Abstract

We demonstrate that micron-sized light-absorbing particles can be trapped and transported photophoretically in air using an optical bottle formed inside the focal volume of a lens with a controlled amount of spherical aberration. This optical fiber-based single beam trap can be used in numerous applications where true 3D manipulation and delivery of airborne micro-objects is required.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, “Optical trapping and manipulation of neutral particles using lasers,” Proc. Natl. Acad. Sci. U.S.A. 94, 4853–4860 (1997).
    [CrossRef] [PubMed]
  2. D. G. Grier, “A revolution in optical manipulation,” Nature 424, 21–27 (2003).
    [CrossRef]
  3. K. Dholakia, P. Reece, and M. Gu, “Optical micromanipulation,” Chem. Soc. Rev. 37, 42–55 (2008).
    [CrossRef] [PubMed]
  4. D. McGloin and J. P. Reid, “Forty years of optical manipulation,” Opt. Photonics News 21, 20–26 (2010).
    [CrossRef]
  5. E. J. Davis and G. Schweiger, The Airborne Microparticle: Its Physics, Chemistry, Optics, and Transport Phenomena (Springer, 2002), pp. 780–785.
  6. V. G. Shvedov, A. S. Desyatnikov, A. V. Rode, W. Krolikowski, and Yu. S. Kivshar, “Optical guiding of absorbing nanoclusters in air,” Opt. Express 17, 5743–5757 (2009).
    [CrossRef] [PubMed]
  7. F. Ehrenhaft, “On the physics of millionths of centimeters,” Z. Phys. 18, 352–368 (1917).
  8. M. Lewittes, S. Arnold, and G. Oster, “Radiometric levitation of micron sized spheres,” Appl. Phys. Lett. 40, 455–457 (1982).
    [CrossRef]
  9. A. S. Desyatnikov, V. Shvedov, A. Rode, W. Krolikowski, and Yu.S. Kivshar, “Photophoretic manipulation of absorbing aerosol particles with vortex beams: theory versus experiment,” Opt. Express 17, 8201–8211 (2009).
    [CrossRef] [PubMed]
  10. V. G. Shvedov, A. V. Rode, Y.V. Izdebskaya, A.S. Desyatnikov, W. Krolikowski, and Yu.S. Kivshar, “Giant optical manipulation,” Phys. Rev. Lett. 105, 118103 (2010).
    [CrossRef] [PubMed]
  11. P. Zhang, Z. Zhang, J. Prakash, S. Huang, D. Hernandez, M. Salazar, D. N. Christodoulides, and Z. Chen, “Trapping and transporting aerosols with a single optical bottle beam generated by moir techniques,” Opt. Lett. 36, 1491–1493 (2011).
    [CrossRef] [PubMed]
  12. J. Huisken and E. H. K. Stelzer, “Optical levitation of absorbing particles in a nominally Gaussian laser beam,” Opt. Lett. 27, 1223–1225 (2002).
    [CrossRef]
  13. Y. Roichman, A. Waldron, E. Gardel, and D. Grier, “Optical traps with geometric aberrations,” Appl. Opt. 45, 3425–3429 (2006).
    [CrossRef] [PubMed]
  14. T. Cizmar, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4, 388–394 (2010).
    [CrossRef]
  15. G. E. Agrawal, Fiber-Optic Communication Systems3rd ed. (John Wiley & Sons, Inc., 2002).
    [CrossRef]
  16. V. N. Mahajan, Aberration Theory Made Simple (SPIE, 1991).
    [CrossRef]
  17. M. Born and E. Wolf, Principles of Optics6th ed. (Pergamon Press, 1980).
  18. J. Arlt and M. J. Padgett, “Generation of a beam with a dark focus surrounded by regions of higher intensity: the optical bottle beam,” Opt. Lett. 25, 191–193 (2000).
    [CrossRef]
  19. V. G. Shvedov, A. V. Rode, Y. Izdebskaya, A. Desyatnikov, W. Krolikowski, and Yu. S. Kivshar, “Selective trapping of multiple particles by volume speckle field,” Opt. Express 18, 3137–3142 (2010).
    [CrossRef] [PubMed]
  20. B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. London, Ser. A 253, 358–379 (1959).
    [CrossRef]
  21. P. Törok, P. Varga, and G. R. Booker, “Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: structure of the electromagnetic field. I,” J. Opt. Soc Am. A 12, 2136–2144 (1995).
    [CrossRef]
  22. H. Lei, Y. Zhang, X. Li, and B. Li,“ Photophoretic assembly and migration of dielectric articles and Escherichia coli in liquids using a subwavelength diameter optical fiber,” Lab Chip 11, 2241–2246 (2011).
    [CrossRef] [PubMed]
  23. C. Y. Soong, W. K. Li, C. H. Liu, and P. Y. Tzeng, “Theoretical analysis for photophoresis of a microscale hydrophobic particle in liquids,” Opt. Express,  18, 2168–2182 (2010).
    [CrossRef] [PubMed]

2011 (2)

H. Lei, Y. Zhang, X. Li, and B. Li,“ Photophoretic assembly and migration of dielectric articles and Escherichia coli in liquids using a subwavelength diameter optical fiber,” Lab Chip 11, 2241–2246 (2011).
[CrossRef] [PubMed]

P. Zhang, Z. Zhang, J. Prakash, S. Huang, D. Hernandez, M. Salazar, D. N. Christodoulides, and Z. Chen, “Trapping and transporting aerosols with a single optical bottle beam generated by moir techniques,” Opt. Lett. 36, 1491–1493 (2011).
[CrossRef] [PubMed]

2010 (5)

C. Y. Soong, W. K. Li, C. H. Liu, and P. Y. Tzeng, “Theoretical analysis for photophoresis of a microscale hydrophobic particle in liquids,” Opt. Express,  18, 2168–2182 (2010).
[CrossRef] [PubMed]

V. G. Shvedov, A. V. Rode, Y. Izdebskaya, A. Desyatnikov, W. Krolikowski, and Yu. S. Kivshar, “Selective trapping of multiple particles by volume speckle field,” Opt. Express 18, 3137–3142 (2010).
[CrossRef] [PubMed]

D. McGloin and J. P. Reid, “Forty years of optical manipulation,” Opt. Photonics News 21, 20–26 (2010).
[CrossRef]

V. G. Shvedov, A. V. Rode, Y.V. Izdebskaya, A.S. Desyatnikov, W. Krolikowski, and Yu.S. Kivshar, “Giant optical manipulation,” Phys. Rev. Lett. 105, 118103 (2010).
[CrossRef] [PubMed]

T. Cizmar, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4, 388–394 (2010).
[CrossRef]

2009 (2)

2008 (1)

K. Dholakia, P. Reece, and M. Gu, “Optical micromanipulation,” Chem. Soc. Rev. 37, 42–55 (2008).
[CrossRef] [PubMed]

2006 (1)

2003 (1)

D. G. Grier, “A revolution in optical manipulation,” Nature 424, 21–27 (2003).
[CrossRef]

2002 (1)

2000 (1)

1997 (1)

A. Ashkin, “Optical trapping and manipulation of neutral particles using lasers,” Proc. Natl. Acad. Sci. U.S.A. 94, 4853–4860 (1997).
[CrossRef] [PubMed]

1995 (1)

P. Törok, P. Varga, and G. R. Booker, “Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: structure of the electromagnetic field. I,” J. Opt. Soc Am. A 12, 2136–2144 (1995).
[CrossRef]

1982 (1)

M. Lewittes, S. Arnold, and G. Oster, “Radiometric levitation of micron sized spheres,” Appl. Phys. Lett. 40, 455–457 (1982).
[CrossRef]

1959 (1)

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. London, Ser. A 253, 358–379 (1959).
[CrossRef]

1917 (1)

F. Ehrenhaft, “On the physics of millionths of centimeters,” Z. Phys. 18, 352–368 (1917).

Agrawal, G. E.

G. E. Agrawal, Fiber-Optic Communication Systems3rd ed. (John Wiley & Sons, Inc., 2002).
[CrossRef]

Arlt, J.

Arnold, S.

M. Lewittes, S. Arnold, and G. Oster, “Radiometric levitation of micron sized spheres,” Appl. Phys. Lett. 40, 455–457 (1982).
[CrossRef]

Ashkin, A.

A. Ashkin, “Optical trapping and manipulation of neutral particles using lasers,” Proc. Natl. Acad. Sci. U.S.A. 94, 4853–4860 (1997).
[CrossRef] [PubMed]

Booker, G. R.

P. Törok, P. Varga, and G. R. Booker, “Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: structure of the electromagnetic field. I,” J. Opt. Soc Am. A 12, 2136–2144 (1995).
[CrossRef]

Born, M.

M. Born and E. Wolf, Principles of Optics6th ed. (Pergamon Press, 1980).

Chen, Z.

Christodoulides, D. N.

Cizmar, T.

T. Cizmar, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4, 388–394 (2010).
[CrossRef]

Davis, E. J.

E. J. Davis and G. Schweiger, The Airborne Microparticle: Its Physics, Chemistry, Optics, and Transport Phenomena (Springer, 2002), pp. 780–785.

Desyatnikov, A.

Desyatnikov, A. S.

Desyatnikov, A.S.

V. G. Shvedov, A. V. Rode, Y.V. Izdebskaya, A.S. Desyatnikov, W. Krolikowski, and Yu.S. Kivshar, “Giant optical manipulation,” Phys. Rev. Lett. 105, 118103 (2010).
[CrossRef] [PubMed]

Dholakia, K.

T. Cizmar, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4, 388–394 (2010).
[CrossRef]

K. Dholakia, P. Reece, and M. Gu, “Optical micromanipulation,” Chem. Soc. Rev. 37, 42–55 (2008).
[CrossRef] [PubMed]

Ehrenhaft, F.

F. Ehrenhaft, “On the physics of millionths of centimeters,” Z. Phys. 18, 352–368 (1917).

Gardel, E.

Grier, D.

Grier, D. G.

D. G. Grier, “A revolution in optical manipulation,” Nature 424, 21–27 (2003).
[CrossRef]

Gu, M.

K. Dholakia, P. Reece, and M. Gu, “Optical micromanipulation,” Chem. Soc. Rev. 37, 42–55 (2008).
[CrossRef] [PubMed]

Hernandez, D.

Huang, S.

Huisken, J.

Izdebskaya, Y.

Izdebskaya, Y.V.

V. G. Shvedov, A. V. Rode, Y.V. Izdebskaya, A.S. Desyatnikov, W. Krolikowski, and Yu.S. Kivshar, “Giant optical manipulation,” Phys. Rev. Lett. 105, 118103 (2010).
[CrossRef] [PubMed]

Kivshar, Yu. S.

Kivshar, Yu.S.

Krolikowski, W.

Lei, H.

H. Lei, Y. Zhang, X. Li, and B. Li,“ Photophoretic assembly and migration of dielectric articles and Escherichia coli in liquids using a subwavelength diameter optical fiber,” Lab Chip 11, 2241–2246 (2011).
[CrossRef] [PubMed]

Lewittes, M.

M. Lewittes, S. Arnold, and G. Oster, “Radiometric levitation of micron sized spheres,” Appl. Phys. Lett. 40, 455–457 (1982).
[CrossRef]

Li, B.

H. Lei, Y. Zhang, X. Li, and B. Li,“ Photophoretic assembly and migration of dielectric articles and Escherichia coli in liquids using a subwavelength diameter optical fiber,” Lab Chip 11, 2241–2246 (2011).
[CrossRef] [PubMed]

Li, W. K.

Li, X.

H. Lei, Y. Zhang, X. Li, and B. Li,“ Photophoretic assembly and migration of dielectric articles and Escherichia coli in liquids using a subwavelength diameter optical fiber,” Lab Chip 11, 2241–2246 (2011).
[CrossRef] [PubMed]

Liu, C. H.

Mahajan, V. N.

V. N. Mahajan, Aberration Theory Made Simple (SPIE, 1991).
[CrossRef]

Mazilu, M.

T. Cizmar, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4, 388–394 (2010).
[CrossRef]

McGloin, D.

D. McGloin and J. P. Reid, “Forty years of optical manipulation,” Opt. Photonics News 21, 20–26 (2010).
[CrossRef]

Oster, G.

M. Lewittes, S. Arnold, and G. Oster, “Radiometric levitation of micron sized spheres,” Appl. Phys. Lett. 40, 455–457 (1982).
[CrossRef]

Padgett, M. J.

Prakash, J.

Reece, P.

K. Dholakia, P. Reece, and M. Gu, “Optical micromanipulation,” Chem. Soc. Rev. 37, 42–55 (2008).
[CrossRef] [PubMed]

Reid, J. P.

D. McGloin and J. P. Reid, “Forty years of optical manipulation,” Opt. Photonics News 21, 20–26 (2010).
[CrossRef]

Richards, B.

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. London, Ser. A 253, 358–379 (1959).
[CrossRef]

Rode, A.

Rode, A. V.

Roichman, Y.

Salazar, M.

Schweiger, G.

E. J. Davis and G. Schweiger, The Airborne Microparticle: Its Physics, Chemistry, Optics, and Transport Phenomena (Springer, 2002), pp. 780–785.

Shvedov, V.

Shvedov, V. G.

Soong, C. Y.

Stelzer, E. H. K.

Törok, P.

P. Törok, P. Varga, and G. R. Booker, “Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: structure of the electromagnetic field. I,” J. Opt. Soc Am. A 12, 2136–2144 (1995).
[CrossRef]

Tzeng, P. Y.

Varga, P.

P. Törok, P. Varga, and G. R. Booker, “Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: structure of the electromagnetic field. I,” J. Opt. Soc Am. A 12, 2136–2144 (1995).
[CrossRef]

Waldron, A.

Wolf, E.

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. London, Ser. A 253, 358–379 (1959).
[CrossRef]

M. Born and E. Wolf, Principles of Optics6th ed. (Pergamon Press, 1980).

Zhang, P.

Zhang, Y.

H. Lei, Y. Zhang, X. Li, and B. Li,“ Photophoretic assembly and migration of dielectric articles and Escherichia coli in liquids using a subwavelength diameter optical fiber,” Lab Chip 11, 2241–2246 (2011).
[CrossRef] [PubMed]

Zhang, Z.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

M. Lewittes, S. Arnold, and G. Oster, “Radiometric levitation of micron sized spheres,” Appl. Phys. Lett. 40, 455–457 (1982).
[CrossRef]

Chem. Soc. Rev. (1)

K. Dholakia, P. Reece, and M. Gu, “Optical micromanipulation,” Chem. Soc. Rev. 37, 42–55 (2008).
[CrossRef] [PubMed]

J. Opt. Soc Am. A (1)

P. Törok, P. Varga, and G. R. Booker, “Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: structure of the electromagnetic field. I,” J. Opt. Soc Am. A 12, 2136–2144 (1995).
[CrossRef]

Lab Chip (1)

H. Lei, Y. Zhang, X. Li, and B. Li,“ Photophoretic assembly and migration of dielectric articles and Escherichia coli in liquids using a subwavelength diameter optical fiber,” Lab Chip 11, 2241–2246 (2011).
[CrossRef] [PubMed]

Nat. Photonics (1)

T. Cizmar, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4, 388–394 (2010).
[CrossRef]

Nature (1)

D. G. Grier, “A revolution in optical manipulation,” Nature 424, 21–27 (2003).
[CrossRef]

Opt. Express (4)

Opt. Lett. (3)

Opt. Photonics News (1)

D. McGloin and J. P. Reid, “Forty years of optical manipulation,” Opt. Photonics News 21, 20–26 (2010).
[CrossRef]

Phys. Rev. Lett. (1)

V. G. Shvedov, A. V. Rode, Y.V. Izdebskaya, A.S. Desyatnikov, W. Krolikowski, and Yu.S. Kivshar, “Giant optical manipulation,” Phys. Rev. Lett. 105, 118103 (2010).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

A. Ashkin, “Optical trapping and manipulation of neutral particles using lasers,” Proc. Natl. Acad. Sci. U.S.A. 94, 4853–4860 (1997).
[CrossRef] [PubMed]

Proc. R. Soc. London, Ser. A (1)

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. London, Ser. A 253, 358–379 (1959).
[CrossRef]

Z. Phys. (1)

F. Ehrenhaft, “On the physics of millionths of centimeters,” Z. Phys. 18, 352–368 (1917).

Other (4)

E. J. Davis and G. Schweiger, The Airborne Microparticle: Its Physics, Chemistry, Optics, and Transport Phenomena (Springer, 2002), pp. 780–785.

G. E. Agrawal, Fiber-Optic Communication Systems3rd ed. (John Wiley & Sons, Inc., 2002).
[CrossRef]

V. N. Mahajan, Aberration Theory Made Simple (SPIE, 1991).
[CrossRef]

M. Born and E. Wolf, Principles of Optics6th ed. (Pergamon Press, 1980).

Supplementary Material (3)

» Media 1: MOV (490 KB)     
» Media 2: MOV (1573 KB)     
» Media 3: MOV (1601 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the bottle beam trapping experiment. The particles are trapped inside the low intensity regions of the aberrated focus of L, as shown in the inset. The red arrow indicates the red (HeNe) beam.

Fig. 2
Fig. 2

Analysis of the aberrated focus.(a) Measured (circles) axial light intensity distribution in the aberrated focus used in the particle trapping experiment shown in Fig.1. The solid line represents theoretically calculated intensity. The experimental plot was obtained by scanning the imaging optics (not shown in Fig. 1) with a 2 μm step along the beam propagation direction z, i.e., from left to right. The Gaussian focus is at z = 0. The insets represent respectively the simulated and experimentally obtained intensity distributions in the xz-plane inside the aberrated focal region of lens L. In both cases w 0 = 1.1 mm. (b) Normalized axial light intensity distributions calculated for different beam width w 0. The normalization is performed with respect to the peak intensity of the unaberrated focus (i.e., ϕ = 0) for w 0 = 1.1 mm. The inset zooms into the intensity distributions for different values of w 0 inside the first minimum.

Fig. 3
Fig. 3

Agglomerates of carbon nanoparticles trapped inside the aberrated focus. The trapping power is 5 mW. (a) and (b) correspond to the opposite side views of the 3D intensity distribution near the 1 st axial intensity minimum (see Fig. 2). (c) and (d) are two side views of a “secondary” axial trap which corresponds to the 7 th axial intensity minimum. The corresponding axial intensity maxima (i.e., the “light plugs”) confine the axial motion of the micro-objects. The radius of the 1 st bright ring (i.e., the radius of the ’bottle beam’) is 5.2 μm in (a) and 3.1 μm in (c). The apparent size of the trapped micro-objects along z is enlarged by the point spread function of the imaging optics. The beam propagation direction is denoted by arrows.

Fig. 4
Fig. 4

3D photophoretic macro-manipulation of absorbing particles in air. (a) (Media 1): a solid graphite particle (encircled) with an estimated characteristic size of 5 μm trapped inside the aberrated focus of the lens L. The trapping power is 25 mW. In (Media 1) manipulation is performed inside a glass container (wall thickness 1.2 mm). (b) (Media 2): an agglomerate of carbon nanoparticles inside the focus of a microscope objective (Olympus LUCPlanFLN 60x, NA = 0.70, 0.1 – 1.3 mm glass thickness correction). The radius of the beam waist is 0.8 mm, the radius of the entrance aperture of the objective is 2.5 mm. The estimated radius of the bottle for these parameters is 0.7 μm (in our calculations we used the vectorial Debye integral discussed in [20]). The trapping power is 1 mW in (b) and 5 mW in Movie 2. (c), (d) (Media 3): controlled insertion and manipulation of a 5 μm graphite particle inside a capillary with an inner diameter of 0.8 mm. The trapping power is 30 mW. In (a–d) gravity is directed from top to bottom.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

φ = ( a ρ ) 4 n 2 / 8 f 3 ( n 1 ) 2 ,
I ( u , v ) = 8 π a 4 P λ 2 f 2 w 0 2 | 0 1 e ρ 2 w 2 e i ( k φ u ρ 2 2 ) J 0 ( v ρ ) ρ d ρ | 2 ,

Metrics