Abstract

For the first time a vertical-cavity surface-emitting laser (VCSEL) with a single-mode wavelength-tuning over 102nm in the range of 1550nm is demonstrated. The fiber-coupled optical output power has a maximum of 3.5mW and is > 2mW over the entire tuning range. The sidemode suppression ratios are > 45dB. The wavelength tuning is achieved with the micro-electro mechanical actuation of a mirror membrane fabricated with surface micro-machining for on-wafer mass production. The mirror membrane consists of low cost dielectric materials (SiOx/SiNy) deposited with low temperature (< 100°C) Plasma Enhanced Chemical Vapor Deposition (PECVD).

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Rausch, P. Heinickel, R. Werthschuetzky, B. Koegel, K. Zogal, and P. Meissner, “Experimental comparison of piezoresistive MEMS and fiber Bragg grating strain sensors,” in IEEE Sensors (IEEE, 2009), pp. 1329–1333.
    [CrossRef]
  2. T. C. Bond, G. D. Cole, L. L. Goddard, and E. M. Behymer, “Photonic MEMS for NIR in-situ gas detection and identification,” IEEE Sensors (IEEE, 2007), pp. 1368–1371.
    [CrossRef]
  3. B. Kogel, H. Halbritter, S. Jatta, M. Maute, G. Bohm, M.-C. Amann, M. Lackner, M. Schwarzott, F. Winter, and P. Meissner, “Simultaneous spectroscopy of NH3 and CO using a > 50 nm continuously tunable MEMS-VCSEL,” IEEE Sens. J. 7, 1483–1489 (2007).
    [CrossRef]
  4. B. Kogel, H. Halbritter, M. Lackner, M. Schwarzott, M. Maute, M.-C. Amann, F. Winter, and P. Meissner, “Micromechanically widely tunable VCSEL for absorption spectroscopy at around 1.55μm,” International Conference on Optical MEMS and Their Applications IEEE/LEOS (IEEE, 2006), pp. 7–8.
    [CrossRef]
  5. C. Gierl, K. Zogal, S. Jatta, H. A. Davani, F. Kueppers, P. Meissner, T. Gruendl, C. Grasse, M.-C. Amann, A. Daly, B. Corbett, B. Koegel, A. Haglund, J. Gustavsson, P. Westbergh, A. Larsson, P. Debernardi, and M. Ortsiefer, “Tuneable VCSEL aiming for the application in interconnects and short haul systems,” Proc. SPIE 7959, 795908 (2011).
    [CrossRef]
  6. D. Sun, W. Fan, P. Kner, J. Boucart, T. Kagexama, D. Zhang, R. Pathak, R. F. Nabiev, and W. Yuen, “Long wavelength-tunable VCSELs with optimized MEMS bridge tuning structure,” IEEE Photon. Technol. Lett. 16, 714–716 (2004)
    [CrossRef]
  7. K. J. Knopp, D. Vakhshoori, P. D. Wang, M. Azimi, M. Jiang, P. Chen, Y. Matsui, K. McCallion, A. Baliga, F. Sakithab, M. Letsch, B. Johnson, R. Huang, A. Jean, B. DeLargy, C. Pinzone, F. Fan, J. Liu, C. Lu, J. Zhou, H. Zhu, R. Gurjar, P. Tayebati, D. MacDaniel, R. Baorui, P. Waterson, and G. VanderRhodes, “High power MEMs-tunable vertical-cavity surface-emitting lasers,” IEEE Digest of the LEOS Summer Topical Meetings (IEEE,2001), pp. 31–32.
  8. G. D. Cole, E. S. Bjorlin, C. S. Wang, N. C. MacDonald, and J. E. Bowers, “Widely tunable bottom-emitting vertical-cavity SOAs,” IEEE Photon. Technol. Lett. 17, 2526–2528 (2005).
    [CrossRef]
  9. T. Yano, H. Saito, N. Kanbara, R. Noda, S. Tezuka, N. Fujimura, M. Ooyama, T. Watanabe, T. Hirata, and N. Nishiyama, “Wavelength modulation over 500kHz of micromechanically tunable InP-based VCSELs with Si-MEMS technology,” IEEE 21st ISLC (IEEE, 2008), pp. 163–164.
  10. S. Jatta, B. Koegel, M. Maute, K. Zogal, F. Riemenschneider, G. Bohm, M.-C. Amann, and P. Meissner, “Bulk-Micromachined VCSEL At 1.55μm With 76-nm Single-Mode Continuous Tuning Range,” IEEE Photon. Technol. Lett. 21, 1822–1824 (2009).
    [CrossRef]
  11. H. Halbritter, F. Riemenschneider, B. Kogel, A. Tarraj, M. Strassner, S. Irmer, H. Hillmer, I. Sagnes, and P. Meissner, “MEM-tunable and wavelength selective receiver front end,” 18th IEEE International Conference on Micro Electro Mechanical Systems (IEEE, 2005), pp. 68–71.
    [CrossRef]
  12. C. Gierl, K. Zogal, H. A. Davani, and P. Meissner, “Electro thermal and electro statical actuation of a surface micromachined tunable Fabry-Pérot filter,” Conference on Lasers and Electro-Optics (CLEO) and Quantum Electronics and Laser Science Conference (QELS) (IEEE, 2011), JTuI73.
    [PubMed]
  13. K. Iga, “Surface-emitting laser—its birth and generation of new optoelectronics field,” IEEE J. Sel. Top. Quantum Electron. 6, 1201–1215 (2000).
    [CrossRef]
  14. M. C. Y. Huang, B. C. Kan, Z. Ye, A. P. Pisano, and C. J. Chang-Hasnain, “Monolithic integrated piezoelectric MEMS-tunable VCSEL,” IEEE J. Sel. Top. Quantum Electron. 13, 374–380 (2007).
    [CrossRef]
  15. B. C. Kan, M. C. Y. Huang, Z. Ye, S. P. Alvaro, C. J. Hasnain, and P. A. Pisano, “Monolithic integration of piezoelectric cantilever in tunable VCSEL,” International Conference on Optical MEMS and Their Applications (IEEE/LEOS, 2006), pp. 11–12.
  16. H. Sano, A. Matsutani, and F. Koyama, “Athermal and tunable operations of 850 nm VCSEL with thermally actuated cantilever structure,” 35th European Conference on Optical Communication (IEEE, 2009), P2.26, pp. 1–2.
  17. B. Kogel, H. Halbritter, M. Maute, G. Bohm, M.-C. Amann, and P. Meissner, “Singlemode and polarization stable MEMS-VCSEL with broadband tuning characteristics around 1.55μm,” European Conference on Optical Communications (IEEE, 2006), 10.1109/ECOC.2006.4801075, pp. 1–2.
    [CrossRef]
  18. P. Tayebati, W. Peidong, D. Vakshoori, L. Chih-Cheng, M. Azimi, and R. N. Sacks, “Half-symmetric cavity tunable microelectromechanical VCSEL with single spatial mode,” IEEE Photon. Technol. Lett. 10, 1679–1681 (1998).
    [CrossRef]
  19. P. Debernardi, B. Kogel, K. Zogal, P. Meissner, M. Maute, M. Ortsiefer, G. Boehm, and M.-C. Amann, “Modal properties of long-wavelength tunable MEMS-VCSELs with curved mirrors: comparison of experiment and modeling,” IEEE J. Sel. Top. Quantum Electron. 44, 391–399 (2008).
    [CrossRef]
  20. B. Kogel, M. Maute, H. Halbritter, F. Riemenschneider, G. Bohm, M.-C. Amann, and P. Meissner, “Long-wavelength MEMS tunable VCSEL with high sidemode suppression,” International Conference on Optical MEMS and Their Applications (IEEE/LEOS, 2005), pp. 95–96.
    [CrossRef]
  21. F. Sugihwo, M. C. Larson, and J. S. Harris, “Low threshold continuously tunable vertical-cavity surface-emitting lasers with 19.1 nm wavelength range,” Appl. Phys. Lett. 70, 547 (1997).
    [CrossRef]

2011

C. Gierl, K. Zogal, S. Jatta, H. A. Davani, F. Kueppers, P. Meissner, T. Gruendl, C. Grasse, M.-C. Amann, A. Daly, B. Corbett, B. Koegel, A. Haglund, J. Gustavsson, P. Westbergh, A. Larsson, P. Debernardi, and M. Ortsiefer, “Tuneable VCSEL aiming for the application in interconnects and short haul systems,” Proc. SPIE 7959, 795908 (2011).
[CrossRef]

2009

S. Jatta, B. Koegel, M. Maute, K. Zogal, F. Riemenschneider, G. Bohm, M.-C. Amann, and P. Meissner, “Bulk-Micromachined VCSEL At 1.55μm With 76-nm Single-Mode Continuous Tuning Range,” IEEE Photon. Technol. Lett. 21, 1822–1824 (2009).
[CrossRef]

2008

P. Debernardi, B. Kogel, K. Zogal, P. Meissner, M. Maute, M. Ortsiefer, G. Boehm, and M.-C. Amann, “Modal properties of long-wavelength tunable MEMS-VCSELs with curved mirrors: comparison of experiment and modeling,” IEEE J. Sel. Top. Quantum Electron. 44, 391–399 (2008).
[CrossRef]

2007

M. C. Y. Huang, B. C. Kan, Z. Ye, A. P. Pisano, and C. J. Chang-Hasnain, “Monolithic integrated piezoelectric MEMS-tunable VCSEL,” IEEE J. Sel. Top. Quantum Electron. 13, 374–380 (2007).
[CrossRef]

B. Kogel, H. Halbritter, S. Jatta, M. Maute, G. Bohm, M.-C. Amann, M. Lackner, M. Schwarzott, F. Winter, and P. Meissner, “Simultaneous spectroscopy of NH3 and CO using a > 50 nm continuously tunable MEMS-VCSEL,” IEEE Sens. J. 7, 1483–1489 (2007).
[CrossRef]

2005

G. D. Cole, E. S. Bjorlin, C. S. Wang, N. C. MacDonald, and J. E. Bowers, “Widely tunable bottom-emitting vertical-cavity SOAs,” IEEE Photon. Technol. Lett. 17, 2526–2528 (2005).
[CrossRef]

2004

D. Sun, W. Fan, P. Kner, J. Boucart, T. Kagexama, D. Zhang, R. Pathak, R. F. Nabiev, and W. Yuen, “Long wavelength-tunable VCSELs with optimized MEMS bridge tuning structure,” IEEE Photon. Technol. Lett. 16, 714–716 (2004)
[CrossRef]

2000

K. Iga, “Surface-emitting laser—its birth and generation of new optoelectronics field,” IEEE J. Sel. Top. Quantum Electron. 6, 1201–1215 (2000).
[CrossRef]

1998

P. Tayebati, W. Peidong, D. Vakshoori, L. Chih-Cheng, M. Azimi, and R. N. Sacks, “Half-symmetric cavity tunable microelectromechanical VCSEL with single spatial mode,” IEEE Photon. Technol. Lett. 10, 1679–1681 (1998).
[CrossRef]

1997

F. Sugihwo, M. C. Larson, and J. S. Harris, “Low threshold continuously tunable vertical-cavity surface-emitting lasers with 19.1 nm wavelength range,” Appl. Phys. Lett. 70, 547 (1997).
[CrossRef]

Alvaro, S. P.

B. C. Kan, M. C. Y. Huang, Z. Ye, S. P. Alvaro, C. J. Hasnain, and P. A. Pisano, “Monolithic integration of piezoelectric cantilever in tunable VCSEL,” International Conference on Optical MEMS and Their Applications (IEEE/LEOS, 2006), pp. 11–12.

Amann, M.-C.

C. Gierl, K. Zogal, S. Jatta, H. A. Davani, F. Kueppers, P. Meissner, T. Gruendl, C. Grasse, M.-C. Amann, A. Daly, B. Corbett, B. Koegel, A. Haglund, J. Gustavsson, P. Westbergh, A. Larsson, P. Debernardi, and M. Ortsiefer, “Tuneable VCSEL aiming for the application in interconnects and short haul systems,” Proc. SPIE 7959, 795908 (2011).
[CrossRef]

S. Jatta, B. Koegel, M. Maute, K. Zogal, F. Riemenschneider, G. Bohm, M.-C. Amann, and P. Meissner, “Bulk-Micromachined VCSEL At 1.55μm With 76-nm Single-Mode Continuous Tuning Range,” IEEE Photon. Technol. Lett. 21, 1822–1824 (2009).
[CrossRef]

P. Debernardi, B. Kogel, K. Zogal, P. Meissner, M. Maute, M. Ortsiefer, G. Boehm, and M.-C. Amann, “Modal properties of long-wavelength tunable MEMS-VCSELs with curved mirrors: comparison of experiment and modeling,” IEEE J. Sel. Top. Quantum Electron. 44, 391–399 (2008).
[CrossRef]

B. Kogel, H. Halbritter, S. Jatta, M. Maute, G. Bohm, M.-C. Amann, M. Lackner, M. Schwarzott, F. Winter, and P. Meissner, “Simultaneous spectroscopy of NH3 and CO using a > 50 nm continuously tunable MEMS-VCSEL,” IEEE Sens. J. 7, 1483–1489 (2007).
[CrossRef]

B. Kogel, H. Halbritter, M. Lackner, M. Schwarzott, M. Maute, M.-C. Amann, F. Winter, and P. Meissner, “Micromechanically widely tunable VCSEL for absorption spectroscopy at around 1.55μm,” International Conference on Optical MEMS and Their Applications IEEE/LEOS (IEEE, 2006), pp. 7–8.
[CrossRef]

B. Kogel, H. Halbritter, M. Maute, G. Bohm, M.-C. Amann, and P. Meissner, “Singlemode and polarization stable MEMS-VCSEL with broadband tuning characteristics around 1.55μm,” European Conference on Optical Communications (IEEE, 2006), 10.1109/ECOC.2006.4801075, pp. 1–2.
[CrossRef]

B. Kogel, M. Maute, H. Halbritter, F. Riemenschneider, G. Bohm, M.-C. Amann, and P. Meissner, “Long-wavelength MEMS tunable VCSEL with high sidemode suppression,” International Conference on Optical MEMS and Their Applications (IEEE/LEOS, 2005), pp. 95–96.
[CrossRef]

Azimi, M.

P. Tayebati, W. Peidong, D. Vakshoori, L. Chih-Cheng, M. Azimi, and R. N. Sacks, “Half-symmetric cavity tunable microelectromechanical VCSEL with single spatial mode,” IEEE Photon. Technol. Lett. 10, 1679–1681 (1998).
[CrossRef]

K. J. Knopp, D. Vakhshoori, P. D. Wang, M. Azimi, M. Jiang, P. Chen, Y. Matsui, K. McCallion, A. Baliga, F. Sakithab, M. Letsch, B. Johnson, R. Huang, A. Jean, B. DeLargy, C. Pinzone, F. Fan, J. Liu, C. Lu, J. Zhou, H. Zhu, R. Gurjar, P. Tayebati, D. MacDaniel, R. Baorui, P. Waterson, and G. VanderRhodes, “High power MEMs-tunable vertical-cavity surface-emitting lasers,” IEEE Digest of the LEOS Summer Topical Meetings (IEEE,2001), pp. 31–32.

Baliga, A.

K. J. Knopp, D. Vakhshoori, P. D. Wang, M. Azimi, M. Jiang, P. Chen, Y. Matsui, K. McCallion, A. Baliga, F. Sakithab, M. Letsch, B. Johnson, R. Huang, A. Jean, B. DeLargy, C. Pinzone, F. Fan, J. Liu, C. Lu, J. Zhou, H. Zhu, R. Gurjar, P. Tayebati, D. MacDaniel, R. Baorui, P. Waterson, and G. VanderRhodes, “High power MEMs-tunable vertical-cavity surface-emitting lasers,” IEEE Digest of the LEOS Summer Topical Meetings (IEEE,2001), pp. 31–32.

Baorui, R.

K. J. Knopp, D. Vakhshoori, P. D. Wang, M. Azimi, M. Jiang, P. Chen, Y. Matsui, K. McCallion, A. Baliga, F. Sakithab, M. Letsch, B. Johnson, R. Huang, A. Jean, B. DeLargy, C. Pinzone, F. Fan, J. Liu, C. Lu, J. Zhou, H. Zhu, R. Gurjar, P. Tayebati, D. MacDaniel, R. Baorui, P. Waterson, and G. VanderRhodes, “High power MEMs-tunable vertical-cavity surface-emitting lasers,” IEEE Digest of the LEOS Summer Topical Meetings (IEEE,2001), pp. 31–32.

Behymer, E. M.

T. C. Bond, G. D. Cole, L. L. Goddard, and E. M. Behymer, “Photonic MEMS for NIR in-situ gas detection and identification,” IEEE Sensors (IEEE, 2007), pp. 1368–1371.
[CrossRef]

Bjorlin, E. S.

G. D. Cole, E. S. Bjorlin, C. S. Wang, N. C. MacDonald, and J. E. Bowers, “Widely tunable bottom-emitting vertical-cavity SOAs,” IEEE Photon. Technol. Lett. 17, 2526–2528 (2005).
[CrossRef]

Boehm, G.

P. Debernardi, B. Kogel, K. Zogal, P. Meissner, M. Maute, M. Ortsiefer, G. Boehm, and M.-C. Amann, “Modal properties of long-wavelength tunable MEMS-VCSELs with curved mirrors: comparison of experiment and modeling,” IEEE J. Sel. Top. Quantum Electron. 44, 391–399 (2008).
[CrossRef]

Bohm, G.

S. Jatta, B. Koegel, M. Maute, K. Zogal, F. Riemenschneider, G. Bohm, M.-C. Amann, and P. Meissner, “Bulk-Micromachined VCSEL At 1.55μm With 76-nm Single-Mode Continuous Tuning Range,” IEEE Photon. Technol. Lett. 21, 1822–1824 (2009).
[CrossRef]

B. Kogel, H. Halbritter, S. Jatta, M. Maute, G. Bohm, M.-C. Amann, M. Lackner, M. Schwarzott, F. Winter, and P. Meissner, “Simultaneous spectroscopy of NH3 and CO using a > 50 nm continuously tunable MEMS-VCSEL,” IEEE Sens. J. 7, 1483–1489 (2007).
[CrossRef]

B. Kogel, H. Halbritter, M. Maute, G. Bohm, M.-C. Amann, and P. Meissner, “Singlemode and polarization stable MEMS-VCSEL with broadband tuning characteristics around 1.55μm,” European Conference on Optical Communications (IEEE, 2006), 10.1109/ECOC.2006.4801075, pp. 1–2.
[CrossRef]

B. Kogel, M. Maute, H. Halbritter, F. Riemenschneider, G. Bohm, M.-C. Amann, and P. Meissner, “Long-wavelength MEMS tunable VCSEL with high sidemode suppression,” International Conference on Optical MEMS and Their Applications (IEEE/LEOS, 2005), pp. 95–96.
[CrossRef]

Bond, T. C.

T. C. Bond, G. D. Cole, L. L. Goddard, and E. M. Behymer, “Photonic MEMS for NIR in-situ gas detection and identification,” IEEE Sensors (IEEE, 2007), pp. 1368–1371.
[CrossRef]

Boucart, J.

D. Sun, W. Fan, P. Kner, J. Boucart, T. Kagexama, D. Zhang, R. Pathak, R. F. Nabiev, and W. Yuen, “Long wavelength-tunable VCSELs with optimized MEMS bridge tuning structure,” IEEE Photon. Technol. Lett. 16, 714–716 (2004)
[CrossRef]

Bowers, J. E.

G. D. Cole, E. S. Bjorlin, C. S. Wang, N. C. MacDonald, and J. E. Bowers, “Widely tunable bottom-emitting vertical-cavity SOAs,” IEEE Photon. Technol. Lett. 17, 2526–2528 (2005).
[CrossRef]

Chang-Hasnain, C. J.

M. C. Y. Huang, B. C. Kan, Z. Ye, A. P. Pisano, and C. J. Chang-Hasnain, “Monolithic integrated piezoelectric MEMS-tunable VCSEL,” IEEE J. Sel. Top. Quantum Electron. 13, 374–380 (2007).
[CrossRef]

Chen, P.

K. J. Knopp, D. Vakhshoori, P. D. Wang, M. Azimi, M. Jiang, P. Chen, Y. Matsui, K. McCallion, A. Baliga, F. Sakithab, M. Letsch, B. Johnson, R. Huang, A. Jean, B. DeLargy, C. Pinzone, F. Fan, J. Liu, C. Lu, J. Zhou, H. Zhu, R. Gurjar, P. Tayebati, D. MacDaniel, R. Baorui, P. Waterson, and G. VanderRhodes, “High power MEMs-tunable vertical-cavity surface-emitting lasers,” IEEE Digest of the LEOS Summer Topical Meetings (IEEE,2001), pp. 31–32.

Chih-Cheng, L.

P. Tayebati, W. Peidong, D. Vakshoori, L. Chih-Cheng, M. Azimi, and R. N. Sacks, “Half-symmetric cavity tunable microelectromechanical VCSEL with single spatial mode,” IEEE Photon. Technol. Lett. 10, 1679–1681 (1998).
[CrossRef]

Cole, G. D.

G. D. Cole, E. S. Bjorlin, C. S. Wang, N. C. MacDonald, and J. E. Bowers, “Widely tunable bottom-emitting vertical-cavity SOAs,” IEEE Photon. Technol. Lett. 17, 2526–2528 (2005).
[CrossRef]

T. C. Bond, G. D. Cole, L. L. Goddard, and E. M. Behymer, “Photonic MEMS for NIR in-situ gas detection and identification,” IEEE Sensors (IEEE, 2007), pp. 1368–1371.
[CrossRef]

Corbett, B.

C. Gierl, K. Zogal, S. Jatta, H. A. Davani, F. Kueppers, P. Meissner, T. Gruendl, C. Grasse, M.-C. Amann, A. Daly, B. Corbett, B. Koegel, A. Haglund, J. Gustavsson, P. Westbergh, A. Larsson, P. Debernardi, and M. Ortsiefer, “Tuneable VCSEL aiming for the application in interconnects and short haul systems,” Proc. SPIE 7959, 795908 (2011).
[CrossRef]

Daly, A.

C. Gierl, K. Zogal, S. Jatta, H. A. Davani, F. Kueppers, P. Meissner, T. Gruendl, C. Grasse, M.-C. Amann, A. Daly, B. Corbett, B. Koegel, A. Haglund, J. Gustavsson, P. Westbergh, A. Larsson, P. Debernardi, and M. Ortsiefer, “Tuneable VCSEL aiming for the application in interconnects and short haul systems,” Proc. SPIE 7959, 795908 (2011).
[CrossRef]

Davani, H. A.

C. Gierl, K. Zogal, S. Jatta, H. A. Davani, F. Kueppers, P. Meissner, T. Gruendl, C. Grasse, M.-C. Amann, A. Daly, B. Corbett, B. Koegel, A. Haglund, J. Gustavsson, P. Westbergh, A. Larsson, P. Debernardi, and M. Ortsiefer, “Tuneable VCSEL aiming for the application in interconnects and short haul systems,” Proc. SPIE 7959, 795908 (2011).
[CrossRef]

C. Gierl, K. Zogal, H. A. Davani, and P. Meissner, “Electro thermal and electro statical actuation of a surface micromachined tunable Fabry-Pérot filter,” Conference on Lasers and Electro-Optics (CLEO) and Quantum Electronics and Laser Science Conference (QELS) (IEEE, 2011), JTuI73.
[PubMed]

Debernardi, P.

C. Gierl, K. Zogal, S. Jatta, H. A. Davani, F. Kueppers, P. Meissner, T. Gruendl, C. Grasse, M.-C. Amann, A. Daly, B. Corbett, B. Koegel, A. Haglund, J. Gustavsson, P. Westbergh, A. Larsson, P. Debernardi, and M. Ortsiefer, “Tuneable VCSEL aiming for the application in interconnects and short haul systems,” Proc. SPIE 7959, 795908 (2011).
[CrossRef]

P. Debernardi, B. Kogel, K. Zogal, P. Meissner, M. Maute, M. Ortsiefer, G. Boehm, and M.-C. Amann, “Modal properties of long-wavelength tunable MEMS-VCSELs with curved mirrors: comparison of experiment and modeling,” IEEE J. Sel. Top. Quantum Electron. 44, 391–399 (2008).
[CrossRef]

DeLargy, B.

K. J. Knopp, D. Vakhshoori, P. D. Wang, M. Azimi, M. Jiang, P. Chen, Y. Matsui, K. McCallion, A. Baliga, F. Sakithab, M. Letsch, B. Johnson, R. Huang, A. Jean, B. DeLargy, C. Pinzone, F. Fan, J. Liu, C. Lu, J. Zhou, H. Zhu, R. Gurjar, P. Tayebati, D. MacDaniel, R. Baorui, P. Waterson, and G. VanderRhodes, “High power MEMs-tunable vertical-cavity surface-emitting lasers,” IEEE Digest of the LEOS Summer Topical Meetings (IEEE,2001), pp. 31–32.

Fan, F.

K. J. Knopp, D. Vakhshoori, P. D. Wang, M. Azimi, M. Jiang, P. Chen, Y. Matsui, K. McCallion, A. Baliga, F. Sakithab, M. Letsch, B. Johnson, R. Huang, A. Jean, B. DeLargy, C. Pinzone, F. Fan, J. Liu, C. Lu, J. Zhou, H. Zhu, R. Gurjar, P. Tayebati, D. MacDaniel, R. Baorui, P. Waterson, and G. VanderRhodes, “High power MEMs-tunable vertical-cavity surface-emitting lasers,” IEEE Digest of the LEOS Summer Topical Meetings (IEEE,2001), pp. 31–32.

Fan, W.

D. Sun, W. Fan, P. Kner, J. Boucart, T. Kagexama, D. Zhang, R. Pathak, R. F. Nabiev, and W. Yuen, “Long wavelength-tunable VCSELs with optimized MEMS bridge tuning structure,” IEEE Photon. Technol. Lett. 16, 714–716 (2004)
[CrossRef]

Fujimura, N.

T. Yano, H. Saito, N. Kanbara, R. Noda, S. Tezuka, N. Fujimura, M. Ooyama, T. Watanabe, T. Hirata, and N. Nishiyama, “Wavelength modulation over 500kHz of micromechanically tunable InP-based VCSELs with Si-MEMS technology,” IEEE 21st ISLC (IEEE, 2008), pp. 163–164.

Gierl, C.

C. Gierl, K. Zogal, S. Jatta, H. A. Davani, F. Kueppers, P. Meissner, T. Gruendl, C. Grasse, M.-C. Amann, A. Daly, B. Corbett, B. Koegel, A. Haglund, J. Gustavsson, P. Westbergh, A. Larsson, P. Debernardi, and M. Ortsiefer, “Tuneable VCSEL aiming for the application in interconnects and short haul systems,” Proc. SPIE 7959, 795908 (2011).
[CrossRef]

C. Gierl, K. Zogal, H. A. Davani, and P. Meissner, “Electro thermal and electro statical actuation of a surface micromachined tunable Fabry-Pérot filter,” Conference on Lasers and Electro-Optics (CLEO) and Quantum Electronics and Laser Science Conference (QELS) (IEEE, 2011), JTuI73.
[PubMed]

Goddard, L. L.

T. C. Bond, G. D. Cole, L. L. Goddard, and E. M. Behymer, “Photonic MEMS for NIR in-situ gas detection and identification,” IEEE Sensors (IEEE, 2007), pp. 1368–1371.
[CrossRef]

Grasse, C.

C. Gierl, K. Zogal, S. Jatta, H. A. Davani, F. Kueppers, P. Meissner, T. Gruendl, C. Grasse, M.-C. Amann, A. Daly, B. Corbett, B. Koegel, A. Haglund, J. Gustavsson, P. Westbergh, A. Larsson, P. Debernardi, and M. Ortsiefer, “Tuneable VCSEL aiming for the application in interconnects and short haul systems,” Proc. SPIE 7959, 795908 (2011).
[CrossRef]

Gruendl, T.

C. Gierl, K. Zogal, S. Jatta, H. A. Davani, F. Kueppers, P. Meissner, T. Gruendl, C. Grasse, M.-C. Amann, A. Daly, B. Corbett, B. Koegel, A. Haglund, J. Gustavsson, P. Westbergh, A. Larsson, P. Debernardi, and M. Ortsiefer, “Tuneable VCSEL aiming for the application in interconnects and short haul systems,” Proc. SPIE 7959, 795908 (2011).
[CrossRef]

Gurjar, R.

K. J. Knopp, D. Vakhshoori, P. D. Wang, M. Azimi, M. Jiang, P. Chen, Y. Matsui, K. McCallion, A. Baliga, F. Sakithab, M. Letsch, B. Johnson, R. Huang, A. Jean, B. DeLargy, C. Pinzone, F. Fan, J. Liu, C. Lu, J. Zhou, H. Zhu, R. Gurjar, P. Tayebati, D. MacDaniel, R. Baorui, P. Waterson, and G. VanderRhodes, “High power MEMs-tunable vertical-cavity surface-emitting lasers,” IEEE Digest of the LEOS Summer Topical Meetings (IEEE,2001), pp. 31–32.

Gustavsson, J.

C. Gierl, K. Zogal, S. Jatta, H. A. Davani, F. Kueppers, P. Meissner, T. Gruendl, C. Grasse, M.-C. Amann, A. Daly, B. Corbett, B. Koegel, A. Haglund, J. Gustavsson, P. Westbergh, A. Larsson, P. Debernardi, and M. Ortsiefer, “Tuneable VCSEL aiming for the application in interconnects and short haul systems,” Proc. SPIE 7959, 795908 (2011).
[CrossRef]

Haglund, A.

C. Gierl, K. Zogal, S. Jatta, H. A. Davani, F. Kueppers, P. Meissner, T. Gruendl, C. Grasse, M.-C. Amann, A. Daly, B. Corbett, B. Koegel, A. Haglund, J. Gustavsson, P. Westbergh, A. Larsson, P. Debernardi, and M. Ortsiefer, “Tuneable VCSEL aiming for the application in interconnects and short haul systems,” Proc. SPIE 7959, 795908 (2011).
[CrossRef]

Halbritter, H.

B. Kogel, H. Halbritter, S. Jatta, M. Maute, G. Bohm, M.-C. Amann, M. Lackner, M. Schwarzott, F. Winter, and P. Meissner, “Simultaneous spectroscopy of NH3 and CO using a > 50 nm continuously tunable MEMS-VCSEL,” IEEE Sens. J. 7, 1483–1489 (2007).
[CrossRef]

B. Kogel, H. Halbritter, M. Lackner, M. Schwarzott, M. Maute, M.-C. Amann, F. Winter, and P. Meissner, “Micromechanically widely tunable VCSEL for absorption spectroscopy at around 1.55μm,” International Conference on Optical MEMS and Their Applications IEEE/LEOS (IEEE, 2006), pp. 7–8.
[CrossRef]

H. Halbritter, F. Riemenschneider, B. Kogel, A. Tarraj, M. Strassner, S. Irmer, H. Hillmer, I. Sagnes, and P. Meissner, “MEM-tunable and wavelength selective receiver front end,” 18th IEEE International Conference on Micro Electro Mechanical Systems (IEEE, 2005), pp. 68–71.
[CrossRef]

B. Kogel, H. Halbritter, M. Maute, G. Bohm, M.-C. Amann, and P. Meissner, “Singlemode and polarization stable MEMS-VCSEL with broadband tuning characteristics around 1.55μm,” European Conference on Optical Communications (IEEE, 2006), 10.1109/ECOC.2006.4801075, pp. 1–2.
[CrossRef]

B. Kogel, M. Maute, H. Halbritter, F. Riemenschneider, G. Bohm, M.-C. Amann, and P. Meissner, “Long-wavelength MEMS tunable VCSEL with high sidemode suppression,” International Conference on Optical MEMS and Their Applications (IEEE/LEOS, 2005), pp. 95–96.
[CrossRef]

Harris, J. S.

F. Sugihwo, M. C. Larson, and J. S. Harris, “Low threshold continuously tunable vertical-cavity surface-emitting lasers with 19.1 nm wavelength range,” Appl. Phys. Lett. 70, 547 (1997).
[CrossRef]

Hasnain, C. J.

B. C. Kan, M. C. Y. Huang, Z. Ye, S. P. Alvaro, C. J. Hasnain, and P. A. Pisano, “Monolithic integration of piezoelectric cantilever in tunable VCSEL,” International Conference on Optical MEMS and Their Applications (IEEE/LEOS, 2006), pp. 11–12.

Heinickel, P.

J. Rausch, P. Heinickel, R. Werthschuetzky, B. Koegel, K. Zogal, and P. Meissner, “Experimental comparison of piezoresistive MEMS and fiber Bragg grating strain sensors,” in IEEE Sensors (IEEE, 2009), pp. 1329–1333.
[CrossRef]

Hillmer, H.

H. Halbritter, F. Riemenschneider, B. Kogel, A. Tarraj, M. Strassner, S. Irmer, H. Hillmer, I. Sagnes, and P. Meissner, “MEM-tunable and wavelength selective receiver front end,” 18th IEEE International Conference on Micro Electro Mechanical Systems (IEEE, 2005), pp. 68–71.
[CrossRef]

Hirata, T.

T. Yano, H. Saito, N. Kanbara, R. Noda, S. Tezuka, N. Fujimura, M. Ooyama, T. Watanabe, T. Hirata, and N. Nishiyama, “Wavelength modulation over 500kHz of micromechanically tunable InP-based VCSELs with Si-MEMS technology,” IEEE 21st ISLC (IEEE, 2008), pp. 163–164.

Huang, M. C. Y.

M. C. Y. Huang, B. C. Kan, Z. Ye, A. P. Pisano, and C. J. Chang-Hasnain, “Monolithic integrated piezoelectric MEMS-tunable VCSEL,” IEEE J. Sel. Top. Quantum Electron. 13, 374–380 (2007).
[CrossRef]

B. C. Kan, M. C. Y. Huang, Z. Ye, S. P. Alvaro, C. J. Hasnain, and P. A. Pisano, “Monolithic integration of piezoelectric cantilever in tunable VCSEL,” International Conference on Optical MEMS and Their Applications (IEEE/LEOS, 2006), pp. 11–12.

Huang, R.

K. J. Knopp, D. Vakhshoori, P. D. Wang, M. Azimi, M. Jiang, P. Chen, Y. Matsui, K. McCallion, A. Baliga, F. Sakithab, M. Letsch, B. Johnson, R. Huang, A. Jean, B. DeLargy, C. Pinzone, F. Fan, J. Liu, C. Lu, J. Zhou, H. Zhu, R. Gurjar, P. Tayebati, D. MacDaniel, R. Baorui, P. Waterson, and G. VanderRhodes, “High power MEMs-tunable vertical-cavity surface-emitting lasers,” IEEE Digest of the LEOS Summer Topical Meetings (IEEE,2001), pp. 31–32.

Iga, K.

K. Iga, “Surface-emitting laser—its birth and generation of new optoelectronics field,” IEEE J. Sel. Top. Quantum Electron. 6, 1201–1215 (2000).
[CrossRef]

Irmer, S.

H. Halbritter, F. Riemenschneider, B. Kogel, A. Tarraj, M. Strassner, S. Irmer, H. Hillmer, I. Sagnes, and P. Meissner, “MEM-tunable and wavelength selective receiver front end,” 18th IEEE International Conference on Micro Electro Mechanical Systems (IEEE, 2005), pp. 68–71.
[CrossRef]

Jatta, S.

C. Gierl, K. Zogal, S. Jatta, H. A. Davani, F. Kueppers, P. Meissner, T. Gruendl, C. Grasse, M.-C. Amann, A. Daly, B. Corbett, B. Koegel, A. Haglund, J. Gustavsson, P. Westbergh, A. Larsson, P. Debernardi, and M. Ortsiefer, “Tuneable VCSEL aiming for the application in interconnects and short haul systems,” Proc. SPIE 7959, 795908 (2011).
[CrossRef]

S. Jatta, B. Koegel, M. Maute, K. Zogal, F. Riemenschneider, G. Bohm, M.-C. Amann, and P. Meissner, “Bulk-Micromachined VCSEL At 1.55μm With 76-nm Single-Mode Continuous Tuning Range,” IEEE Photon. Technol. Lett. 21, 1822–1824 (2009).
[CrossRef]

B. Kogel, H. Halbritter, S. Jatta, M. Maute, G. Bohm, M.-C. Amann, M. Lackner, M. Schwarzott, F. Winter, and P. Meissner, “Simultaneous spectroscopy of NH3 and CO using a > 50 nm continuously tunable MEMS-VCSEL,” IEEE Sens. J. 7, 1483–1489 (2007).
[CrossRef]

Jean, A.

K. J. Knopp, D. Vakhshoori, P. D. Wang, M. Azimi, M. Jiang, P. Chen, Y. Matsui, K. McCallion, A. Baliga, F. Sakithab, M. Letsch, B. Johnson, R. Huang, A. Jean, B. DeLargy, C. Pinzone, F. Fan, J. Liu, C. Lu, J. Zhou, H. Zhu, R. Gurjar, P. Tayebati, D. MacDaniel, R. Baorui, P. Waterson, and G. VanderRhodes, “High power MEMs-tunable vertical-cavity surface-emitting lasers,” IEEE Digest of the LEOS Summer Topical Meetings (IEEE,2001), pp. 31–32.

Jiang, M.

K. J. Knopp, D. Vakhshoori, P. D. Wang, M. Azimi, M. Jiang, P. Chen, Y. Matsui, K. McCallion, A. Baliga, F. Sakithab, M. Letsch, B. Johnson, R. Huang, A. Jean, B. DeLargy, C. Pinzone, F. Fan, J. Liu, C. Lu, J. Zhou, H. Zhu, R. Gurjar, P. Tayebati, D. MacDaniel, R. Baorui, P. Waterson, and G. VanderRhodes, “High power MEMs-tunable vertical-cavity surface-emitting lasers,” IEEE Digest of the LEOS Summer Topical Meetings (IEEE,2001), pp. 31–32.

Johnson, B.

K. J. Knopp, D. Vakhshoori, P. D. Wang, M. Azimi, M. Jiang, P. Chen, Y. Matsui, K. McCallion, A. Baliga, F. Sakithab, M. Letsch, B. Johnson, R. Huang, A. Jean, B. DeLargy, C. Pinzone, F. Fan, J. Liu, C. Lu, J. Zhou, H. Zhu, R. Gurjar, P. Tayebati, D. MacDaniel, R. Baorui, P. Waterson, and G. VanderRhodes, “High power MEMs-tunable vertical-cavity surface-emitting lasers,” IEEE Digest of the LEOS Summer Topical Meetings (IEEE,2001), pp. 31–32.

Kagexama, T.

D. Sun, W. Fan, P. Kner, J. Boucart, T. Kagexama, D. Zhang, R. Pathak, R. F. Nabiev, and W. Yuen, “Long wavelength-tunable VCSELs with optimized MEMS bridge tuning structure,” IEEE Photon. Technol. Lett. 16, 714–716 (2004)
[CrossRef]

Kan, B. C.

M. C. Y. Huang, B. C. Kan, Z. Ye, A. P. Pisano, and C. J. Chang-Hasnain, “Monolithic integrated piezoelectric MEMS-tunable VCSEL,” IEEE J. Sel. Top. Quantum Electron. 13, 374–380 (2007).
[CrossRef]

B. C. Kan, M. C. Y. Huang, Z. Ye, S. P. Alvaro, C. J. Hasnain, and P. A. Pisano, “Monolithic integration of piezoelectric cantilever in tunable VCSEL,” International Conference on Optical MEMS and Their Applications (IEEE/LEOS, 2006), pp. 11–12.

Kanbara, N.

T. Yano, H. Saito, N. Kanbara, R. Noda, S. Tezuka, N. Fujimura, M. Ooyama, T. Watanabe, T. Hirata, and N. Nishiyama, “Wavelength modulation over 500kHz of micromechanically tunable InP-based VCSELs with Si-MEMS technology,” IEEE 21st ISLC (IEEE, 2008), pp. 163–164.

Kner, P.

D. Sun, W. Fan, P. Kner, J. Boucart, T. Kagexama, D. Zhang, R. Pathak, R. F. Nabiev, and W. Yuen, “Long wavelength-tunable VCSELs with optimized MEMS bridge tuning structure,” IEEE Photon. Technol. Lett. 16, 714–716 (2004)
[CrossRef]

Knopp, K. J.

K. J. Knopp, D. Vakhshoori, P. D. Wang, M. Azimi, M. Jiang, P. Chen, Y. Matsui, K. McCallion, A. Baliga, F. Sakithab, M. Letsch, B. Johnson, R. Huang, A. Jean, B. DeLargy, C. Pinzone, F. Fan, J. Liu, C. Lu, J. Zhou, H. Zhu, R. Gurjar, P. Tayebati, D. MacDaniel, R. Baorui, P. Waterson, and G. VanderRhodes, “High power MEMs-tunable vertical-cavity surface-emitting lasers,” IEEE Digest of the LEOS Summer Topical Meetings (IEEE,2001), pp. 31–32.

Koegel, B.

C. Gierl, K. Zogal, S. Jatta, H. A. Davani, F. Kueppers, P. Meissner, T. Gruendl, C. Grasse, M.-C. Amann, A. Daly, B. Corbett, B. Koegel, A. Haglund, J. Gustavsson, P. Westbergh, A. Larsson, P. Debernardi, and M. Ortsiefer, “Tuneable VCSEL aiming for the application in interconnects and short haul systems,” Proc. SPIE 7959, 795908 (2011).
[CrossRef]

S. Jatta, B. Koegel, M. Maute, K. Zogal, F. Riemenschneider, G. Bohm, M.-C. Amann, and P. Meissner, “Bulk-Micromachined VCSEL At 1.55μm With 76-nm Single-Mode Continuous Tuning Range,” IEEE Photon. Technol. Lett. 21, 1822–1824 (2009).
[CrossRef]

J. Rausch, P. Heinickel, R. Werthschuetzky, B. Koegel, K. Zogal, and P. Meissner, “Experimental comparison of piezoresistive MEMS and fiber Bragg grating strain sensors,” in IEEE Sensors (IEEE, 2009), pp. 1329–1333.
[CrossRef]

Kogel, B.

P. Debernardi, B. Kogel, K. Zogal, P. Meissner, M. Maute, M. Ortsiefer, G. Boehm, and M.-C. Amann, “Modal properties of long-wavelength tunable MEMS-VCSELs with curved mirrors: comparison of experiment and modeling,” IEEE J. Sel. Top. Quantum Electron. 44, 391–399 (2008).
[CrossRef]

B. Kogel, H. Halbritter, S. Jatta, M. Maute, G. Bohm, M.-C. Amann, M. Lackner, M. Schwarzott, F. Winter, and P. Meissner, “Simultaneous spectroscopy of NH3 and CO using a > 50 nm continuously tunable MEMS-VCSEL,” IEEE Sens. J. 7, 1483–1489 (2007).
[CrossRef]

B. Kogel, H. Halbritter, M. Lackner, M. Schwarzott, M. Maute, M.-C. Amann, F. Winter, and P. Meissner, “Micromechanically widely tunable VCSEL for absorption spectroscopy at around 1.55μm,” International Conference on Optical MEMS and Their Applications IEEE/LEOS (IEEE, 2006), pp. 7–8.
[CrossRef]

H. Halbritter, F. Riemenschneider, B. Kogel, A. Tarraj, M. Strassner, S. Irmer, H. Hillmer, I. Sagnes, and P. Meissner, “MEM-tunable and wavelength selective receiver front end,” 18th IEEE International Conference on Micro Electro Mechanical Systems (IEEE, 2005), pp. 68–71.
[CrossRef]

B. Kogel, H. Halbritter, M. Maute, G. Bohm, M.-C. Amann, and P. Meissner, “Singlemode and polarization stable MEMS-VCSEL with broadband tuning characteristics around 1.55μm,” European Conference on Optical Communications (IEEE, 2006), 10.1109/ECOC.2006.4801075, pp. 1–2.
[CrossRef]

B. Kogel, M. Maute, H. Halbritter, F. Riemenschneider, G. Bohm, M.-C. Amann, and P. Meissner, “Long-wavelength MEMS tunable VCSEL with high sidemode suppression,” International Conference on Optical MEMS and Their Applications (IEEE/LEOS, 2005), pp. 95–96.
[CrossRef]

Koyama, F.

H. Sano, A. Matsutani, and F. Koyama, “Athermal and tunable operations of 850 nm VCSEL with thermally actuated cantilever structure,” 35th European Conference on Optical Communication (IEEE, 2009), P2.26, pp. 1–2.

Kueppers, F.

C. Gierl, K. Zogal, S. Jatta, H. A. Davani, F. Kueppers, P. Meissner, T. Gruendl, C. Grasse, M.-C. Amann, A. Daly, B. Corbett, B. Koegel, A. Haglund, J. Gustavsson, P. Westbergh, A. Larsson, P. Debernardi, and M. Ortsiefer, “Tuneable VCSEL aiming for the application in interconnects and short haul systems,” Proc. SPIE 7959, 795908 (2011).
[CrossRef]

Lackner, M.

B. Kogel, H. Halbritter, S. Jatta, M. Maute, G. Bohm, M.-C. Amann, M. Lackner, M. Schwarzott, F. Winter, and P. Meissner, “Simultaneous spectroscopy of NH3 and CO using a > 50 nm continuously tunable MEMS-VCSEL,” IEEE Sens. J. 7, 1483–1489 (2007).
[CrossRef]

B. Kogel, H. Halbritter, M. Lackner, M. Schwarzott, M. Maute, M.-C. Amann, F. Winter, and P. Meissner, “Micromechanically widely tunable VCSEL for absorption spectroscopy at around 1.55μm,” International Conference on Optical MEMS and Their Applications IEEE/LEOS (IEEE, 2006), pp. 7–8.
[CrossRef]

Larson, M. C.

F. Sugihwo, M. C. Larson, and J. S. Harris, “Low threshold continuously tunable vertical-cavity surface-emitting lasers with 19.1 nm wavelength range,” Appl. Phys. Lett. 70, 547 (1997).
[CrossRef]

Larsson, A.

C. Gierl, K. Zogal, S. Jatta, H. A. Davani, F. Kueppers, P. Meissner, T. Gruendl, C. Grasse, M.-C. Amann, A. Daly, B. Corbett, B. Koegel, A. Haglund, J. Gustavsson, P. Westbergh, A. Larsson, P. Debernardi, and M. Ortsiefer, “Tuneable VCSEL aiming for the application in interconnects and short haul systems,” Proc. SPIE 7959, 795908 (2011).
[CrossRef]

Letsch, M.

K. J. Knopp, D. Vakhshoori, P. D. Wang, M. Azimi, M. Jiang, P. Chen, Y. Matsui, K. McCallion, A. Baliga, F. Sakithab, M. Letsch, B. Johnson, R. Huang, A. Jean, B. DeLargy, C. Pinzone, F. Fan, J. Liu, C. Lu, J. Zhou, H. Zhu, R. Gurjar, P. Tayebati, D. MacDaniel, R. Baorui, P. Waterson, and G. VanderRhodes, “High power MEMs-tunable vertical-cavity surface-emitting lasers,” IEEE Digest of the LEOS Summer Topical Meetings (IEEE,2001), pp. 31–32.

Liu, J.

K. J. Knopp, D. Vakhshoori, P. D. Wang, M. Azimi, M. Jiang, P. Chen, Y. Matsui, K. McCallion, A. Baliga, F. Sakithab, M. Letsch, B. Johnson, R. Huang, A. Jean, B. DeLargy, C. Pinzone, F. Fan, J. Liu, C. Lu, J. Zhou, H. Zhu, R. Gurjar, P. Tayebati, D. MacDaniel, R. Baorui, P. Waterson, and G. VanderRhodes, “High power MEMs-tunable vertical-cavity surface-emitting lasers,” IEEE Digest of the LEOS Summer Topical Meetings (IEEE,2001), pp. 31–32.

Lu, C.

K. J. Knopp, D. Vakhshoori, P. D. Wang, M. Azimi, M. Jiang, P. Chen, Y. Matsui, K. McCallion, A. Baliga, F. Sakithab, M. Letsch, B. Johnson, R. Huang, A. Jean, B. DeLargy, C. Pinzone, F. Fan, J. Liu, C. Lu, J. Zhou, H. Zhu, R. Gurjar, P. Tayebati, D. MacDaniel, R. Baorui, P. Waterson, and G. VanderRhodes, “High power MEMs-tunable vertical-cavity surface-emitting lasers,” IEEE Digest of the LEOS Summer Topical Meetings (IEEE,2001), pp. 31–32.

MacDaniel, D.

K. J. Knopp, D. Vakhshoori, P. D. Wang, M. Azimi, M. Jiang, P. Chen, Y. Matsui, K. McCallion, A. Baliga, F. Sakithab, M. Letsch, B. Johnson, R. Huang, A. Jean, B. DeLargy, C. Pinzone, F. Fan, J. Liu, C. Lu, J. Zhou, H. Zhu, R. Gurjar, P. Tayebati, D. MacDaniel, R. Baorui, P. Waterson, and G. VanderRhodes, “High power MEMs-tunable vertical-cavity surface-emitting lasers,” IEEE Digest of the LEOS Summer Topical Meetings (IEEE,2001), pp. 31–32.

MacDonald, N. C.

G. D. Cole, E. S. Bjorlin, C. S. Wang, N. C. MacDonald, and J. E. Bowers, “Widely tunable bottom-emitting vertical-cavity SOAs,” IEEE Photon. Technol. Lett. 17, 2526–2528 (2005).
[CrossRef]

Matsui, Y.

K. J. Knopp, D. Vakhshoori, P. D. Wang, M. Azimi, M. Jiang, P. Chen, Y. Matsui, K. McCallion, A. Baliga, F. Sakithab, M. Letsch, B. Johnson, R. Huang, A. Jean, B. DeLargy, C. Pinzone, F. Fan, J. Liu, C. Lu, J. Zhou, H. Zhu, R. Gurjar, P. Tayebati, D. MacDaniel, R. Baorui, P. Waterson, and G. VanderRhodes, “High power MEMs-tunable vertical-cavity surface-emitting lasers,” IEEE Digest of the LEOS Summer Topical Meetings (IEEE,2001), pp. 31–32.

Matsutani, A.

H. Sano, A. Matsutani, and F. Koyama, “Athermal and tunable operations of 850 nm VCSEL with thermally actuated cantilever structure,” 35th European Conference on Optical Communication (IEEE, 2009), P2.26, pp. 1–2.

Maute, M.

S. Jatta, B. Koegel, M. Maute, K. Zogal, F. Riemenschneider, G. Bohm, M.-C. Amann, and P. Meissner, “Bulk-Micromachined VCSEL At 1.55μm With 76-nm Single-Mode Continuous Tuning Range,” IEEE Photon. Technol. Lett. 21, 1822–1824 (2009).
[CrossRef]

P. Debernardi, B. Kogel, K. Zogal, P. Meissner, M. Maute, M. Ortsiefer, G. Boehm, and M.-C. Amann, “Modal properties of long-wavelength tunable MEMS-VCSELs with curved mirrors: comparison of experiment and modeling,” IEEE J. Sel. Top. Quantum Electron. 44, 391–399 (2008).
[CrossRef]

B. Kogel, H. Halbritter, S. Jatta, M. Maute, G. Bohm, M.-C. Amann, M. Lackner, M. Schwarzott, F. Winter, and P. Meissner, “Simultaneous spectroscopy of NH3 and CO using a > 50 nm continuously tunable MEMS-VCSEL,” IEEE Sens. J. 7, 1483–1489 (2007).
[CrossRef]

B. Kogel, H. Halbritter, M. Lackner, M. Schwarzott, M. Maute, M.-C. Amann, F. Winter, and P. Meissner, “Micromechanically widely tunable VCSEL for absorption spectroscopy at around 1.55μm,” International Conference on Optical MEMS and Their Applications IEEE/LEOS (IEEE, 2006), pp. 7–8.
[CrossRef]

B. Kogel, H. Halbritter, M. Maute, G. Bohm, M.-C. Amann, and P. Meissner, “Singlemode and polarization stable MEMS-VCSEL with broadband tuning characteristics around 1.55μm,” European Conference on Optical Communications (IEEE, 2006), 10.1109/ECOC.2006.4801075, pp. 1–2.
[CrossRef]

B. Kogel, M. Maute, H. Halbritter, F. Riemenschneider, G. Bohm, M.-C. Amann, and P. Meissner, “Long-wavelength MEMS tunable VCSEL with high sidemode suppression,” International Conference on Optical MEMS and Their Applications (IEEE/LEOS, 2005), pp. 95–96.
[CrossRef]

McCallion, K.

K. J. Knopp, D. Vakhshoori, P. D. Wang, M. Azimi, M. Jiang, P. Chen, Y. Matsui, K. McCallion, A. Baliga, F. Sakithab, M. Letsch, B. Johnson, R. Huang, A. Jean, B. DeLargy, C. Pinzone, F. Fan, J. Liu, C. Lu, J. Zhou, H. Zhu, R. Gurjar, P. Tayebati, D. MacDaniel, R. Baorui, P. Waterson, and G. VanderRhodes, “High power MEMs-tunable vertical-cavity surface-emitting lasers,” IEEE Digest of the LEOS Summer Topical Meetings (IEEE,2001), pp. 31–32.

Meissner, P.

C. Gierl, K. Zogal, S. Jatta, H. A. Davani, F. Kueppers, P. Meissner, T. Gruendl, C. Grasse, M.-C. Amann, A. Daly, B. Corbett, B. Koegel, A. Haglund, J. Gustavsson, P. Westbergh, A. Larsson, P. Debernardi, and M. Ortsiefer, “Tuneable VCSEL aiming for the application in interconnects and short haul systems,” Proc. SPIE 7959, 795908 (2011).
[CrossRef]

S. Jatta, B. Koegel, M. Maute, K. Zogal, F. Riemenschneider, G. Bohm, M.-C. Amann, and P. Meissner, “Bulk-Micromachined VCSEL At 1.55μm With 76-nm Single-Mode Continuous Tuning Range,” IEEE Photon. Technol. Lett. 21, 1822–1824 (2009).
[CrossRef]

P. Debernardi, B. Kogel, K. Zogal, P. Meissner, M. Maute, M. Ortsiefer, G. Boehm, and M.-C. Amann, “Modal properties of long-wavelength tunable MEMS-VCSELs with curved mirrors: comparison of experiment and modeling,” IEEE J. Sel. Top. Quantum Electron. 44, 391–399 (2008).
[CrossRef]

B. Kogel, H. Halbritter, S. Jatta, M. Maute, G. Bohm, M.-C. Amann, M. Lackner, M. Schwarzott, F. Winter, and P. Meissner, “Simultaneous spectroscopy of NH3 and CO using a > 50 nm continuously tunable MEMS-VCSEL,” IEEE Sens. J. 7, 1483–1489 (2007).
[CrossRef]

B. Kogel, H. Halbritter, M. Lackner, M. Schwarzott, M. Maute, M.-C. Amann, F. Winter, and P. Meissner, “Micromechanically widely tunable VCSEL for absorption spectroscopy at around 1.55μm,” International Conference on Optical MEMS and Their Applications IEEE/LEOS (IEEE, 2006), pp. 7–8.
[CrossRef]

J. Rausch, P. Heinickel, R. Werthschuetzky, B. Koegel, K. Zogal, and P. Meissner, “Experimental comparison of piezoresistive MEMS and fiber Bragg grating strain sensors,” in IEEE Sensors (IEEE, 2009), pp. 1329–1333.
[CrossRef]

B. Kogel, H. Halbritter, M. Maute, G. Bohm, M.-C. Amann, and P. Meissner, “Singlemode and polarization stable MEMS-VCSEL with broadband tuning characteristics around 1.55μm,” European Conference on Optical Communications (IEEE, 2006), 10.1109/ECOC.2006.4801075, pp. 1–2.
[CrossRef]

H. Halbritter, F. Riemenschneider, B. Kogel, A. Tarraj, M. Strassner, S. Irmer, H. Hillmer, I. Sagnes, and P. Meissner, “MEM-tunable and wavelength selective receiver front end,” 18th IEEE International Conference on Micro Electro Mechanical Systems (IEEE, 2005), pp. 68–71.
[CrossRef]

C. Gierl, K. Zogal, H. A. Davani, and P. Meissner, “Electro thermal and electro statical actuation of a surface micromachined tunable Fabry-Pérot filter,” Conference on Lasers and Electro-Optics (CLEO) and Quantum Electronics and Laser Science Conference (QELS) (IEEE, 2011), JTuI73.
[PubMed]

B. Kogel, M. Maute, H. Halbritter, F. Riemenschneider, G. Bohm, M.-C. Amann, and P. Meissner, “Long-wavelength MEMS tunable VCSEL with high sidemode suppression,” International Conference on Optical MEMS and Their Applications (IEEE/LEOS, 2005), pp. 95–96.
[CrossRef]

Nabiev, R. F.

D. Sun, W. Fan, P. Kner, J. Boucart, T. Kagexama, D. Zhang, R. Pathak, R. F. Nabiev, and W. Yuen, “Long wavelength-tunable VCSELs with optimized MEMS bridge tuning structure,” IEEE Photon. Technol. Lett. 16, 714–716 (2004)
[CrossRef]

Nishiyama, N.

T. Yano, H. Saito, N. Kanbara, R. Noda, S. Tezuka, N. Fujimura, M. Ooyama, T. Watanabe, T. Hirata, and N. Nishiyama, “Wavelength modulation over 500kHz of micromechanically tunable InP-based VCSELs with Si-MEMS technology,” IEEE 21st ISLC (IEEE, 2008), pp. 163–164.

Noda, R.

T. Yano, H. Saito, N. Kanbara, R. Noda, S. Tezuka, N. Fujimura, M. Ooyama, T. Watanabe, T. Hirata, and N. Nishiyama, “Wavelength modulation over 500kHz of micromechanically tunable InP-based VCSELs with Si-MEMS technology,” IEEE 21st ISLC (IEEE, 2008), pp. 163–164.

Ooyama, M.

T. Yano, H. Saito, N. Kanbara, R. Noda, S. Tezuka, N. Fujimura, M. Ooyama, T. Watanabe, T. Hirata, and N. Nishiyama, “Wavelength modulation over 500kHz of micromechanically tunable InP-based VCSELs with Si-MEMS technology,” IEEE 21st ISLC (IEEE, 2008), pp. 163–164.

Ortsiefer, M.

C. Gierl, K. Zogal, S. Jatta, H. A. Davani, F. Kueppers, P. Meissner, T. Gruendl, C. Grasse, M.-C. Amann, A. Daly, B. Corbett, B. Koegel, A. Haglund, J. Gustavsson, P. Westbergh, A. Larsson, P. Debernardi, and M. Ortsiefer, “Tuneable VCSEL aiming for the application in interconnects and short haul systems,” Proc. SPIE 7959, 795908 (2011).
[CrossRef]

P. Debernardi, B. Kogel, K. Zogal, P. Meissner, M. Maute, M. Ortsiefer, G. Boehm, and M.-C. Amann, “Modal properties of long-wavelength tunable MEMS-VCSELs with curved mirrors: comparison of experiment and modeling,” IEEE J. Sel. Top. Quantum Electron. 44, 391–399 (2008).
[CrossRef]

Pathak, R.

D. Sun, W. Fan, P. Kner, J. Boucart, T. Kagexama, D. Zhang, R. Pathak, R. F. Nabiev, and W. Yuen, “Long wavelength-tunable VCSELs with optimized MEMS bridge tuning structure,” IEEE Photon. Technol. Lett. 16, 714–716 (2004)
[CrossRef]

Peidong, W.

P. Tayebati, W. Peidong, D. Vakshoori, L. Chih-Cheng, M. Azimi, and R. N. Sacks, “Half-symmetric cavity tunable microelectromechanical VCSEL with single spatial mode,” IEEE Photon. Technol. Lett. 10, 1679–1681 (1998).
[CrossRef]

Pinzone, C.

K. J. Knopp, D. Vakhshoori, P. D. Wang, M. Azimi, M. Jiang, P. Chen, Y. Matsui, K. McCallion, A. Baliga, F. Sakithab, M. Letsch, B. Johnson, R. Huang, A. Jean, B. DeLargy, C. Pinzone, F. Fan, J. Liu, C. Lu, J. Zhou, H. Zhu, R. Gurjar, P. Tayebati, D. MacDaniel, R. Baorui, P. Waterson, and G. VanderRhodes, “High power MEMs-tunable vertical-cavity surface-emitting lasers,” IEEE Digest of the LEOS Summer Topical Meetings (IEEE,2001), pp. 31–32.

Pisano, A. P.

M. C. Y. Huang, B. C. Kan, Z. Ye, A. P. Pisano, and C. J. Chang-Hasnain, “Monolithic integrated piezoelectric MEMS-tunable VCSEL,” IEEE J. Sel. Top. Quantum Electron. 13, 374–380 (2007).
[CrossRef]

Pisano, P. A.

B. C. Kan, M. C. Y. Huang, Z. Ye, S. P. Alvaro, C. J. Hasnain, and P. A. Pisano, “Monolithic integration of piezoelectric cantilever in tunable VCSEL,” International Conference on Optical MEMS and Their Applications (IEEE/LEOS, 2006), pp. 11–12.

Rausch, J.

J. Rausch, P. Heinickel, R. Werthschuetzky, B. Koegel, K. Zogal, and P. Meissner, “Experimental comparison of piezoresistive MEMS and fiber Bragg grating strain sensors,” in IEEE Sensors (IEEE, 2009), pp. 1329–1333.
[CrossRef]

Riemenschneider, F.

S. Jatta, B. Koegel, M. Maute, K. Zogal, F. Riemenschneider, G. Bohm, M.-C. Amann, and P. Meissner, “Bulk-Micromachined VCSEL At 1.55μm With 76-nm Single-Mode Continuous Tuning Range,” IEEE Photon. Technol. Lett. 21, 1822–1824 (2009).
[CrossRef]

H. Halbritter, F. Riemenschneider, B. Kogel, A. Tarraj, M. Strassner, S. Irmer, H. Hillmer, I. Sagnes, and P. Meissner, “MEM-tunable and wavelength selective receiver front end,” 18th IEEE International Conference on Micro Electro Mechanical Systems (IEEE, 2005), pp. 68–71.
[CrossRef]

B. Kogel, M. Maute, H. Halbritter, F. Riemenschneider, G. Bohm, M.-C. Amann, and P. Meissner, “Long-wavelength MEMS tunable VCSEL with high sidemode suppression,” International Conference on Optical MEMS and Their Applications (IEEE/LEOS, 2005), pp. 95–96.
[CrossRef]

Sacks, R. N.

P. Tayebati, W. Peidong, D. Vakshoori, L. Chih-Cheng, M. Azimi, and R. N. Sacks, “Half-symmetric cavity tunable microelectromechanical VCSEL with single spatial mode,” IEEE Photon. Technol. Lett. 10, 1679–1681 (1998).
[CrossRef]

Sagnes, I.

H. Halbritter, F. Riemenschneider, B. Kogel, A. Tarraj, M. Strassner, S. Irmer, H. Hillmer, I. Sagnes, and P. Meissner, “MEM-tunable and wavelength selective receiver front end,” 18th IEEE International Conference on Micro Electro Mechanical Systems (IEEE, 2005), pp. 68–71.
[CrossRef]

Saito, H.

T. Yano, H. Saito, N. Kanbara, R. Noda, S. Tezuka, N. Fujimura, M. Ooyama, T. Watanabe, T. Hirata, and N. Nishiyama, “Wavelength modulation over 500kHz of micromechanically tunable InP-based VCSELs with Si-MEMS technology,” IEEE 21st ISLC (IEEE, 2008), pp. 163–164.

Sakithab, F.

K. J. Knopp, D. Vakhshoori, P. D. Wang, M. Azimi, M. Jiang, P. Chen, Y. Matsui, K. McCallion, A. Baliga, F. Sakithab, M. Letsch, B. Johnson, R. Huang, A. Jean, B. DeLargy, C. Pinzone, F. Fan, J. Liu, C. Lu, J. Zhou, H. Zhu, R. Gurjar, P. Tayebati, D. MacDaniel, R. Baorui, P. Waterson, and G. VanderRhodes, “High power MEMs-tunable vertical-cavity surface-emitting lasers,” IEEE Digest of the LEOS Summer Topical Meetings (IEEE,2001), pp. 31–32.

Sano, H.

H. Sano, A. Matsutani, and F. Koyama, “Athermal and tunable operations of 850 nm VCSEL with thermally actuated cantilever structure,” 35th European Conference on Optical Communication (IEEE, 2009), P2.26, pp. 1–2.

Schwarzott, M.

B. Kogel, H. Halbritter, S. Jatta, M. Maute, G. Bohm, M.-C. Amann, M. Lackner, M. Schwarzott, F. Winter, and P. Meissner, “Simultaneous spectroscopy of NH3 and CO using a > 50 nm continuously tunable MEMS-VCSEL,” IEEE Sens. J. 7, 1483–1489 (2007).
[CrossRef]

B. Kogel, H. Halbritter, M. Lackner, M. Schwarzott, M. Maute, M.-C. Amann, F. Winter, and P. Meissner, “Micromechanically widely tunable VCSEL for absorption spectroscopy at around 1.55μm,” International Conference on Optical MEMS and Their Applications IEEE/LEOS (IEEE, 2006), pp. 7–8.
[CrossRef]

Strassner, M.

H. Halbritter, F. Riemenschneider, B. Kogel, A. Tarraj, M. Strassner, S. Irmer, H. Hillmer, I. Sagnes, and P. Meissner, “MEM-tunable and wavelength selective receiver front end,” 18th IEEE International Conference on Micro Electro Mechanical Systems (IEEE, 2005), pp. 68–71.
[CrossRef]

Sugihwo, F.

F. Sugihwo, M. C. Larson, and J. S. Harris, “Low threshold continuously tunable vertical-cavity surface-emitting lasers with 19.1 nm wavelength range,” Appl. Phys. Lett. 70, 547 (1997).
[CrossRef]

Sun, D.

D. Sun, W. Fan, P. Kner, J. Boucart, T. Kagexama, D. Zhang, R. Pathak, R. F. Nabiev, and W. Yuen, “Long wavelength-tunable VCSELs with optimized MEMS bridge tuning structure,” IEEE Photon. Technol. Lett. 16, 714–716 (2004)
[CrossRef]

Tarraj, A.

H. Halbritter, F. Riemenschneider, B. Kogel, A. Tarraj, M. Strassner, S. Irmer, H. Hillmer, I. Sagnes, and P. Meissner, “MEM-tunable and wavelength selective receiver front end,” 18th IEEE International Conference on Micro Electro Mechanical Systems (IEEE, 2005), pp. 68–71.
[CrossRef]

Tayebati, P.

P. Tayebati, W. Peidong, D. Vakshoori, L. Chih-Cheng, M. Azimi, and R. N. Sacks, “Half-symmetric cavity tunable microelectromechanical VCSEL with single spatial mode,” IEEE Photon. Technol. Lett. 10, 1679–1681 (1998).
[CrossRef]

K. J. Knopp, D. Vakhshoori, P. D. Wang, M. Azimi, M. Jiang, P. Chen, Y. Matsui, K. McCallion, A. Baliga, F. Sakithab, M. Letsch, B. Johnson, R. Huang, A. Jean, B. DeLargy, C. Pinzone, F. Fan, J. Liu, C. Lu, J. Zhou, H. Zhu, R. Gurjar, P. Tayebati, D. MacDaniel, R. Baorui, P. Waterson, and G. VanderRhodes, “High power MEMs-tunable vertical-cavity surface-emitting lasers,” IEEE Digest of the LEOS Summer Topical Meetings (IEEE,2001), pp. 31–32.

Tezuka, S.

T. Yano, H. Saito, N. Kanbara, R. Noda, S. Tezuka, N. Fujimura, M. Ooyama, T. Watanabe, T. Hirata, and N. Nishiyama, “Wavelength modulation over 500kHz of micromechanically tunable InP-based VCSELs with Si-MEMS technology,” IEEE 21st ISLC (IEEE, 2008), pp. 163–164.

Vakhshoori, D.

K. J. Knopp, D. Vakhshoori, P. D. Wang, M. Azimi, M. Jiang, P. Chen, Y. Matsui, K. McCallion, A. Baliga, F. Sakithab, M. Letsch, B. Johnson, R. Huang, A. Jean, B. DeLargy, C. Pinzone, F. Fan, J. Liu, C. Lu, J. Zhou, H. Zhu, R. Gurjar, P. Tayebati, D. MacDaniel, R. Baorui, P. Waterson, and G. VanderRhodes, “High power MEMs-tunable vertical-cavity surface-emitting lasers,” IEEE Digest of the LEOS Summer Topical Meetings (IEEE,2001), pp. 31–32.

Vakshoori, D.

P. Tayebati, W. Peidong, D. Vakshoori, L. Chih-Cheng, M. Azimi, and R. N. Sacks, “Half-symmetric cavity tunable microelectromechanical VCSEL with single spatial mode,” IEEE Photon. Technol. Lett. 10, 1679–1681 (1998).
[CrossRef]

VanderRhodes, G.

K. J. Knopp, D. Vakhshoori, P. D. Wang, M. Azimi, M. Jiang, P. Chen, Y. Matsui, K. McCallion, A. Baliga, F. Sakithab, M. Letsch, B. Johnson, R. Huang, A. Jean, B. DeLargy, C. Pinzone, F. Fan, J. Liu, C. Lu, J. Zhou, H. Zhu, R. Gurjar, P. Tayebati, D. MacDaniel, R. Baorui, P. Waterson, and G. VanderRhodes, “High power MEMs-tunable vertical-cavity surface-emitting lasers,” IEEE Digest of the LEOS Summer Topical Meetings (IEEE,2001), pp. 31–32.

Wang, C. S.

G. D. Cole, E. S. Bjorlin, C. S. Wang, N. C. MacDonald, and J. E. Bowers, “Widely tunable bottom-emitting vertical-cavity SOAs,” IEEE Photon. Technol. Lett. 17, 2526–2528 (2005).
[CrossRef]

Wang, P. D.

K. J. Knopp, D. Vakhshoori, P. D. Wang, M. Azimi, M. Jiang, P. Chen, Y. Matsui, K. McCallion, A. Baliga, F. Sakithab, M. Letsch, B. Johnson, R. Huang, A. Jean, B. DeLargy, C. Pinzone, F. Fan, J. Liu, C. Lu, J. Zhou, H. Zhu, R. Gurjar, P. Tayebati, D. MacDaniel, R. Baorui, P. Waterson, and G. VanderRhodes, “High power MEMs-tunable vertical-cavity surface-emitting lasers,” IEEE Digest of the LEOS Summer Topical Meetings (IEEE,2001), pp. 31–32.

Watanabe, T.

T. Yano, H. Saito, N. Kanbara, R. Noda, S. Tezuka, N. Fujimura, M. Ooyama, T. Watanabe, T. Hirata, and N. Nishiyama, “Wavelength modulation over 500kHz of micromechanically tunable InP-based VCSELs with Si-MEMS technology,” IEEE 21st ISLC (IEEE, 2008), pp. 163–164.

Waterson, P.

K. J. Knopp, D. Vakhshoori, P. D. Wang, M. Azimi, M. Jiang, P. Chen, Y. Matsui, K. McCallion, A. Baliga, F. Sakithab, M. Letsch, B. Johnson, R. Huang, A. Jean, B. DeLargy, C. Pinzone, F. Fan, J. Liu, C. Lu, J. Zhou, H. Zhu, R. Gurjar, P. Tayebati, D. MacDaniel, R. Baorui, P. Waterson, and G. VanderRhodes, “High power MEMs-tunable vertical-cavity surface-emitting lasers,” IEEE Digest of the LEOS Summer Topical Meetings (IEEE,2001), pp. 31–32.

Werthschuetzky, R.

J. Rausch, P. Heinickel, R. Werthschuetzky, B. Koegel, K. Zogal, and P. Meissner, “Experimental comparison of piezoresistive MEMS and fiber Bragg grating strain sensors,” in IEEE Sensors (IEEE, 2009), pp. 1329–1333.
[CrossRef]

Westbergh, P.

C. Gierl, K. Zogal, S. Jatta, H. A. Davani, F. Kueppers, P. Meissner, T. Gruendl, C. Grasse, M.-C. Amann, A. Daly, B. Corbett, B. Koegel, A. Haglund, J. Gustavsson, P. Westbergh, A. Larsson, P. Debernardi, and M. Ortsiefer, “Tuneable VCSEL aiming for the application in interconnects and short haul systems,” Proc. SPIE 7959, 795908 (2011).
[CrossRef]

Winter, F.

B. Kogel, H. Halbritter, S. Jatta, M. Maute, G. Bohm, M.-C. Amann, M. Lackner, M. Schwarzott, F. Winter, and P. Meissner, “Simultaneous spectroscopy of NH3 and CO using a > 50 nm continuously tunable MEMS-VCSEL,” IEEE Sens. J. 7, 1483–1489 (2007).
[CrossRef]

B. Kogel, H. Halbritter, M. Lackner, M. Schwarzott, M. Maute, M.-C. Amann, F. Winter, and P. Meissner, “Micromechanically widely tunable VCSEL for absorption spectroscopy at around 1.55μm,” International Conference on Optical MEMS and Their Applications IEEE/LEOS (IEEE, 2006), pp. 7–8.
[CrossRef]

Yano, T.

T. Yano, H. Saito, N. Kanbara, R. Noda, S. Tezuka, N. Fujimura, M. Ooyama, T. Watanabe, T. Hirata, and N. Nishiyama, “Wavelength modulation over 500kHz of micromechanically tunable InP-based VCSELs with Si-MEMS technology,” IEEE 21st ISLC (IEEE, 2008), pp. 163–164.

Ye, Z.

M. C. Y. Huang, B. C. Kan, Z. Ye, A. P. Pisano, and C. J. Chang-Hasnain, “Monolithic integrated piezoelectric MEMS-tunable VCSEL,” IEEE J. Sel. Top. Quantum Electron. 13, 374–380 (2007).
[CrossRef]

B. C. Kan, M. C. Y. Huang, Z. Ye, S. P. Alvaro, C. J. Hasnain, and P. A. Pisano, “Monolithic integration of piezoelectric cantilever in tunable VCSEL,” International Conference on Optical MEMS and Their Applications (IEEE/LEOS, 2006), pp. 11–12.

Yuen, W.

D. Sun, W. Fan, P. Kner, J. Boucart, T. Kagexama, D. Zhang, R. Pathak, R. F. Nabiev, and W. Yuen, “Long wavelength-tunable VCSELs with optimized MEMS bridge tuning structure,” IEEE Photon. Technol. Lett. 16, 714–716 (2004)
[CrossRef]

Zhang, D.

D. Sun, W. Fan, P. Kner, J. Boucart, T. Kagexama, D. Zhang, R. Pathak, R. F. Nabiev, and W. Yuen, “Long wavelength-tunable VCSELs with optimized MEMS bridge tuning structure,” IEEE Photon. Technol. Lett. 16, 714–716 (2004)
[CrossRef]

Zhou, J.

K. J. Knopp, D. Vakhshoori, P. D. Wang, M. Azimi, M. Jiang, P. Chen, Y. Matsui, K. McCallion, A. Baliga, F. Sakithab, M. Letsch, B. Johnson, R. Huang, A. Jean, B. DeLargy, C. Pinzone, F. Fan, J. Liu, C. Lu, J. Zhou, H. Zhu, R. Gurjar, P. Tayebati, D. MacDaniel, R. Baorui, P. Waterson, and G. VanderRhodes, “High power MEMs-tunable vertical-cavity surface-emitting lasers,” IEEE Digest of the LEOS Summer Topical Meetings (IEEE,2001), pp. 31–32.

Zhu, H.

K. J. Knopp, D. Vakhshoori, P. D. Wang, M. Azimi, M. Jiang, P. Chen, Y. Matsui, K. McCallion, A. Baliga, F. Sakithab, M. Letsch, B. Johnson, R. Huang, A. Jean, B. DeLargy, C. Pinzone, F. Fan, J. Liu, C. Lu, J. Zhou, H. Zhu, R. Gurjar, P. Tayebati, D. MacDaniel, R. Baorui, P. Waterson, and G. VanderRhodes, “High power MEMs-tunable vertical-cavity surface-emitting lasers,” IEEE Digest of the LEOS Summer Topical Meetings (IEEE,2001), pp. 31–32.

Zogal, K.

C. Gierl, K. Zogal, S. Jatta, H. A. Davani, F. Kueppers, P. Meissner, T. Gruendl, C. Grasse, M.-C. Amann, A. Daly, B. Corbett, B. Koegel, A. Haglund, J. Gustavsson, P. Westbergh, A. Larsson, P. Debernardi, and M. Ortsiefer, “Tuneable VCSEL aiming for the application in interconnects and short haul systems,” Proc. SPIE 7959, 795908 (2011).
[CrossRef]

S. Jatta, B. Koegel, M. Maute, K. Zogal, F. Riemenschneider, G. Bohm, M.-C. Amann, and P. Meissner, “Bulk-Micromachined VCSEL At 1.55μm With 76-nm Single-Mode Continuous Tuning Range,” IEEE Photon. Technol. Lett. 21, 1822–1824 (2009).
[CrossRef]

P. Debernardi, B. Kogel, K. Zogal, P. Meissner, M. Maute, M. Ortsiefer, G. Boehm, and M.-C. Amann, “Modal properties of long-wavelength tunable MEMS-VCSELs with curved mirrors: comparison of experiment and modeling,” IEEE J. Sel. Top. Quantum Electron. 44, 391–399 (2008).
[CrossRef]

C. Gierl, K. Zogal, H. A. Davani, and P. Meissner, “Electro thermal and electro statical actuation of a surface micromachined tunable Fabry-Pérot filter,” Conference on Lasers and Electro-Optics (CLEO) and Quantum Electronics and Laser Science Conference (QELS) (IEEE, 2011), JTuI73.
[PubMed]

J. Rausch, P. Heinickel, R. Werthschuetzky, B. Koegel, K. Zogal, and P. Meissner, “Experimental comparison of piezoresistive MEMS and fiber Bragg grating strain sensors,” in IEEE Sensors (IEEE, 2009), pp. 1329–1333.
[CrossRef]

Appl. Phys. Lett.

F. Sugihwo, M. C. Larson, and J. S. Harris, “Low threshold continuously tunable vertical-cavity surface-emitting lasers with 19.1 nm wavelength range,” Appl. Phys. Lett. 70, 547 (1997).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

P. Debernardi, B. Kogel, K. Zogal, P. Meissner, M. Maute, M. Ortsiefer, G. Boehm, and M.-C. Amann, “Modal properties of long-wavelength tunable MEMS-VCSELs with curved mirrors: comparison of experiment and modeling,” IEEE J. Sel. Top. Quantum Electron. 44, 391–399 (2008).
[CrossRef]

K. Iga, “Surface-emitting laser—its birth and generation of new optoelectronics field,” IEEE J. Sel. Top. Quantum Electron. 6, 1201–1215 (2000).
[CrossRef]

M. C. Y. Huang, B. C. Kan, Z. Ye, A. P. Pisano, and C. J. Chang-Hasnain, “Monolithic integrated piezoelectric MEMS-tunable VCSEL,” IEEE J. Sel. Top. Quantum Electron. 13, 374–380 (2007).
[CrossRef]

IEEE Photon. Technol. Lett.

S. Jatta, B. Koegel, M. Maute, K. Zogal, F. Riemenschneider, G. Bohm, M.-C. Amann, and P. Meissner, “Bulk-Micromachined VCSEL At 1.55μm With 76-nm Single-Mode Continuous Tuning Range,” IEEE Photon. Technol. Lett. 21, 1822–1824 (2009).
[CrossRef]

P. Tayebati, W. Peidong, D. Vakshoori, L. Chih-Cheng, M. Azimi, and R. N. Sacks, “Half-symmetric cavity tunable microelectromechanical VCSEL with single spatial mode,” IEEE Photon. Technol. Lett. 10, 1679–1681 (1998).
[CrossRef]

D. Sun, W. Fan, P. Kner, J. Boucart, T. Kagexama, D. Zhang, R. Pathak, R. F. Nabiev, and W. Yuen, “Long wavelength-tunable VCSELs with optimized MEMS bridge tuning structure,” IEEE Photon. Technol. Lett. 16, 714–716 (2004)
[CrossRef]

G. D. Cole, E. S. Bjorlin, C. S. Wang, N. C. MacDonald, and J. E. Bowers, “Widely tunable bottom-emitting vertical-cavity SOAs,” IEEE Photon. Technol. Lett. 17, 2526–2528 (2005).
[CrossRef]

IEEE Sens. J.

B. Kogel, H. Halbritter, S. Jatta, M. Maute, G. Bohm, M.-C. Amann, M. Lackner, M. Schwarzott, F. Winter, and P. Meissner, “Simultaneous spectroscopy of NH3 and CO using a > 50 nm continuously tunable MEMS-VCSEL,” IEEE Sens. J. 7, 1483–1489 (2007).
[CrossRef]

Proc. SPIE

C. Gierl, K. Zogal, S. Jatta, H. A. Davani, F. Kueppers, P. Meissner, T. Gruendl, C. Grasse, M.-C. Amann, A. Daly, B. Corbett, B. Koegel, A. Haglund, J. Gustavsson, P. Westbergh, A. Larsson, P. Debernardi, and M. Ortsiefer, “Tuneable VCSEL aiming for the application in interconnects and short haul systems,” Proc. SPIE 7959, 795908 (2011).
[CrossRef]

Other

H. Halbritter, F. Riemenschneider, B. Kogel, A. Tarraj, M. Strassner, S. Irmer, H. Hillmer, I. Sagnes, and P. Meissner, “MEM-tunable and wavelength selective receiver front end,” 18th IEEE International Conference on Micro Electro Mechanical Systems (IEEE, 2005), pp. 68–71.
[CrossRef]

C. Gierl, K. Zogal, H. A. Davani, and P. Meissner, “Electro thermal and electro statical actuation of a surface micromachined tunable Fabry-Pérot filter,” Conference on Lasers and Electro-Optics (CLEO) and Quantum Electronics and Laser Science Conference (QELS) (IEEE, 2011), JTuI73.
[PubMed]

B. C. Kan, M. C. Y. Huang, Z. Ye, S. P. Alvaro, C. J. Hasnain, and P. A. Pisano, “Monolithic integration of piezoelectric cantilever in tunable VCSEL,” International Conference on Optical MEMS and Their Applications (IEEE/LEOS, 2006), pp. 11–12.

H. Sano, A. Matsutani, and F. Koyama, “Athermal and tunable operations of 850 nm VCSEL with thermally actuated cantilever structure,” 35th European Conference on Optical Communication (IEEE, 2009), P2.26, pp. 1–2.

B. Kogel, H. Halbritter, M. Maute, G. Bohm, M.-C. Amann, and P. Meissner, “Singlemode and polarization stable MEMS-VCSEL with broadband tuning characteristics around 1.55μm,” European Conference on Optical Communications (IEEE, 2006), 10.1109/ECOC.2006.4801075, pp. 1–2.
[CrossRef]

B. Kogel, H. Halbritter, M. Lackner, M. Schwarzott, M. Maute, M.-C. Amann, F. Winter, and P. Meissner, “Micromechanically widely tunable VCSEL for absorption spectroscopy at around 1.55μm,” International Conference on Optical MEMS and Their Applications IEEE/LEOS (IEEE, 2006), pp. 7–8.
[CrossRef]

J. Rausch, P. Heinickel, R. Werthschuetzky, B. Koegel, K. Zogal, and P. Meissner, “Experimental comparison of piezoresistive MEMS and fiber Bragg grating strain sensors,” in IEEE Sensors (IEEE, 2009), pp. 1329–1333.
[CrossRef]

T. C. Bond, G. D. Cole, L. L. Goddard, and E. M. Behymer, “Photonic MEMS for NIR in-situ gas detection and identification,” IEEE Sensors (IEEE, 2007), pp. 1368–1371.
[CrossRef]

T. Yano, H. Saito, N. Kanbara, R. Noda, S. Tezuka, N. Fujimura, M. Ooyama, T. Watanabe, T. Hirata, and N. Nishiyama, “Wavelength modulation over 500kHz of micromechanically tunable InP-based VCSELs with Si-MEMS technology,” IEEE 21st ISLC (IEEE, 2008), pp. 163–164.

K. J. Knopp, D. Vakhshoori, P. D. Wang, M. Azimi, M. Jiang, P. Chen, Y. Matsui, K. McCallion, A. Baliga, F. Sakithab, M. Letsch, B. Johnson, R. Huang, A. Jean, B. DeLargy, C. Pinzone, F. Fan, J. Liu, C. Lu, J. Zhou, H. Zhu, R. Gurjar, P. Tayebati, D. MacDaniel, R. Baorui, P. Waterson, and G. VanderRhodes, “High power MEMs-tunable vertical-cavity surface-emitting lasers,” IEEE Digest of the LEOS Summer Topical Meetings (IEEE,2001), pp. 31–32.

B. Kogel, M. Maute, H. Halbritter, F. Riemenschneider, G. Bohm, M.-C. Amann, and P. Meissner, “Long-wavelength MEMS tunable VCSEL with high sidemode suppression,” International Conference on Optical MEMS and Their Applications (IEEE/LEOS, 2005), pp. 95–96.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

a, Cross section view of the surface micromachined tunable VCSEL. b, Scanning electron microscopy of tunable VCSELs fabricated on wafer. Each VCSEL has a footprint of 480 480μm2.

Fig. 2
Fig. 2

(a) Measured wavelength in comparison to simulations of the VCSEL for different heating powers and the corresponding air-gap lengths. The emitted wavelength is continuously tuned over 102nm. (b) Emission spectra for different tuning currents and the tuning range as the envelope of the fundamental laser peak. The laser current is 25mA and the VCSEL is stabilized at 20°C. The red curve highlights a single emission spectrum of the VCSEL, lasing at 1505nm with the suppressed higher order transversal modes and the next longitudinal mode at 1607nm. The spectrum shows a FSR of 102nm.

Fig. 3
Fig. 3

Tuning range and SMSR at a wavelength of 1550nm for different laser currents.

Fig. 4
Fig. 4

(a) The blue curve shows the fiber coupled optical power and the red curve the voltage at the VCSEL. Both as a function of the VCSEL current measured at a wavelength of 1550nm. (b) Threshold current and output power at the thermal roll-over for different wavelengths.

Fig. 5
Fig. 5

Electrothermal frequency response of the tunable VCSEL. A sinusoidal a.c. modulated heating current flows through the top mirror (peak to peak current 20mA and an offset current of 30mA). The measured frequency response of the corresponding tuning range is shown by the red squares. The blue solid line is the fit of the first order lowpass given by Eq. (3) to the measurement.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

w 0 = λ π L ( R t L ) ,
FSR = λ q λ q + 1 = λ 2 2 L + λ
Δ λ ( f ) = Δ λ 0 1 + ( 2 π f τ ) 2

Metrics