Abstract

We demonstrate the fabrication of high-quality LPFGs in simplified hollow-core photonic crystal fibers, composed of a hollow hexagonal core and six crown-like air holes, using CO2-laser-irradiation method. Theoretical and experimental investigations indicate that the LPFGs are originated from the strong mode-coupling between the LP01 and LP11 core modes. And a dominant physical mechanism for the mode-coupling is experimentally confirmed to be the periodic microbends rather than the deformations of the cross-section or other common factors. In addition, the LPFGs are highly sensitive to strain and nearly insensitive to temperature, and are promising candidates for gas sensors and nonlinear optical devices.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Jin, Z. Wang, Y. Liu, G. Kai, and X. Dong, “Ultraviolet-inscribed long period gratings in all-solid photonic bandgap fibers,” Opt. Express 16(25), 21119–21131 (2008).
    [CrossRef] [PubMed]
  2. K. Morishita and Y. Miyake, “Fabrication and resonance wavelengths of long-period gratings written in a pure-silica photonic crystal fiber by the glass structure change,” J. Lightwave Technol. 22(2), 625–630 (2004).
    [CrossRef]
  3. S. Liu, L. Jin, W. Jin, D. Wang, C. Liao, and Y. Wang, “Structural long period gratings made by drilling micro-holes in photonic crystal fibers with a femtosecond infrared laser,” Opt. Express 18(6), 5496–5503 (2010).
    [CrossRef] [PubMed]
  4. Y. Wang, W. Jin, J. Ju, H. Xuan, H. L. Ho, L. Xiao, and D. Wang, “Long period gratings in air-core photonic bandgap fibers,” Opt. Express 16(4), 2784–2790 (2008).
    [CrossRef] [PubMed]
  5. R. Yun-Jiang, W. Yi-Ping, R. Zeng-Ling, and Z. Tao, “Novel fiber-optic sensors based on long-period fiber gratings written by high-frequency CO2 laser pulses,” J. Lightwave Technol. 21(5), 1320–1327 (2003).
    [CrossRef]
  6. D. I. Yeom, P. Steinvurzel, B. J. Eggleton, S. D. Lim, and B. Y. Kim, “Tunable acoustic gratings in solid-core photonic bandgap fiber,” Opt. Express 15(6), 3513–3518 (2007).
    [CrossRef] [PubMed]
  7. P. Steinvurzel, E. D. Moore, E. C. Mägi, B. T. Kuhlmey, and B. J. Eggleton, “Long period grating resonances in photonic bandgap fiber,” Opt. Express 14(7), 3007–3014 (2006).
    [CrossRef] [PubMed]
  8. B. Tai, Z. Wang, Y. Liu, J. Xu, B. Liu, H. Wei, and W. Tong, “High order resonances between core mode and cladding supermodes in long period fiber gratings inscribed in photonic bandgap fibers,” Opt. Express 18(15), 15361–15370 (2010).
    [CrossRef] [PubMed]
  9. H. Xuan, W. Jin, and S. Liu, “Long-period gratings in wavelength-scale microfibers,” Opt. Lett. 35(1), 85–87 (2010).
    [CrossRef] [PubMed]
  10. F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
    [CrossRef] [PubMed]
  11. F. Couny, P. J. Roberts, T. A. Birks, and F. Benabid, “Square-lattice large-pitch hollow-core photonic crystal fiber,” Opt. Express 16(25), 20626–20636 (2008).
    [CrossRef] [PubMed]
  12. F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and Photonic Guidance of Multi-Octave Optical-Frequency Combs,” Science 318(5853), 1118–1121 (2007).
    [CrossRef] [PubMed]
  13. F. Couny, F. Benabid, and P. S. Light, “Large-pitch kagome-structured hollow-core photonic crystal fiber,” Opt. Lett. 31(24), 3574–3576 (2006).
    [CrossRef] [PubMed]
  14. N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. Wong, F. Biancalana, and P. S. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106(20), 203901 (2011).
    [CrossRef] [PubMed]
  15. F. Gérôme, R. Jamier, J. L. Auguste, G. Humbert, and J. M. Blondy, “Simplified hollow-core photonic crystal fiber,” Opt. Lett. 35(8), 1157–1159 (2010).
    [CrossRef] [PubMed]
  16. S. Février, B. Beaudou, and P. Viale, “Understanding origin of loss in large pitch hollow-core photonic crystal fibers and their design simplification,” Opt. Express 18(5), 5142–5150 (2010).
    [CrossRef] [PubMed]
  17. H. W. Lee and K. S. Chiang, “CO2 laser writing of long-period fiber grating in photonic crystal fiber under tension,” Opt. Express 17(6), 4533–4539 (2009).
    [CrossRef] [PubMed]
  18. B. H. Kim, Y. Park, T. J. Ahn, D. Y. Kim, B. H. Lee, Y. Chung, U. C. Paek, and W. T. Han, “Residual stress relaxation in the core of optical fiber by CO2 laser irradiation,” Opt. Lett. 26(21), 1657–1659 (2001).
    [CrossRef] [PubMed]
  19. L. Jin, W. Jin, J. Ju, and Y. Wang, “Investigation of Long-Period Grating Resonances in Hollow-Core Photonic Bandgap Fibers,” J. Lightwave Technol. 29(11), 1707–1713 (2011).
    [CrossRef]
  20. I. K. Hwang, S. H. Yun, and B. Y. Kim, “Long-period fiber gratings based on periodic microbends,” Opt. Lett. 24(18), 1263–1265 (1999).
    [CrossRef] [PubMed]
  21. Y. Wang, D. N. Wang, W. Jin, Y. Rao, and G. Peng, “Asymmetric long period fiber gratings fabricated by use of CO2 laser to carve periodic grooves on the optical fiber,” Appl. Phys. Lett. 89(15), 151103 (2006).
    [CrossRef]
  22. M. Vaziri and C. L. Chen, “Optical-fiber strain sensors with asymmetric etched structures,” Appl. Opt. 32(31), 6399–6406 (1993).
    [CrossRef] [PubMed]

2011

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. Wong, F. Biancalana, and P. S. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106(20), 203901 (2011).
[CrossRef] [PubMed]

L. Jin, W. Jin, J. Ju, and Y. Wang, “Investigation of Long-Period Grating Resonances in Hollow-Core Photonic Bandgap Fibers,” J. Lightwave Technol. 29(11), 1707–1713 (2011).
[CrossRef]

2010

2009

2008

2007

D. I. Yeom, P. Steinvurzel, B. J. Eggleton, S. D. Lim, and B. Y. Kim, “Tunable acoustic gratings in solid-core photonic bandgap fiber,” Opt. Express 15(6), 3513–3518 (2007).
[CrossRef] [PubMed]

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and Photonic Guidance of Multi-Octave Optical-Frequency Combs,” Science 318(5853), 1118–1121 (2007).
[CrossRef] [PubMed]

2006

2004

2003

2002

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[CrossRef] [PubMed]

2001

1999

1993

Ahn, T. J.

Antonopoulos, G.

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[CrossRef] [PubMed]

Auguste, J. L.

Beaudou, B.

Benabid, F.

F. Couny, P. J. Roberts, T. A. Birks, and F. Benabid, “Square-lattice large-pitch hollow-core photonic crystal fiber,” Opt. Express 16(25), 20626–20636 (2008).
[CrossRef] [PubMed]

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and Photonic Guidance of Multi-Octave Optical-Frequency Combs,” Science 318(5853), 1118–1121 (2007).
[CrossRef] [PubMed]

F. Couny, F. Benabid, and P. S. Light, “Large-pitch kagome-structured hollow-core photonic crystal fiber,” Opt. Lett. 31(24), 3574–3576 (2006).
[CrossRef] [PubMed]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[CrossRef] [PubMed]

Biancalana, F.

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. Wong, F. Biancalana, and P. S. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106(20), 203901 (2011).
[CrossRef] [PubMed]

Birks, T. A.

Blondy, J. M.

Chang, W.

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. Wong, F. Biancalana, and P. S. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106(20), 203901 (2011).
[CrossRef] [PubMed]

Chen, C. L.

Chiang, K. S.

Chung, Y.

Couny, F.

Dong, X.

Eggleton, B. J.

Février, S.

Gérôme, F.

Han, W. T.

Ho, H. L.

Hölzer, P.

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. Wong, F. Biancalana, and P. S. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106(20), 203901 (2011).
[CrossRef] [PubMed]

Humbert, G.

Hwang, I. K.

Jamier, R.

Jin, L.

Jin, W.

Joly, N. Y.

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. Wong, F. Biancalana, and P. S. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106(20), 203901 (2011).
[CrossRef] [PubMed]

Ju, J.

Kai, G.

Kim, B. H.

Kim, B. Y.

Kim, D. Y.

Knight, J. C.

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[CrossRef] [PubMed]

Kuhlmey, B. T.

Lee, B. H.

Lee, H. W.

Liao, C.

Light, P. S.

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and Photonic Guidance of Multi-Octave Optical-Frequency Combs,” Science 318(5853), 1118–1121 (2007).
[CrossRef] [PubMed]

F. Couny, F. Benabid, and P. S. Light, “Large-pitch kagome-structured hollow-core photonic crystal fiber,” Opt. Lett. 31(24), 3574–3576 (2006).
[CrossRef] [PubMed]

Lim, S. D.

Liu, B.

Liu, S.

Liu, Y.

Mägi, E. C.

Miyake, Y.

Moore, E. D.

Morishita, K.

Nazarkin, A.

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. Wong, F. Biancalana, and P. S. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106(20), 203901 (2011).
[CrossRef] [PubMed]

Nold, J.

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. Wong, F. Biancalana, and P. S. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106(20), 203901 (2011).
[CrossRef] [PubMed]

Paek, U. C.

Park, Y.

Peng, G.

Y. Wang, D. N. Wang, W. Jin, Y. Rao, and G. Peng, “Asymmetric long period fiber gratings fabricated by use of CO2 laser to carve periodic grooves on the optical fiber,” Appl. Phys. Lett. 89(15), 151103 (2006).
[CrossRef]

Rao, Y.

Y. Wang, D. N. Wang, W. Jin, Y. Rao, and G. Peng, “Asymmetric long period fiber gratings fabricated by use of CO2 laser to carve periodic grooves on the optical fiber,” Appl. Phys. Lett. 89(15), 151103 (2006).
[CrossRef]

Raymer, M. G.

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and Photonic Guidance of Multi-Octave Optical-Frequency Combs,” Science 318(5853), 1118–1121 (2007).
[CrossRef] [PubMed]

Roberts, P. J.

F. Couny, P. J. Roberts, T. A. Birks, and F. Benabid, “Square-lattice large-pitch hollow-core photonic crystal fiber,” Opt. Express 16(25), 20626–20636 (2008).
[CrossRef] [PubMed]

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and Photonic Guidance of Multi-Octave Optical-Frequency Combs,” Science 318(5853), 1118–1121 (2007).
[CrossRef] [PubMed]

Russell, P. S.

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. Wong, F. Biancalana, and P. S. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106(20), 203901 (2011).
[CrossRef] [PubMed]

Russell, P. S. J.

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[CrossRef] [PubMed]

Steinvurzel, P.

Tai, B.

Tao, Z.

Tong, W.

Vaziri, M.

Viale, P.

Wang, D.

Wang, D. N.

Y. Wang, D. N. Wang, W. Jin, Y. Rao, and G. Peng, “Asymmetric long period fiber gratings fabricated by use of CO2 laser to carve periodic grooves on the optical fiber,” Appl. Phys. Lett. 89(15), 151103 (2006).
[CrossRef]

Wang, Y.

Wang, Z.

Wei, H.

Wong, G. K.

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. Wong, F. Biancalana, and P. S. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106(20), 203901 (2011).
[CrossRef] [PubMed]

Xiao, L.

Xu, J.

Xuan, H.

Yeom, D. I.

Yi-Ping, W.

Yun, S. H.

Yun-Jiang, R.

Zeng-Ling, R.

Appl. Opt.

Appl. Phys. Lett.

Y. Wang, D. N. Wang, W. Jin, Y. Rao, and G. Peng, “Asymmetric long period fiber gratings fabricated by use of CO2 laser to carve periodic grooves on the optical fiber,” Appl. Phys. Lett. 89(15), 151103 (2006).
[CrossRef]

J. Lightwave Technol.

Opt. Express

B. Tai, Z. Wang, Y. Liu, J. Xu, B. Liu, H. Wei, and W. Tong, “High order resonances between core mode and cladding supermodes in long period fiber gratings inscribed in photonic bandgap fibers,” Opt. Express 18(15), 15361–15370 (2010).
[CrossRef] [PubMed]

P. Steinvurzel, E. D. Moore, E. C. Mägi, B. T. Kuhlmey, and B. J. Eggleton, “Long period grating resonances in photonic bandgap fiber,” Opt. Express 14(7), 3007–3014 (2006).
[CrossRef] [PubMed]

S. Février, B. Beaudou, and P. Viale, “Understanding origin of loss in large pitch hollow-core photonic crystal fibers and their design simplification,” Opt. Express 18(5), 5142–5150 (2010).
[CrossRef] [PubMed]

S. Liu, L. Jin, W. Jin, D. Wang, C. Liao, and Y. Wang, “Structural long period gratings made by drilling micro-holes in photonic crystal fibers with a femtosecond infrared laser,” Opt. Express 18(6), 5496–5503 (2010).
[CrossRef] [PubMed]

D. I. Yeom, P. Steinvurzel, B. J. Eggleton, S. D. Lim, and B. Y. Kim, “Tunable acoustic gratings in solid-core photonic bandgap fiber,” Opt. Express 15(6), 3513–3518 (2007).
[CrossRef] [PubMed]

Y. Wang, W. Jin, J. Ju, H. Xuan, H. L. Ho, L. Xiao, and D. Wang, “Long period gratings in air-core photonic bandgap fibers,” Opt. Express 16(4), 2784–2790 (2008).
[CrossRef] [PubMed]

F. Couny, P. J. Roberts, T. A. Birks, and F. Benabid, “Square-lattice large-pitch hollow-core photonic crystal fiber,” Opt. Express 16(25), 20626–20636 (2008).
[CrossRef] [PubMed]

L. Jin, Z. Wang, Y. Liu, G. Kai, and X. Dong, “Ultraviolet-inscribed long period gratings in all-solid photonic bandgap fibers,” Opt. Express 16(25), 21119–21131 (2008).
[CrossRef] [PubMed]

H. W. Lee and K. S. Chiang, “CO2 laser writing of long-period fiber grating in photonic crystal fiber under tension,” Opt. Express 17(6), 4533–4539 (2009).
[CrossRef] [PubMed]

Opt. Lett.

Phys. Rev. Lett.

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. Wong, F. Biancalana, and P. S. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106(20), 203901 (2011).
[CrossRef] [PubMed]

Science

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[CrossRef] [PubMed]

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and Photonic Guidance of Multi-Octave Optical-Frequency Combs,” Science 318(5853), 1118–1121 (2007).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(Color online) (a) Measured transmission spectrum of a ~15 cm long HC-PCF spliced with SMFs at both ends; (b) Calculated effective refractive indices against wavelength for some representative modes; (c~l) Calculated mode profiles of some representative modes supported by the HC-PCFs. The inset (a) is the optical micrograph of the cross-section of the HC-PCF.

Fig. 2
Fig. 2

(Color online) (a) Calculated grating pitches against the wavelength for the mode-coupling from the LP01 core mode to the LP11 core modes; (b) Measured transmission spectra of the LPFGs with different pitches; (c)~(g) Measured mode profiles of the LPFGs with Λ = 815   μm at A~E, respectively. Measured central wavelength (red) and minimum transmission (blue) of the LPFG against strain (h) and temperature (i).

Fig. 3
Fig. 3

(Color online) (a) Optical micrograph of the cross-section of the LPFG mentioned in section 3; (b, c) Optical micrographs of the cross-section of the LPFG Iand II, respectively; (d) Photos of side views of LPFGs aforementioned; (e) Measured transmission spectra of the LPFG Iand II.

Metrics