampson, D. D.

Sartori, A.

A. Sartori, A. Mallet, E. Veiga, M. Bonazzi, S. Mostowy, L. Dortet, W. Baumeister, and P. Cossart, “Correlative Light/Electron Microscopy: a Tool for Investigating Infectious Diseases,” MAM 15(S2), 862 (2009).
[CrossRef]

Schnitzer, M. J.

R. P. J. Barretto, B. Messerschmidt, and M. J. Schnitzer, “In vivo fluorescence imaging with high-resolution microlenses,” Nat. Methods 6(7), 511–512 (2009).
[CrossRef] [PubMed]

Selvarajah, M.

M. Selvarajah, K. Nicholls, T. D. Hewitson, and G. J. Becker, “Targeted urine microscopy in Anderson-Fabry Disease: a cheap, sensitive and specific diagnostic technique,” Nephrol. Dial. Transplant. (2011). doi:10.1093/ndt/gfr084.

Sencan, I.

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10(11), 1417–1428 (2010).
[CrossRef] [PubMed]

S. Seo, S. O. Isikman, I. Sencan, O. Mudanyali, T.-W. Su, W. Bishara, A. Erlinger, and A. Ozcan, “High-throughput lens-free blood analysis on a chip,” Anal. Chem. 82(11), 4621–4627 (2010).
[CrossRef] [PubMed]

D. Tseng, O. Mudanyali, C. Oztoprak, S. O. Isikman, I. Sencan, O. Yaglidere, and A. Ozcan, “Lensfree microscopy on a cellphone,” Lab Chip 10(14), 1787–1792 (2010).
[CrossRef] [PubMed]

Seo, S.

G. Stybayeva, O. Mudanyali, S. Seo, J. Silangcruz, M. Macal, E. Ramanculov, S. Dandekar, A. Erlinger, A. Ozcan, and A. Revzin, “Lensfree holographic imaging of antibody microarrays for high-throughput detection of leukocyte numbers and function,” Anal. Chem. 82(9), 3736–3744 (2010).
[CrossRef] [PubMed]

S. Seo, S. O. Isikman, I. Sencan, O. Mudanyali, T.-W. Su, W. Bishara, A. Erlinger, and A. Ozcan, “High-throughput lens-free blood analysis on a chip,” Anal. Chem. 82(11), 4621–4627 (2010).
[CrossRef] [PubMed]

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10(11), 1417–1428 (2010).
[CrossRef] [PubMed]

Shaked, N. T.

Shea, Y. R.

Y. R. Shea, J. L. Davis, L. Huang, J. A. Kovacs, H. Masur, F. Mulindwa, S. Opus, Y. Chow, and P. R. Murray, “High sensitivity and specificity of acid-fast microscopy for diagnosis of pulmonary tuberculosis in an African population with a high prevalence of human immunodeficiency virus,” J. Clin. Microbiol. 47(5), 1553–1555 (2009).
[CrossRef] [PubMed]

Sheppard, C. J. R.

Sikora, U.

W. Bishara, U. Sikora, O. Mudanyali, T.-W. Su, O. Yaglidere, S. Luckhart, and A. Ozcan, “Holographic pixel super-resolution in portable lensless on-chip microscopy using a fiber-optic array,” Lab Chip 11(7), 1276–1279 (2011).
[CrossRef] [PubMed]

Silangcruz, J.

G. Stybayeva, O. Mudanyali, S. Seo, J. Silangcruz, M. Macal, E. Ramanculov, S. Dandekar, A. Erlinger, A. Ozcan, and A. Revzin, “Lensfree holographic imaging of antibody microarrays for high-throughput detection of leukocyte numbers and function,” Anal. Chem. 82(9), 3736–3744 (2010).
[CrossRef] [PubMed]

Sjoberg, M.

S.-R. Wu, R. Loving, B. Lindqvist, H. Hebert, P. J. B. Koeck, M. Sjoberg, and H. Garoff, “Single-particle cryoelectron microscopy analysis reveals the HIV-1 spike as a tripod structure,” Proc. Natl. Acad. Sci. U.S.A. 107(44), 18844–18849 (2010).
[CrossRef] [PubMed]

So, P. T. C.

E. Chung, D. Kim, Y. Cui, Y.-H. Kim, and P. T. C. So, “Two-dimensional standing wave total internal reflection fluorescence microscopy: superresolution imaging of single molecular and biological specimens,” Biophys. J. 93(5), 1747–1757 (2007).
[CrossRef] [PubMed]

Sougrat, R.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[CrossRef] [PubMed]

Stein, T.

E. Bormashenko, Y. Bormashenko, T. Stein, G. Whyman, R. Pogreb, and Z. Barkay, “Environmental scanning electron microscopy study of the fine structure of the triple line and cassie-wenzel wetting transition for sessile drops deposited on rough polymer substrates,” Langmuir 23(8), 4378–4382 (2007).
[CrossRef] [PubMed]

Stelmashenko, N. A.

N. A. Stelmashenko, J. P. Craven, A. M. Donald, E. M. Terentjev, and B. L. Thiel, “Topographic contrast of partially wetting water droplets in environmental scanning electron microscopy,” J. Microsc. 204(2), 172–183 (2001).
[CrossRef] [PubMed]

Stern, A.

Stybayeva, G.

G. Stybayeva, O. Mudanyali, S. Seo, J. Silangcruz, M. Macal, E. Ramanculov, S. Dandekar, A. Erlinger, A. Ozcan, and A. Revzin, “Lensfree holographic imaging of antibody microarrays for high-throughput detection of leukocyte numbers and function,” Anal. Chem. 82(9), 3736–3744 (2010).
[CrossRef] [PubMed]

Su, T.-W.

W. Bishara, U. Sikora, O. Mudanyali, T.-W. Su, O. Yaglidere, S. Luckhart, and A. Ozcan, “Holographic pixel super-resolution in portable lensless on-chip microscopy using a fiber-optic array,” Lab Chip 11(7), 1276–1279 (2011).
[CrossRef] [PubMed]

T.-W. Su, A. Erlinger, D. Tseng, and A. Ozcan, “Compact and light-weight automated semen analysis platform using lensfree on-chip microscopy,” Anal. Chem. 82(19), 8307–8312 (2010).
[CrossRef] [PubMed]

S. Seo, S. O. Isikman, I. Sencan, O. Mudanyali, T.-W. Su, W. Bishara, A. Erlinger, and A. Ozcan, “High-throughput lens-free blood analysis on a chip,” Anal. Chem. 82(11), 4621–4627 (2010).
[CrossRef] [PubMed]

W. Bishara, T.-W. Su, A. F. Coskun, and A. Ozcan, “Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution,” Opt. Express 18(11), 11181–11191 (2010).
[CrossRef] [PubMed]

Terentjev, E. M.

N. A. Stelmashenko, J. P. Craven, A. M. Donald, E. M. Terentjev, and B. L. Thiel, “Topographic contrast of partially wetting water droplets in environmental scanning electron microscopy,” J. Microsc. 204(2), 172–183 (2001).
[CrossRef] [PubMed]

Thiel, B. L.

N. A. Stelmashenko, J. P. Craven, A. M. Donald, E. M. Terentjev, and B. L. Thiel, “Topographic contrast of partially wetting water droplets in environmental scanning electron microscopy,” J. Microsc. 204(2), 172–183 (2001).
[CrossRef] [PubMed]

Tiziani, H. J.

Tseng, D.

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10(11), 1417–1428 (2010).
[CrossRef] [PubMed]

O. Mudanyali, C. Oztoprak, D. Tseng, A. Erlinger, and A. Ozcan, “Detection of waterborne parasites using field-portable and cost-effective lensfree microscopy,” Lab Chip 10(18), 2419–2423 (2010).
[CrossRef] [PubMed]

D. Tseng, O. Mudanyali, C. Oztoprak, S. O. Isikman, I. Sencan, O. Yaglidere, and A. Ozcan, “Lensfree microscopy on a cellphone,” Lab Chip 10(14), 1787–1792 (2010).
[CrossRef] [PubMed]

T.-W. Su, A. Erlinger, D. Tseng, and A. Ozcan, “Compact and light-weight automated semen analysis platform using lensfree on-chip microscopy,” Anal. Chem. 82(19), 8307–8312 (2010).
[CrossRef] [PubMed]

Tsia, K. K.

K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature 458(7242), 1145–1149 (2009).
[CrossRef] [PubMed]

Tsubota, K.

T. Kojima, Y. Matsumoto, M. Dogru, and K. Tsubota, “The application of in vivo laser scanning confocal microscopy as a tool of conjunctival in vivo cytology in the diagnosis of dry eye ocular surface disease,” Mol. Vis. 16, 2457–2464 (2010).
[PubMed]

Van Ham, P.

F. Dubois, C. Yourassowsky, O. Monnom, J.-C. Legros, O. Debeir, P. Van Ham, R. Kiss, and C. Decaestecker, “Digital holographic microscopy for the three-dimensional dynamic analysis of in vitro cancer cell migration,” J. Biomed. Opt. 11(5), 054032 (2006).
[CrossRef] [PubMed]

van Soolingen, D.

B. J. Marais, W. Brittle, K. Painczyk, A. C. Hesseling, N. Beyers, E. Wasserman, D. van Soolingen, and R. M. Warren, “Use of light-emitting diode fluorescence microscopy to detect acid-fast bacilli in sputum,” Clin. Infect. Dis. 47(2), 203–207 (2008).
[CrossRef] [PubMed]

Varaine, F.

M. Bonnet, A. Ramsay, W. Githui, L. Gagnidze, F. Varaine, and P. J. Guerin, “Bleach sedimentation: an opportunity to optimize smear microscopy for tuberculosis diagnosis in settings of high prevalence of HIV,” Clin. Infect. Dis. 46(11), 1710–1716 (2008).
[CrossRef] [PubMed]

Veiga, E.

A. Sartori, A. Mallet, E. Veiga, M. Bonazzi, S. Mostowy, L. Dortet, W. Baumeister, and P. Cossart, “Correlative Light/Electron Microscopy: a Tool for Investigating Infectious Diseases,” MAM 15(S2), 862 (2009).
[CrossRef]

Waller, L.

Warren, R. M.

B. J. Marais, W. Brittle, K. Painczyk, A. C. Hesseling, N. Beyers, E. Wasserman, D. van Soolingen, and R. M. Warren, “Use of light-emitting diode fluorescence microscopy to detect acid-fast bacilli in sputum,” Clin. Infect. Dis. 47(2), 203–207 (2008).
[CrossRef] [PubMed]

Wasserman, E.

B. J. Marais, W. Brittle, K. Painczyk, A. C. Hesseling, N. Beyers, E. Wasserman, D. van Soolingen, and R. M. Warren, “Use of light-emitting diode fluorescence microscopy to detect acid-fast bacilli in sputum,” Clin. Infect. Dis. 47(2), 203–207 (2008).
[CrossRef] [PubMed]

Wax, A.

Webb, W. W.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[CrossRef] [PubMed]

Wei, Q. F.

Q. F. Wei, R. R. Mather, A. F. Fotheringham, and R. D. Yang, “Dynamic Wetting of Fibers Observed in an Environmental Scanning Electron Microscope,” Text. Res. J. 73(6), 557–561 (2003).
[CrossRef]

White, J.

D. C. Essaka, J. White, P. Rathod, C. D. Whitmore, O. Hindsgaul, M. M. Palcic, and N. J. Dovichi, “Monitoring the uptake of glycosphingolipids in Plasmodium falciparum-infected erythrocytes using both fluorescence microscopy and capillary electrophoresis with laser-induced fluorescence detection,” Anal. Chem. 82(23), 9955–9958 (2010).
[CrossRef] [PubMed]

Whitmore, C. D.

D. C. Essaka, J. White, P. Rathod, C. D. Whitmore, O. Hindsgaul, M. M. Palcic, and N. J. Dovichi, “Monitoring the uptake of glycosphingolipids in Plasmodium falciparum-infected erythrocytes using both fluorescence microscopy and capillary electrophoresis with laser-induced fluorescence detection,” Anal. Chem. 82(23), 9955–9958 (2010).
[CrossRef] [PubMed]

Whyman, G.

E. Bormashenko, Y. Bormashenko, T. Stein, G. Whyman, R. Pogreb, and Z. Barkay, “Environmental scanning electron microscopy study of the fine structure of the triple line and cassie-wenzel wetting transition for sessile drops deposited on rough polymer substrates,” Langmuir 23(8), 4378–4382 (2007).
[CrossRef] [PubMed]

Williams, R. M.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[CrossRef] [PubMed]

Woods, N. A.

N. A. Woods, N. P. Galatsanos, and A. K. Katsaggelos, “Stochastic methods for joint registration, restoration, and interpolation of multiple undersampled images,” IEEE Trans. Image Process. 15(1), 201–213 (2006).
[CrossRef] [PubMed]

Wu, S.-R.

S.-R. Wu, R. Loving, B. Lindqvist, H. Hebert, P. J. B. Koeck, M. Sjoberg, and H. Garoff, “Single-particle cryoelectron microscopy analysis reveals the HIV-1 spike as a tripod structure,” Proc. Natl. Acad. Sci. U.S.A. 107(44), 18844–18849 (2010).
[CrossRef] [PubMed]

Xu, W.

J. Garcia-Sucerquia, W. Xu, M. H. Jericho, and H. J. Kreuzer, “Immersion digital in-line holographic microscopy,” Opt. Lett. 31(9), 1211–1213 (2006).
[CrossRef] [PubMed]

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. U.S.A. 98(20), 11301–11305 (2001).
[CrossRef] [PubMed]

Yaglidere, O.

W. Bishara, U. Sikora, O. Mudanyali, T.-W. Su, O. Yaglidere, S. Luckhart, and A. Ozcan, “Holographic pixel super-resolution in portable lensless on-chip microscopy using a fiber-optic array,” Lab Chip 11(7), 1276–1279 (2011).
[CrossRef] [PubMed]

D. Tseng, O. Mudanyali, C. Oztoprak, S. O. Isikman, I. Sencan, O. Yaglidere, and A. Ozcan, “Lensfree microscopy on a cellphone,” Lab Chip 10(14), 1787–1792 (2010).
[CrossRef] [PubMed]

Yang, R. D.

Q. F. Wei, R. R. Mather, A. F. Fotheringham, and R. D. Yang, “Dynamic Wetting of Fibers Observed in an Environmental Scanning Electron Microscope,” Text. Res. J. 73(6), 557–561 (2003).
[CrossRef]

Yang, S. Y.

Yeom, S. K.

Yourassowsky, C.

F. Dubois, C. Yourassowsky, O. Monnom, J.-C. Legros, O. Debeir, P. Van Ham, R. Kiss, and C. Decaestecker, “Digital holographic microscopy for the three-dimensional dynamic analysis of in vitro cancer cell migration,” J. Biomed. Opt. 11(5), 054032 (2006).
[CrossRef] [PubMed]

Yu, F. W.

S. O. Isikman, W. Bishara, S. Mavandadi, F. W. Yu, S. Feng, R. Lau, and A. Ozcan, “Lens-free optical tomographic microscope with a large imaging volume on a chip,” Proc. Natl. Acad. Sci. U.S.A. 108(18), 7296–7301 (2011).
[CrossRef] [PubMed]

Yu, L. F.

Zalevsky, Z.

Zhu, H.

Zhuang, X.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
[CrossRef] [PubMed]

Zipfel, W. R.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[CrossRef] [PubMed]

Anal. Chem. (5)

D. C. Essaka, J. White, P. Rathod, C. D. Whitmore, O. Hindsgaul, M. M. Palcic, and N. J. Dovichi, “Monitoring the uptake of glycosphingolipids in Plasmodium falciparum-infected erythrocytes using both fluorescence microscopy and capillary electrophoresis with laser-induced fluorescence detection,” Anal. Chem. 82(23), 9955–9958 (2010).
[CrossRef] [PubMed]

M. Krause, P. Rosch, B. Radt, and J. Popp, “Localizing and identifying living bacteria in an abiotic environment by a combination of Raman and fluorescence microscopy,” Anal. Chem. 80(22), 8568–8575 (2008).
[CrossRef] [PubMed]

S. Seo, S. O. Isikman, I. Sencan, O. Mudanyali, T.-W. Su, W. Bishara, A. Erlinger, and A. Ozcan, “High-throughput lens-free blood analysis on a chip,” Anal. Chem. 82(11), 4621–4627 (2010).
[CrossRef] [PubMed]

T.-W. Su, A. Erlinger, D. Tseng, and A. Ozcan, “Compact and light-weight automated semen analysis platform using lensfree on-chip microscopy,” Anal. Chem. 82(19), 8307–8312 (2010).
[CrossRef] [PubMed]

G. Stybayeva, O. Mudanyali, S. Seo, J. Silangcruz, M. Macal, E. Ramanculov, S. Dandekar, A. Erlinger, A. Ozcan, and A. Revzin, “Lensfree holographic imaging of antibody microarrays for high-throughput detection of leukocyte numbers and function,” Anal. Chem. 82(9), 3736–3744 (2010).
[CrossRef] [PubMed]

Appl. Opt. (3)

Arch. Neurol. (1)

D. V. Patel and C. N. J. McGhee, “In vivo confocal microscopy of corneal stromal nerves in patients with peripheral neuropathy,” Arch. Neurol. 66(9), 1179–1180, author reply 1180 (2009).
[CrossRef] [PubMed]

Biomed. Opt. Express (1)

Biophys. J. (2)

S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91(11), 4258–4272 (2006).
[CrossRef] [PubMed]

E. Chung, D. Kim, Y. Cui, Y.-H. Kim, and P. T. C. So, “Two-dimensional standing wave total internal reflection fluorescence microscopy: superresolution imaging of single molecular and biological specimens,” Biophys. J. 93(5), 1747–1757 (2007).
[CrossRef] [PubMed]

Clin. Infect. Dis. (2)

M. Bonnet, A. Ramsay, W. Githui, L. Gagnidze, F. Varaine, and P. J. Guerin, “Bleach sedimentation: an opportunity to optimize smear microscopy for tuberculosis diagnosis in settings of high prevalence of HIV,” Clin. Infect. Dis. 46(11), 1710–1716 (2008).
[CrossRef] [PubMed]

B. J. Marais, W. Brittle, K. Painczyk, A. C. Hesseling, N. Beyers, E. Wasserman, D. van Soolingen, and R. M. Warren, “Use of light-emitting diode fluorescence microscopy to detect acid-fast bacilli in sputum,” Clin. Infect. Dis. 47(2), 203–207 (2008).
[CrossRef] [PubMed]

IEEE Signal Process. Mag. (1)

S. C. Park, M. K. Park, and M. G. Kang, “Super-resolution image reconstruction: a technical overview,” IEEE Signal Process. Mag. 20(3), 21–36 (2003).
[CrossRef]

IEEE Trans. Image Process. (2)

N. A. Woods, N. P. Galatsanos, and A. K. Katsaggelos, “Stochastic methods for joint registration, restoration, and interpolation of multiple undersampled images,” IEEE Trans. Image Process. 15(1), 201–213 (2006).
[CrossRef] [PubMed]

R. C. Hardie, K. J. Barnard, and E. E. Armstrong, “Joint MAP registration and high-resolution image estimation using a sequence of undersampled images,” IEEE Trans. Image Process. 6(12), 1621–1633 (1997).
[CrossRef] [PubMed]

J. Biomed. Opt. (1)

F. Dubois, C. Yourassowsky, O. Monnom, J.-C. Legros, O. Debeir, P. Van Ham, R. Kiss, and C. Decaestecker, “Digital holographic microscopy for the three-dimensional dynamic analysis of in vitro cancer cell migration,” J. Biomed. Opt. 11(5), 054032 (2006).
[CrossRef] [PubMed]

J. Clin. Microbiol. (1)

Y. R. Shea, J. L. Davis, L. Huang, J. A. Kovacs, H. Masur, F. Mulindwa, S. Opus, Y. Chow, and P. R. Murray, “High sensitivity and specificity of acid-fast microscopy for diagnosis of pulmonary tuberculosis in an African population with a high prevalence of human immunodeficiency virus,” J. Clin. Microbiol. 47(5), 1553–1555 (2009).
[CrossRef] [PubMed]

J. Hologr. Speckle (1)

T.-C. Poon, “Recent progress in optical scanning holography,” J. Hologr. Speckle 1(1), 6–25 (2004).
[CrossRef]

J. Microsc. (1)

N. A. Stelmashenko, J. P. Craven, A. M. Donald, E. M. Terentjev, and B. L. Thiel, “Topographic contrast of partially wetting water droplets in environmental scanning electron microscopy,” J. Microsc. 204(2), 172–183 (2001).
[CrossRef] [PubMed]

J. Neuroimaging (1)

T. Nakada, H. Matsuzawa, H. Igarashi, Y. Fujii, and I. L. Kwee, “In vivo visualization of senile-plaque-like pathology in Alzheimer’s disease patients by MR microscopy on a 7T system,” J. Neuroimaging 18(2), 125–129 (2008).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (3)

Lab Chip (4)

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10(11), 1417–1428 (2010).
[CrossRef] [PubMed]

D. Tseng, O. Mudanyali, C. Oztoprak, S. O. Isikman, I. Sencan, O. Yaglidere, and A. Ozcan, “Lensfree microscopy on a cellphone,” Lab Chip 10(14), 1787–1792 (2010).
[CrossRef] [PubMed]

O. Mudanyali, C. Oztoprak, D. Tseng, A. Erlinger, and A. Ozcan, “Detection of waterborne parasites using field-portable and cost-effective lensfree microscopy,” Lab Chip 10(18), 2419–2423 (2010).
[CrossRef] [PubMed]

W. Bishara, U. Sikora, O. Mudanyali, T.-W. Su, O. Yaglidere, S. Luckhart, and A. Ozcan, “Holographic pixel super-resolution in portable lensless on-chip microscopy using a fiber-optic array,” Lab Chip 11(7), 1276–1279 (2011).
[CrossRef] [PubMed]

Langmuir (1)

E. Bormashenko, Y. Bormashenko, T. Stein, G. Whyman, R. Pogreb, and Z. Barkay, “Environmental scanning electron microscopy study of the fine structure of the triple line and cassie-wenzel wetting transition for sessile drops deposited on rough polymer substrates,” Langmuir 23(8), 4378–4382 (2007).
[CrossRef] [PubMed]

Malar. J. (1)

S. E.-D. Hassan, S. I. Okoued, M. A. Mudathir, and E. M. Malik, “Testing the sensitivity and specificity of the fluorescence microscope (Cyscope) for malaria diagnosis,” Malar. J. 9(1), 88 (2010).
[CrossRef] [PubMed]

MAM (1)

A. Sartori, A. Mallet, E. Veiga, M. Bonazzi, S. Mostowy, L. Dortet, W. Baumeister, and P. Cossart, “Correlative Light/Electron Microscopy: a Tool for Investigating Infectious Diseases,” MAM 15(S2), 862 (2009).
[CrossRef]

Mol. Vis. (1)

T. Kojima, Y. Matsumoto, M. Dogru, and K. Tsubota, “The application of in vivo laser scanning confocal microscopy as a tool of conjunctival in vivo cytology in the diagnosis of dry eye ocular surface disease,” Mol. Vis. 16, 2457–2464 (2010).
[PubMed]

Nat. Biotechnol. (2)

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[CrossRef] [PubMed]

S. W. Hell, “Toward fluorescence nanoscopy,” Nat. Biotechnol. 21(11), 1347–1355 (2003).
[CrossRef] [PubMed]

Nat. Methods (3)

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4(9), 717–719 (2007).
[CrossRef] [PubMed]

R. P. J. Barretto, B. Messerschmidt, and M. J. Schnitzer, “In vivo fluorescence imaging with high-resolution microlenses,” Nat. Methods 6(7), 511–512 (2009).
[CrossRef] [PubMed]

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
[CrossRef] [PubMed]

Nat. Photonics (1)

J. Rosen and G. Brooker, “Non-scanning motionless fluorescence three-dimensional holographic microscopy,” Nat. Photonics 2(3), 190–195 (2008).
[CrossRef]

Nature (1)

K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature 458(7242), 1145–1149 (2009).
[CrossRef] [PubMed]

Opt. Eng. (1)

R. C. Hardie, “High-resolution image reconstruction from a sequence of rotated and translated frames and its application to an infrared imaging system,” Opt. Eng. 37(1), 247 (1998).
[CrossRef]

Opt. Express (10)

S. S. Kou and C. J. R. Sheppard, “Imaging in digital holographic microscopy,” Opt. Express 15(21), 13640–13648 (2007).
[CrossRef] [PubMed]

D. J. Brady, K. Choi, D. L. Marks, R. Horisaki, and S. Lim, “Compressive holography,” Opt. Express 17(15), 13040–13049 (2009).
[CrossRef] [PubMed]

T. R. Hillman, T. Gutzler, S. A. Alexandrov, and D. D. Sampson, “High-resolution, wide-field object reconstruction with synthetic aperture Fourier holographic optical microscopy,” Opt. Express 17(10), 7873–7892 (2009).
[CrossRef] [PubMed]

V. Mico, Z. Zalevsky, C. Ferreira, and J. García, “Superresolution digital holographic microscopy for three-dimensional samples,” Opt. Express 16(23), 19260–19270 (2008).
[CrossRef] [PubMed]

M. Paturzo, F. Merola, S. Grilli, S. De Nicola, A. Finizio, and P. Ferraro, “Super-resolution in digital holography by a two-dimensional dynamic phase grating,” Opt. Express 16(21), 17107–17118 (2008).
[CrossRef] [PubMed]

W. Bishara, T.-W. Su, A. F. Coskun, and A. Ozcan, “Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution,” Opt. Express 18(11), 11181–11191 (2010).
[CrossRef] [PubMed]

W. Bishara, H. Zhu, and A. Ozcan, “Holographic opto-fluidic microscopy,” Opt. Express 18(26), 27499–27510 (2010).
[CrossRef] [PubMed]

B. Javidi, I. Moon, S. K. Yeom, and E. Carapezza, “Three-dimensional imaging and recognition of microorganism using single-exposure on-line (SEOL) digital holography,” Opt. Express 13(12), 4492–4506 (2005).
[CrossRef] [PubMed]

C. J. Mann, L. F. Yu, C. M. Lo, and M. K. Kim, “High-resolution quantitative phase-contrast microscopy by digital holography,” Opt. Express 13(22), 8693–8698 (2005).
[CrossRef] [PubMed]

J. Rosen, G. Indebetouw, and G. Brooker, “Homodyne scanning holography,” Opt. Express 14(10), 4280–4285 (2006).
[CrossRef] [PubMed]

Opt. Lett. (5)

Proc. Natl. Acad. Sci. U.S.A. (4)

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. U.S.A. 98(20), 11301–11305 (2001).
[CrossRef] [PubMed]

S. O. Isikman, W. Bishara, S. Mavandadi, F. W. Yu, S. Feng, R. Lau, and A. Ozcan, “Lens-free optical tomographic microscope with a large imaging volume on a chip,” Proc. Natl. Acad. Sci. U.S.A. 108(18), 7296–7301 (2011).
[CrossRef] [PubMed]

M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. U.S.A. 102(37), 13081–13086 (2005).
[CrossRef] [PubMed]

S.-R. Wu, R. Loving, B. Lindqvist, H. Hebert, P. J. B. Koeck, M. Sjoberg, and H. Garoff, “Single-particle cryoelectron microscopy analysis reveals the HIV-1 spike as a tripod structure,” Proc. Natl. Acad. Sci. U.S.A. 107(44), 18844–18849 (2010).
[CrossRef] [PubMed]

Rev. Mod. Phys. (2)

D. Bonn, J. Eggers, J. Indekeu, J. Meunier, and E. Rolley, “Wetting and spreading,” Rev. Mod. Phys. 81(2), 739–805 (2009).
[CrossRef]

P. de Gennes, “Wetting: statics and dynamics,” Rev. Mod. Phys. 57(3), 827–863 (1985).
[CrossRef]

Science (2)

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[CrossRef] [PubMed]

W. Hübner, G. P. McNerney, P. Chen, B. M. Dale, R. E. Gordon, F. Y. S. Chuang, X.-D. Li, D. M. Asmuth, T. Huser, and B. K. Chen, “Quantitative 3D video microscopy of HIV transfer across T cell virological synapses,” Science 323(5922), 1743–1747 (2009).
[CrossRef] [PubMed]

Text. Res. J. (1)

Q. F. Wei, R. R. Mather, A. F. Fotheringham, and R. D. Yang, “Dynamic Wetting of Fibers Observed in an Environmental Scanning Electron Microscope,” Text. Res. J. 73(6), 557–561 (2003).
[CrossRef]

Other (3)

V. M. Starov, M. G. Velarde, and C. J. Radke, Wetting and Spreading Dynamics (CRC Press, 2007).

C. P. Allier, V. Poher, J. G. Coutard, G. Hiernard, and J. M. Dinten, “Thin wetting film lensless imaging,” in Proceedings of the SPIE (2011), pp. 790608–790608–8.

M. Selvarajah, K. Nicholls, T. D. Hewitson, and G. J. Becker, “Targeted urine microscopy in Anderson-Fabry Disease: a cheap, sensitive and specific diagnostic technique,” Nephrol. Dial. Transplant. (2011). doi:10.1093/ndt/gfr084.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Schematic diagram of wetting film formation procedure (not drawn to scale). After wetting film samples were formed on plasma cleaned glass cover slips, stable micro-lens effect is verified by multiple lensfree imaging experiments spread over a day. (b) Schematic diagram of lensfree pixel super-resolution microscopy set-up (not drawn to scale). The aperture to sample plane distance (Z1= ~10 cm) is much larger than the sample to sensor plane distance (Z2= ~0.8-1 mm) such that discrete spatial shifts of the illumination aperture (~100 µm diameter) results in sub-pixel shifts of lensfree object holograms on the digital sensor-array. This way we can digitally reduce the effective pixel size at the sensor plane down to e.g., 0.3-0.4 µm to create higher resolution lensfree images. (c) The corresponding lensfree holographic microscopy set-up which uses a partially coherent light source that is emanating from a large aperture (D = ~100 µm). Wetting film samples were directly placed onto the CMOS sensor-chip which has an active imaging area of ~24 mm2.

Fig. 3
Fig. 3

Lensfree super-resolution microscopic images of sperm samples are generated using the experimental setup shown in Fig. 1(b and c). Columns (a1-a4) and (b1-b4) are obtained without the use of wetting films, while columns (c1-c4) and (d1-d4) are obtained with the thin wetting films. Significant SNR and contrast improvement in our reconstructed lensfree holographic images is observed with the thin wetting films. For example, the end of the sperm tail shown in (d4) with an arrow measures <0.5 µm in width, which was faithfully reconstructed using our wetting film based holographic microscope as illustrated in (d2) and (d3). Moreover, as shown in the digitally zoomed-in images (c3 and c4), lensfree phase recovery images revealed both the sperm tails as well as the surrounding wetting film due to the refractive index difference between two regions.

Fig. 5
Fig. 5

1 µm polystyrene bead and E. coli images are illustrated for both cases (Super-resolution only (SR) and Super-resolution using wetting films (WSR)) to quantify the relative SNR improvement. Using the wetting film, SNR increase of up to ~74% and ~87% in logarithmic decibel scale (corresponding to ~352% and ~289% in linear scale) is observed on lensfree amplitude reconstruction images of 1 µm bead and E. coli, respectively (see (a2) vs. (c2) and (b2) vs. (d2)). Also notice that the lensfree super-resolved holograms shown in (a1) and (b1) are not visible to bare eye since their signal intensity is quite weak without the wetting film. Despite this fact, reconstruction of these super-resolved holograms is still feasible as illustrated in (a2) and (b2), respectively.

Fig. 2
Fig. 2

(a) Lensfree pixel super-resolution imaging results of Giardia lamblia trophozoites, E. coli and red blood cells are illustrated using thin wetting films (WSR). Digitally recovered super-resolved holograms (1st column) are reconstructed to provide their lensfree microscopic images (2nd column). 60X objective-lens (0.85 NA) bright-field microscope images of the same samples are also provided for comparison purposes (3rd column). Since E. coli samples are relatively faint in their microscope images (due to their weak scattering cross-sections), we used red arrows to point to their locations in microscope comparison images.

Fig. 4
Fig. 4

By digitally changing the focusing distance (i.e., Z2) different depths within the sample volume can be reconstructed using our lensfree super-resolution (SR) microscope. This feature is illustrated in this figure where for the same sperm sample shown in Fig. 3(d2-d3), we show two different reconstruction planes corresponding to Z2 = 794 µm and 778 µm. Notice that since the wetting film induced micro-lens behaves different for the tail and the head of the sperm (due to differences in their morphology and size), we see the tail and the head get in focus at different reconstruction planes (e.g., the sperm tail is in focus at Z2 = 794 µm whereas the sperm head gets in focus at Z2 = 778 µm).

Fig. 6
Fig. 6

Wide-field (FOV ~24 mm2) high-resolution imaging of a heterogeneous wetting film sample that is composed of Giardia lamblia trophozoites, E. coli and sperm is demonstrated. This constitutes >100 fold larger FOV, when compared to a bright-field optical microscope using e.g., a 40X objective-lens. For comparison purposes, conventional bright-field microscope images of zoomed-regions of interest are also provided (60X objective-lens; 0.85 NA), where E. coli samples were marked with red arrows due to their faint contrast.

Metrics