Abstract

This paper discusses several performance-related aspects of electrically-pumped GaSb-based buried tunnel junction VCSELs with an emission wavelength of 2.6 μm based on theoretical and experimental results. These results allow a deeper insight into the internal device physics, such as radial diffusion of carriers, maximum continuous-wave operating temperature, diffraction loss, internal temperature, gain and loss parameters, internal quantum efficiency of the active region etc. These parameters can be taken into account while designing mid-infrared lasers which leads to an improved device performance. A simple thermal model of the devices based on the two-dimensional (2-D) finite element method using the material data from the literature is also presented. In addition, an application-based result utilizing these lasers for the measurement of absolute water vapor concentration by wavelength modulation spectroscopy (WMS) method are also described, hinting that devices are well-suited for the targeted sensing applications.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2005).
    [CrossRef]
  2. W. W. Bewley, C. L. Felix, I. Vurgaftman, E. H. Aifer, J. R. Meyer, L. Goldberg, J. R. Lindle, D. H. Chow, and E. Selvig, “Continuous-wave mid-infrared VCSELs,” IEEE Photon. Technol. Lett. 10, 660–662 (1998).
    [CrossRef]
  3. N. Schulz, J.-M. Hopkins, M. Rattunde, D. Burns, and J. Wagner, “High-brightness long-wavelength semiconductor disk lasers,” Laser & Photon. Rev. 2, 160–181 (2008).
    [CrossRef] [PubMed]
  4. F. Genty, A. Garnache, and L. Cerutti, “VCSELs emitting in the 2–3 μm wavelength range,” in Mid-infrared Semiconductor Optoelectronics, A. Krier, ed. Springer Series in Optical Sciences (Springer, 2006), Vol. 118, pp. 159–188.
    [CrossRef]
  5. A. Ducanchez, L. Cerutti, P. Grech, F. Genty, and E. Tournie, “Mid-infrared GaSb-based EP-VCSEL emitting at 2.63 μm,” Electron. Lett. 45, 265–267 (2009).
    [CrossRef]
  6. R. S. Inman and J. J. F. McAndrew, “Application of tunable diode laser absorption spectroscopy to trace moisture measurements in gases,” Anal. Chem. 66, 2471–2479 (1994).
    [CrossRef]
  7. A. Bachmann, K. Kashani-Shirazi, and M.-C. Amann, “GaSb-based electrically pumped VCSEL with buried tunnel junction operating continuous wave up to 50°C,” in Proceedings of IEEE Conference on Semiconductor Laser (Institute of Electrical and Electronic Engineers, Italy, 2008), paper TuA1, pp. 39–40.
    [CrossRef]
  8. S. Arafin, A. Bachmann, K. Kashani-Shirazi, and M.-C. Amann, “Electrically-pumped continuous-wave vertical-cavity surface-emitting lasers at 2.6 μm,” Appl. Phys. Lett. 95, 131120 (2009).
    [CrossRef]
  9. J. Chen, A. Hangauer, A. Bachmann, T. Lim, K. Kashani-Shirazi, R. Strzoda, and M.-C. Amann, “CO and CH4 sensing with single mode 2.3 μm GaSb-based VCSEL,” in Conference on Lasers and Electro-Optics (Optical Society of America, Baltimore, MD, 2009), paper CThI.
  10. A. Hangauer, J. Chen, R. Strzoda, M. Ortsiefer, and M.-C. Amann, “Wavelength modulation spectroscopy with a widely tunable InP-based 2.3 μm vertical-cavity surface-emitting laser,” Opt. Lett. 33, 1566–1568 (2008).
    [CrossRef] [PubMed]
  11. A. Hangauer, J. Chen, R. Strzoda, and M.-C. Amann, “The frequency modulation response of vertical-cavity surface-emitting lasers: experiment and theory,” IEEE J. Sel. Top. Quantum Electron. 17, 1–10 (2011).
  12. A. Bachmann, S. Arafin, and K. Kashani-Shirazi, “Single-mode electrically pumped GaSb-based VCSELs emitting continuous-wave at 2.4 and 2.6 μm,” N. J. Phys. 11, 125014 (2009).
    [CrossRef]
  13. A. Bachmann, K. Kashani-Shirazi, S. Arafin, and M.-C. Amann, “GaSb-based VCSEL with buried tunnel junction for emission around 2.3 μm,” IEEE J. Sel. Top. Quantum Electron. 15, 933–940 (2009).
    [CrossRef]
  14. http://www.comsol.com/
  15. S. Adachi, “Lattice thermal conductivity of group-IV and III–V semiconductor alloys,” J. Appl. Phys. 102, 063502 (2007).
    [CrossRef]
  16. T. Borca-Tasciuca, D. W. Song, J. R. Meyer, I. Vurgaftman, M.-J. Yang, B. Z. Noshob, L. J. Whitman, and G. Chen, “Thermal conductivity of AlAs0.07Sb0.93 and Al0.9Ga0.1As0.07Sb0.93 alloys and (AlAs)1/(AlSb)11 digital-alloy superlattices,” J. Appl. Phys. 92, 4994–4998 (2002).
    [CrossRef]
  17. M. Osinski and W. Nakwaski, “Effective thermal conductivity analysis of 1.55 μm InGaAsP/InP vertical-cavity top-surface-emitting microlasers,” Electron. Lett. 29, 1015–1016 (1993).
    [CrossRef]
  18. M. Ortsiefer, “Langwellige Vertikalresonator-Laserdioden im Materialsystem InGaAlAs/InP,” PhD thesis (Technische Universität München, 2000).
  19. K. L. Lear, R. P. Schneider, K. D. Choquette, and S. P. Kilcoyne, “Index guiding dependent effects in implant and oxide confined vertical-cavity lasers,” IEEE Photon. Technol. Lett. 8, 740–742 (1996).
    [CrossRef]
  20. S. Arafin, A. Bachmann, and M.-C. Amann, “Transverse-mode characteristics of GaSb-based VCSELs with buried-tunnel junctions,” IEEE J. Sel. Top. Quantum Electron. 9, 1–8 (2011).
  21. A. N. Al-Omari and K. L. Lear, “VCSELs with a self-aligned contact and copper-plated heatsink,” IEEE Photon. Technol. Lett. 17, 1767–17697 (2005).
    [CrossRef]
  22. R. Michalzik, M. Grabherr, R. Jaeger, M. Miller, and K. J. Ebeling,“Progress in high-power VCSELs and arrays,” Proc. SPIE 3419, 187–195 (1998).
    [CrossRef]
  23. D. I. Babic, Y. Chung, N. Dagli, and J. E. Bowers, “Modal reflection of quarter-wave mirrors in vertical-cavity lasers,” IEEE J. Quantum Electron. 29, 1950–1962 (1993).
    [CrossRef]
  24. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).
  25. A. Perona, A. Garnache, L. Cerutti, A. Ducanchez, S. Mihindou, P. Grech, G. Boissier, and F. Genty, “AlAsSb/GaSb doped distributed Bragg reflectors for electrically pumped VCSELs emitting around 2.3 μm,” Semicond. Sci. Technol. 22, 1140–1144 (2007).
    [CrossRef]
  26. A. Hangauer, J. Chen, and M.-C. Amann, “Vertical-cavity surface-emitting laser light-current characteristic at constant internal temperature,” IEEE Photon. Technol. Lett. available online,(2011).
    [CrossRef]
  27. G. M. Yang, M. H. MacDougal, V. Pudikov, and P. D. Dapkus, “Influence of mirror reflectivity on laser performance of very-low-threshold vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 7, 1228–1230 (1995).
    [CrossRef]
  28. C. Bückers, A. Thränhardt, S. W. Koch, M. Rattunde, N. Schulz, J. Wagner, J. Hader, and J. V. Moloney, “Microscopic calculation and measurement of the laser gain in a (GaIn)Sb quantum well structure,” Appl. Phys. Lett. 92, 071107 (2008).
    [CrossRef]
  29. E. R. T. Kerstel, R. Q. Iannone, M. Chenevier, S. Kassi, H.-J. Jost, and D. Romanini, “A water isotope (2H, 17O, and 18O) spectrometer based on optical feedback cavity-enhanced absorption for in situ airborne applications,” Appl. Phys. B: Lasers Opt. 85, 397–406 (2006).
    [CrossRef]
  30. J. T. C. Liu, J. B. Jeffries, and R. K. Hanson, “Wavelength modulation absorption spectroscopy with 2f detection using multiplexed diode lasers for rapid temperature measurements in gaseous flows,” Appl. Phys. B: Lasers Opt. 78, 503–511 (2004).
    [CrossRef]
  31. R. Arndt, “Analytical line shapes for Lorentzian signals broadened by modulation,” J. Appl. Phys. 36, 2522–2524 (1965).
    [CrossRef]

2011 (2)

A. Hangauer, J. Chen, R. Strzoda, and M.-C. Amann, “The frequency modulation response of vertical-cavity surface-emitting lasers: experiment and theory,” IEEE J. Sel. Top. Quantum Electron. 17, 1–10 (2011).

S. Arafin, A. Bachmann, and M.-C. Amann, “Transverse-mode characteristics of GaSb-based VCSELs with buried-tunnel junctions,” IEEE J. Sel. Top. Quantum Electron. 9, 1–8 (2011).

2009 (4)

S. Arafin, A. Bachmann, K. Kashani-Shirazi, and M.-C. Amann, “Electrically-pumped continuous-wave vertical-cavity surface-emitting lasers at 2.6 μm,” Appl. Phys. Lett. 95, 131120 (2009).
[CrossRef]

A. Bachmann, S. Arafin, and K. Kashani-Shirazi, “Single-mode electrically pumped GaSb-based VCSELs emitting continuous-wave at 2.4 and 2.6 μm,” N. J. Phys. 11, 125014 (2009).
[CrossRef]

A. Bachmann, K. Kashani-Shirazi, S. Arafin, and M.-C. Amann, “GaSb-based VCSEL with buried tunnel junction for emission around 2.3 μm,” IEEE J. Sel. Top. Quantum Electron. 15, 933–940 (2009).
[CrossRef]

A. Ducanchez, L. Cerutti, P. Grech, F. Genty, and E. Tournie, “Mid-infrared GaSb-based EP-VCSEL emitting at 2.63 μm,” Electron. Lett. 45, 265–267 (2009).
[CrossRef]

2008 (3)

A. Hangauer, J. Chen, R. Strzoda, M. Ortsiefer, and M.-C. Amann, “Wavelength modulation spectroscopy with a widely tunable InP-based 2.3 μm vertical-cavity surface-emitting laser,” Opt. Lett. 33, 1566–1568 (2008).
[CrossRef] [PubMed]

N. Schulz, J.-M. Hopkins, M. Rattunde, D. Burns, and J. Wagner, “High-brightness long-wavelength semiconductor disk lasers,” Laser & Photon. Rev. 2, 160–181 (2008).
[CrossRef] [PubMed]

C. Bückers, A. Thränhardt, S. W. Koch, M. Rattunde, N. Schulz, J. Wagner, J. Hader, and J. V. Moloney, “Microscopic calculation and measurement of the laser gain in a (GaIn)Sb quantum well structure,” Appl. Phys. Lett. 92, 071107 (2008).
[CrossRef]

2007 (2)

A. Perona, A. Garnache, L. Cerutti, A. Ducanchez, S. Mihindou, P. Grech, G. Boissier, and F. Genty, “AlAsSb/GaSb doped distributed Bragg reflectors for electrically pumped VCSELs emitting around 2.3 μm,” Semicond. Sci. Technol. 22, 1140–1144 (2007).
[CrossRef]

S. Adachi, “Lattice thermal conductivity of group-IV and III–V semiconductor alloys,” J. Appl. Phys. 102, 063502 (2007).
[CrossRef]

2006 (1)

E. R. T. Kerstel, R. Q. Iannone, M. Chenevier, S. Kassi, H.-J. Jost, and D. Romanini, “A water isotope (2H, 17O, and 18O) spectrometer based on optical feedback cavity-enhanced absorption for in situ airborne applications,” Appl. Phys. B: Lasers Opt. 85, 397–406 (2006).
[CrossRef]

2005 (2)

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2005).
[CrossRef]

A. N. Al-Omari and K. L. Lear, “VCSELs with a self-aligned contact and copper-plated heatsink,” IEEE Photon. Technol. Lett. 17, 1767–17697 (2005).
[CrossRef]

2004 (1)

J. T. C. Liu, J. B. Jeffries, and R. K. Hanson, “Wavelength modulation absorption spectroscopy with 2f detection using multiplexed diode lasers for rapid temperature measurements in gaseous flows,” Appl. Phys. B: Lasers Opt. 78, 503–511 (2004).
[CrossRef]

2002 (1)

T. Borca-Tasciuca, D. W. Song, J. R. Meyer, I. Vurgaftman, M.-J. Yang, B. Z. Noshob, L. J. Whitman, and G. Chen, “Thermal conductivity of AlAs0.07Sb0.93 and Al0.9Ga0.1As0.07Sb0.93 alloys and (AlAs)1/(AlSb)11 digital-alloy superlattices,” J. Appl. Phys. 92, 4994–4998 (2002).
[CrossRef]

1998 (2)

W. W. Bewley, C. L. Felix, I. Vurgaftman, E. H. Aifer, J. R. Meyer, L. Goldberg, J. R. Lindle, D. H. Chow, and E. Selvig, “Continuous-wave mid-infrared VCSELs,” IEEE Photon. Technol. Lett. 10, 660–662 (1998).
[CrossRef]

R. Michalzik, M. Grabherr, R. Jaeger, M. Miller, and K. J. Ebeling,“Progress in high-power VCSELs and arrays,” Proc. SPIE 3419, 187–195 (1998).
[CrossRef]

1996 (1)

K. L. Lear, R. P. Schneider, K. D. Choquette, and S. P. Kilcoyne, “Index guiding dependent effects in implant and oxide confined vertical-cavity lasers,” IEEE Photon. Technol. Lett. 8, 740–742 (1996).
[CrossRef]

1995 (1)

G. M. Yang, M. H. MacDougal, V. Pudikov, and P. D. Dapkus, “Influence of mirror reflectivity on laser performance of very-low-threshold vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 7, 1228–1230 (1995).
[CrossRef]

1994 (1)

R. S. Inman and J. J. F. McAndrew, “Application of tunable diode laser absorption spectroscopy to trace moisture measurements in gases,” Anal. Chem. 66, 2471–2479 (1994).
[CrossRef]

1993 (2)

M. Osinski and W. Nakwaski, “Effective thermal conductivity analysis of 1.55 μm InGaAsP/InP vertical-cavity top-surface-emitting microlasers,” Electron. Lett. 29, 1015–1016 (1993).
[CrossRef]

D. I. Babic, Y. Chung, N. Dagli, and J. E. Bowers, “Modal reflection of quarter-wave mirrors in vertical-cavity lasers,” IEEE J. Quantum Electron. 29, 1950–1962 (1993).
[CrossRef]

1965 (1)

R. Arndt, “Analytical line shapes for Lorentzian signals broadened by modulation,” J. Appl. Phys. 36, 2522–2524 (1965).
[CrossRef]

Adachi, S.

S. Adachi, “Lattice thermal conductivity of group-IV and III–V semiconductor alloys,” J. Appl. Phys. 102, 063502 (2007).
[CrossRef]

Aifer, E. H.

W. W. Bewley, C. L. Felix, I. Vurgaftman, E. H. Aifer, J. R. Meyer, L. Goldberg, J. R. Lindle, D. H. Chow, and E. Selvig, “Continuous-wave mid-infrared VCSELs,” IEEE Photon. Technol. Lett. 10, 660–662 (1998).
[CrossRef]

Al-Omari, A. N.

A. N. Al-Omari and K. L. Lear, “VCSELs with a self-aligned contact and copper-plated heatsink,” IEEE Photon. Technol. Lett. 17, 1767–17697 (2005).
[CrossRef]

Amann, M.-C.

S. Arafin, A. Bachmann, and M.-C. Amann, “Transverse-mode characteristics of GaSb-based VCSELs with buried-tunnel junctions,” IEEE J. Sel. Top. Quantum Electron. 9, 1–8 (2011).

A. Hangauer, J. Chen, R. Strzoda, and M.-C. Amann, “The frequency modulation response of vertical-cavity surface-emitting lasers: experiment and theory,” IEEE J. Sel. Top. Quantum Electron. 17, 1–10 (2011).

S. Arafin, A. Bachmann, K. Kashani-Shirazi, and M.-C. Amann, “Electrically-pumped continuous-wave vertical-cavity surface-emitting lasers at 2.6 μm,” Appl. Phys. Lett. 95, 131120 (2009).
[CrossRef]

A. Bachmann, K. Kashani-Shirazi, S. Arafin, and M.-C. Amann, “GaSb-based VCSEL with buried tunnel junction for emission around 2.3 μm,” IEEE J. Sel. Top. Quantum Electron. 15, 933–940 (2009).
[CrossRef]

A. Hangauer, J. Chen, R. Strzoda, M. Ortsiefer, and M.-C. Amann, “Wavelength modulation spectroscopy with a widely tunable InP-based 2.3 μm vertical-cavity surface-emitting laser,” Opt. Lett. 33, 1566–1568 (2008).
[CrossRef] [PubMed]

J. Chen, A. Hangauer, A. Bachmann, T. Lim, K. Kashani-Shirazi, R. Strzoda, and M.-C. Amann, “CO and CH4 sensing with single mode 2.3 μm GaSb-based VCSEL,” in Conference on Lasers and Electro-Optics (Optical Society of America, Baltimore, MD, 2009), paper CThI.

A. Bachmann, K. Kashani-Shirazi, and M.-C. Amann, “GaSb-based electrically pumped VCSEL with buried tunnel junction operating continuous wave up to 50°C,” in Proceedings of IEEE Conference on Semiconductor Laser (Institute of Electrical and Electronic Engineers, Italy, 2008), paper TuA1, pp. 39–40.
[CrossRef]

A. Hangauer, J. Chen, and M.-C. Amann, “Vertical-cavity surface-emitting laser light-current characteristic at constant internal temperature,” IEEE Photon. Technol. Lett. available online,(2011).
[CrossRef]

Arafin, S.

S. Arafin, A. Bachmann, and M.-C. Amann, “Transverse-mode characteristics of GaSb-based VCSELs with buried-tunnel junctions,” IEEE J. Sel. Top. Quantum Electron. 9, 1–8 (2011).

A. Bachmann, K. Kashani-Shirazi, S. Arafin, and M.-C. Amann, “GaSb-based VCSEL with buried tunnel junction for emission around 2.3 μm,” IEEE J. Sel. Top. Quantum Electron. 15, 933–940 (2009).
[CrossRef]

A. Bachmann, S. Arafin, and K. Kashani-Shirazi, “Single-mode electrically pumped GaSb-based VCSELs emitting continuous-wave at 2.4 and 2.6 μm,” N. J. Phys. 11, 125014 (2009).
[CrossRef]

S. Arafin, A. Bachmann, K. Kashani-Shirazi, and M.-C. Amann, “Electrically-pumped continuous-wave vertical-cavity surface-emitting lasers at 2.6 μm,” Appl. Phys. Lett. 95, 131120 (2009).
[CrossRef]

Arndt, R.

R. Arndt, “Analytical line shapes for Lorentzian signals broadened by modulation,” J. Appl. Phys. 36, 2522–2524 (1965).
[CrossRef]

Babic, D. I.

D. I. Babic, Y. Chung, N. Dagli, and J. E. Bowers, “Modal reflection of quarter-wave mirrors in vertical-cavity lasers,” IEEE J. Quantum Electron. 29, 1950–1962 (1993).
[CrossRef]

Bachmann, A.

S. Arafin, A. Bachmann, and M.-C. Amann, “Transverse-mode characteristics of GaSb-based VCSELs with buried-tunnel junctions,” IEEE J. Sel. Top. Quantum Electron. 9, 1–8 (2011).

A. Bachmann, K. Kashani-Shirazi, S. Arafin, and M.-C. Amann, “GaSb-based VCSEL with buried tunnel junction for emission around 2.3 μm,” IEEE J. Sel. Top. Quantum Electron. 15, 933–940 (2009).
[CrossRef]

S. Arafin, A. Bachmann, K. Kashani-Shirazi, and M.-C. Amann, “Electrically-pumped continuous-wave vertical-cavity surface-emitting lasers at 2.6 μm,” Appl. Phys. Lett. 95, 131120 (2009).
[CrossRef]

A. Bachmann, S. Arafin, and K. Kashani-Shirazi, “Single-mode electrically pumped GaSb-based VCSELs emitting continuous-wave at 2.4 and 2.6 μm,” N. J. Phys. 11, 125014 (2009).
[CrossRef]

J. Chen, A. Hangauer, A. Bachmann, T. Lim, K. Kashani-Shirazi, R. Strzoda, and M.-C. Amann, “CO and CH4 sensing with single mode 2.3 μm GaSb-based VCSEL,” in Conference on Lasers and Electro-Optics (Optical Society of America, Baltimore, MD, 2009), paper CThI.

A. Bachmann, K. Kashani-Shirazi, and M.-C. Amann, “GaSb-based electrically pumped VCSEL with buried tunnel junction operating continuous wave up to 50°C,” in Proceedings of IEEE Conference on Semiconductor Laser (Institute of Electrical and Electronic Engineers, Italy, 2008), paper TuA1, pp. 39–40.
[CrossRef]

Barbe, A.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2005).
[CrossRef]

Benner, D. C.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2005).
[CrossRef]

Bewley, W. W.

W. W. Bewley, C. L. Felix, I. Vurgaftman, E. H. Aifer, J. R. Meyer, L. Goldberg, J. R. Lindle, D. H. Chow, and E. Selvig, “Continuous-wave mid-infrared VCSELs,” IEEE Photon. Technol. Lett. 10, 660–662 (1998).
[CrossRef]

Birk, M.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2005).
[CrossRef]

Boissier, G.

A. Perona, A. Garnache, L. Cerutti, A. Ducanchez, S. Mihindou, P. Grech, G. Boissier, and F. Genty, “AlAsSb/GaSb doped distributed Bragg reflectors for electrically pumped VCSELs emitting around 2.3 μm,” Semicond. Sci. Technol. 22, 1140–1144 (2007).
[CrossRef]

Borca-Tasciuca, T.

T. Borca-Tasciuca, D. W. Song, J. R. Meyer, I. Vurgaftman, M.-J. Yang, B. Z. Noshob, L. J. Whitman, and G. Chen, “Thermal conductivity of AlAs0.07Sb0.93 and Al0.9Ga0.1As0.07Sb0.93 alloys and (AlAs)1/(AlSb)11 digital-alloy superlattices,” J. Appl. Phys. 92, 4994–4998 (2002).
[CrossRef]

Bowers, J. E.

D. I. Babic, Y. Chung, N. Dagli, and J. E. Bowers, “Modal reflection of quarter-wave mirrors in vertical-cavity lasers,” IEEE J. Quantum Electron. 29, 1950–1962 (1993).
[CrossRef]

Brown, L. R.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2005).
[CrossRef]

Bückers, C.

C. Bückers, A. Thränhardt, S. W. Koch, M. Rattunde, N. Schulz, J. Wagner, J. Hader, and J. V. Moloney, “Microscopic calculation and measurement of the laser gain in a (GaIn)Sb quantum well structure,” Appl. Phys. Lett. 92, 071107 (2008).
[CrossRef]

Burns, D.

N. Schulz, J.-M. Hopkins, M. Rattunde, D. Burns, and J. Wagner, “High-brightness long-wavelength semiconductor disk lasers,” Laser & Photon. Rev. 2, 160–181 (2008).
[CrossRef] [PubMed]

Carleer, M. R.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2005).
[CrossRef]

Cerutti, L.

A. Ducanchez, L. Cerutti, P. Grech, F. Genty, and E. Tournie, “Mid-infrared GaSb-based EP-VCSEL emitting at 2.63 μm,” Electron. Lett. 45, 265–267 (2009).
[CrossRef]

A. Perona, A. Garnache, L. Cerutti, A. Ducanchez, S. Mihindou, P. Grech, G. Boissier, and F. Genty, “AlAsSb/GaSb doped distributed Bragg reflectors for electrically pumped VCSELs emitting around 2.3 μm,” Semicond. Sci. Technol. 22, 1140–1144 (2007).
[CrossRef]

F. Genty, A. Garnache, and L. Cerutti, “VCSELs emitting in the 2–3 μm wavelength range,” in Mid-infrared Semiconductor Optoelectronics, A. Krier, ed. Springer Series in Optical Sciences (Springer, 2006), Vol. 118, pp. 159–188.
[CrossRef]

Chackerian, C.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2005).
[CrossRef]

Chance, K.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2005).
[CrossRef]

Chen, G.

T. Borca-Tasciuca, D. W. Song, J. R. Meyer, I. Vurgaftman, M.-J. Yang, B. Z. Noshob, L. J. Whitman, and G. Chen, “Thermal conductivity of AlAs0.07Sb0.93 and Al0.9Ga0.1As0.07Sb0.93 alloys and (AlAs)1/(AlSb)11 digital-alloy superlattices,” J. Appl. Phys. 92, 4994–4998 (2002).
[CrossRef]

Chen, J.

A. Hangauer, J. Chen, R. Strzoda, and M.-C. Amann, “The frequency modulation response of vertical-cavity surface-emitting lasers: experiment and theory,” IEEE J. Sel. Top. Quantum Electron. 17, 1–10 (2011).

A. Hangauer, J. Chen, R. Strzoda, M. Ortsiefer, and M.-C. Amann, “Wavelength modulation spectroscopy with a widely tunable InP-based 2.3 μm vertical-cavity surface-emitting laser,” Opt. Lett. 33, 1566–1568 (2008).
[CrossRef] [PubMed]

J. Chen, A. Hangauer, A. Bachmann, T. Lim, K. Kashani-Shirazi, R. Strzoda, and M.-C. Amann, “CO and CH4 sensing with single mode 2.3 μm GaSb-based VCSEL,” in Conference on Lasers and Electro-Optics (Optical Society of America, Baltimore, MD, 2009), paper CThI.

A. Hangauer, J. Chen, and M.-C. Amann, “Vertical-cavity surface-emitting laser light-current characteristic at constant internal temperature,” IEEE Photon. Technol. Lett. available online,(2011).
[CrossRef]

Chenevier, M.

E. R. T. Kerstel, R. Q. Iannone, M. Chenevier, S. Kassi, H.-J. Jost, and D. Romanini, “A water isotope (2H, 17O, and 18O) spectrometer based on optical feedback cavity-enhanced absorption for in situ airborne applications,” Appl. Phys. B: Lasers Opt. 85, 397–406 (2006).
[CrossRef]

Choquette, K. D.

K. L. Lear, R. P. Schneider, K. D. Choquette, and S. P. Kilcoyne, “Index guiding dependent effects in implant and oxide confined vertical-cavity lasers,” IEEE Photon. Technol. Lett. 8, 740–742 (1996).
[CrossRef]

Chow, D. H.

W. W. Bewley, C. L. Felix, I. Vurgaftman, E. H. Aifer, J. R. Meyer, L. Goldberg, J. R. Lindle, D. H. Chow, and E. Selvig, “Continuous-wave mid-infrared VCSELs,” IEEE Photon. Technol. Lett. 10, 660–662 (1998).
[CrossRef]

Chung, Y.

D. I. Babic, Y. Chung, N. Dagli, and J. E. Bowers, “Modal reflection of quarter-wave mirrors in vertical-cavity lasers,” IEEE J. Quantum Electron. 29, 1950–1962 (1993).
[CrossRef]

Coudert, L. H.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2005).
[CrossRef]

Dagli, N.

D. I. Babic, Y. Chung, N. Dagli, and J. E. Bowers, “Modal reflection of quarter-wave mirrors in vertical-cavity lasers,” IEEE J. Quantum Electron. 29, 1950–1962 (1993).
[CrossRef]

Dana, V.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2005).
[CrossRef]

Dapkus, P. D.

G. M. Yang, M. H. MacDougal, V. Pudikov, and P. D. Dapkus, “Influence of mirror reflectivity on laser performance of very-low-threshold vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 7, 1228–1230 (1995).
[CrossRef]

Devi, V. M.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2005).
[CrossRef]

Ducanchez, A.

A. Ducanchez, L. Cerutti, P. Grech, F. Genty, and E. Tournie, “Mid-infrared GaSb-based EP-VCSEL emitting at 2.63 μm,” Electron. Lett. 45, 265–267 (2009).
[CrossRef]

A. Perona, A. Garnache, L. Cerutti, A. Ducanchez, S. Mihindou, P. Grech, G. Boissier, and F. Genty, “AlAsSb/GaSb doped distributed Bragg reflectors for electrically pumped VCSELs emitting around 2.3 μm,” Semicond. Sci. Technol. 22, 1140–1144 (2007).
[CrossRef]

Ebeling, K. J.

R. Michalzik, M. Grabherr, R. Jaeger, M. Miller, and K. J. Ebeling,“Progress in high-power VCSELs and arrays,” Proc. SPIE 3419, 187–195 (1998).
[CrossRef]

Felix, C. L.

W. W. Bewley, C. L. Felix, I. Vurgaftman, E. H. Aifer, J. R. Meyer, L. Goldberg, J. R. Lindle, D. H. Chow, and E. Selvig, “Continuous-wave mid-infrared VCSELs,” IEEE Photon. Technol. Lett. 10, 660–662 (1998).
[CrossRef]

Flaud, J.-M.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2005).
[CrossRef]

Gamache, R. R.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2005).
[CrossRef]

Garnache, A.

A. Perona, A. Garnache, L. Cerutti, A. Ducanchez, S. Mihindou, P. Grech, G. Boissier, and F. Genty, “AlAsSb/GaSb doped distributed Bragg reflectors for electrically pumped VCSELs emitting around 2.3 μm,” Semicond. Sci. Technol. 22, 1140–1144 (2007).
[CrossRef]

F. Genty, A. Garnache, and L. Cerutti, “VCSELs emitting in the 2–3 μm wavelength range,” in Mid-infrared Semiconductor Optoelectronics, A. Krier, ed. Springer Series in Optical Sciences (Springer, 2006), Vol. 118, pp. 159–188.
[CrossRef]

Genty, F.

A. Ducanchez, L. Cerutti, P. Grech, F. Genty, and E. Tournie, “Mid-infrared GaSb-based EP-VCSEL emitting at 2.63 μm,” Electron. Lett. 45, 265–267 (2009).
[CrossRef]

A. Perona, A. Garnache, L. Cerutti, A. Ducanchez, S. Mihindou, P. Grech, G. Boissier, and F. Genty, “AlAsSb/GaSb doped distributed Bragg reflectors for electrically pumped VCSELs emitting around 2.3 μm,” Semicond. Sci. Technol. 22, 1140–1144 (2007).
[CrossRef]

F. Genty, A. Garnache, and L. Cerutti, “VCSELs emitting in the 2–3 μm wavelength range,” in Mid-infrared Semiconductor Optoelectronics, A. Krier, ed. Springer Series in Optical Sciences (Springer, 2006), Vol. 118, pp. 159–188.
[CrossRef]

Goldberg, L.

W. W. Bewley, C. L. Felix, I. Vurgaftman, E. H. Aifer, J. R. Meyer, L. Goldberg, J. R. Lindle, D. H. Chow, and E. Selvig, “Continuous-wave mid-infrared VCSELs,” IEEE Photon. Technol. Lett. 10, 660–662 (1998).
[CrossRef]

Goldman, A.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2005).
[CrossRef]

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).

Grabherr, M.

R. Michalzik, M. Grabherr, R. Jaeger, M. Miller, and K. J. Ebeling,“Progress in high-power VCSELs and arrays,” Proc. SPIE 3419, 187–195 (1998).
[CrossRef]

Grech, P.

A. Ducanchez, L. Cerutti, P. Grech, F. Genty, and E. Tournie, “Mid-infrared GaSb-based EP-VCSEL emitting at 2.63 μm,” Electron. Lett. 45, 265–267 (2009).
[CrossRef]

A. Perona, A. Garnache, L. Cerutti, A. Ducanchez, S. Mihindou, P. Grech, G. Boissier, and F. Genty, “AlAsSb/GaSb doped distributed Bragg reflectors for electrically pumped VCSELs emitting around 2.3 μm,” Semicond. Sci. Technol. 22, 1140–1144 (2007).
[CrossRef]

Hader, J.

C. Bückers, A. Thränhardt, S. W. Koch, M. Rattunde, N. Schulz, J. Wagner, J. Hader, and J. V. Moloney, “Microscopic calculation and measurement of the laser gain in a (GaIn)Sb quantum well structure,” Appl. Phys. Lett. 92, 071107 (2008).
[CrossRef]

Hangauer, A.

A. Hangauer, J. Chen, R. Strzoda, and M.-C. Amann, “The frequency modulation response of vertical-cavity surface-emitting lasers: experiment and theory,” IEEE J. Sel. Top. Quantum Electron. 17, 1–10 (2011).

A. Hangauer, J. Chen, R. Strzoda, M. Ortsiefer, and M.-C. Amann, “Wavelength modulation spectroscopy with a widely tunable InP-based 2.3 μm vertical-cavity surface-emitting laser,” Opt. Lett. 33, 1566–1568 (2008).
[CrossRef] [PubMed]

J. Chen, A. Hangauer, A. Bachmann, T. Lim, K. Kashani-Shirazi, R. Strzoda, and M.-C. Amann, “CO and CH4 sensing with single mode 2.3 μm GaSb-based VCSEL,” in Conference on Lasers and Electro-Optics (Optical Society of America, Baltimore, MD, 2009), paper CThI.

A. Hangauer, J. Chen, and M.-C. Amann, “Vertical-cavity surface-emitting laser light-current characteristic at constant internal temperature,” IEEE Photon. Technol. Lett. available online,(2011).
[CrossRef]

Hanson, R. K.

J. T. C. Liu, J. B. Jeffries, and R. K. Hanson, “Wavelength modulation absorption spectroscopy with 2f detection using multiplexed diode lasers for rapid temperature measurements in gaseous flows,” Appl. Phys. B: Lasers Opt. 78, 503–511 (2004).
[CrossRef]

Hartmann, J.-M.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2005).
[CrossRef]

Hopkins, J.-M.

N. Schulz, J.-M. Hopkins, M. Rattunde, D. Burns, and J. Wagner, “High-brightness long-wavelength semiconductor disk lasers,” Laser & Photon. Rev. 2, 160–181 (2008).
[CrossRef] [PubMed]

Iannone, R. Q.

E. R. T. Kerstel, R. Q. Iannone, M. Chenevier, S. Kassi, H.-J. Jost, and D. Romanini, “A water isotope (2H, 17O, and 18O) spectrometer based on optical feedback cavity-enhanced absorption for in situ airborne applications,” Appl. Phys. B: Lasers Opt. 85, 397–406 (2006).
[CrossRef]

Inman, R. S.

R. S. Inman and J. J. F. McAndrew, “Application of tunable diode laser absorption spectroscopy to trace moisture measurements in gases,” Anal. Chem. 66, 2471–2479 (1994).
[CrossRef]

Jacquemart, D.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2005).
[CrossRef]

Jaeger, R.

R. Michalzik, M. Grabherr, R. Jaeger, M. Miller, and K. J. Ebeling,“Progress in high-power VCSELs and arrays,” Proc. SPIE 3419, 187–195 (1998).
[CrossRef]

Jeffries, J. B.

J. T. C. Liu, J. B. Jeffries, and R. K. Hanson, “Wavelength modulation absorption spectroscopy with 2f detection using multiplexed diode lasers for rapid temperature measurements in gaseous flows,” Appl. Phys. B: Lasers Opt. 78, 503–511 (2004).
[CrossRef]

Jost, H.-J.

E. R. T. Kerstel, R. Q. Iannone, M. Chenevier, S. Kassi, H.-J. Jost, and D. Romanini, “A water isotope (2H, 17O, and 18O) spectrometer based on optical feedback cavity-enhanced absorption for in situ airborne applications,” Appl. Phys. B: Lasers Opt. 85, 397–406 (2006).
[CrossRef]

Jucks, K. W.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2005).
[CrossRef]

Kashani-Shirazi, K.

S. Arafin, A. Bachmann, K. Kashani-Shirazi, and M.-C. Amann, “Electrically-pumped continuous-wave vertical-cavity surface-emitting lasers at 2.6 μm,” Appl. Phys. Lett. 95, 131120 (2009).
[CrossRef]

A. Bachmann, K. Kashani-Shirazi, S. Arafin, and M.-C. Amann, “GaSb-based VCSEL with buried tunnel junction for emission around 2.3 μm,” IEEE J. Sel. Top. Quantum Electron. 15, 933–940 (2009).
[CrossRef]

A. Bachmann, S. Arafin, and K. Kashani-Shirazi, “Single-mode electrically pumped GaSb-based VCSELs emitting continuous-wave at 2.4 and 2.6 μm,” N. J. Phys. 11, 125014 (2009).
[CrossRef]

A. Bachmann, K. Kashani-Shirazi, and M.-C. Amann, “GaSb-based electrically pumped VCSEL with buried tunnel junction operating continuous wave up to 50°C,” in Proceedings of IEEE Conference on Semiconductor Laser (Institute of Electrical and Electronic Engineers, Italy, 2008), paper TuA1, pp. 39–40.
[CrossRef]

J. Chen, A. Hangauer, A. Bachmann, T. Lim, K. Kashani-Shirazi, R. Strzoda, and M.-C. Amann, “CO and CH4 sensing with single mode 2.3 μm GaSb-based VCSEL,” in Conference on Lasers and Electro-Optics (Optical Society of America, Baltimore, MD, 2009), paper CThI.

Kassi, S.

E. R. T. Kerstel, R. Q. Iannone, M. Chenevier, S. Kassi, H.-J. Jost, and D. Romanini, “A water isotope (2H, 17O, and 18O) spectrometer based on optical feedback cavity-enhanced absorption for in situ airborne applications,” Appl. Phys. B: Lasers Opt. 85, 397–406 (2006).
[CrossRef]

Kerstel, E. R. T.

E. R. T. Kerstel, R. Q. Iannone, M. Chenevier, S. Kassi, H.-J. Jost, and D. Romanini, “A water isotope (2H, 17O, and 18O) spectrometer based on optical feedback cavity-enhanced absorption for in situ airborne applications,” Appl. Phys. B: Lasers Opt. 85, 397–406 (2006).
[CrossRef]

Kilcoyne, S. P.

K. L. Lear, R. P. Schneider, K. D. Choquette, and S. P. Kilcoyne, “Index guiding dependent effects in implant and oxide confined vertical-cavity lasers,” IEEE Photon. Technol. Lett. 8, 740–742 (1996).
[CrossRef]

Koch, S. W.

C. Bückers, A. Thränhardt, S. W. Koch, M. Rattunde, N. Schulz, J. Wagner, J. Hader, and J. V. Moloney, “Microscopic calculation and measurement of the laser gain in a (GaIn)Sb quantum well structure,” Appl. Phys. Lett. 92, 071107 (2008).
[CrossRef]

Lear, K. L.

A. N. Al-Omari and K. L. Lear, “VCSELs with a self-aligned contact and copper-plated heatsink,” IEEE Photon. Technol. Lett. 17, 1767–17697 (2005).
[CrossRef]

K. L. Lear, R. P. Schneider, K. D. Choquette, and S. P. Kilcoyne, “Index guiding dependent effects in implant and oxide confined vertical-cavity lasers,” IEEE Photon. Technol. Lett. 8, 740–742 (1996).
[CrossRef]

Lim, T.

J. Chen, A. Hangauer, A. Bachmann, T. Lim, K. Kashani-Shirazi, R. Strzoda, and M.-C. Amann, “CO and CH4 sensing with single mode 2.3 μm GaSb-based VCSEL,” in Conference on Lasers and Electro-Optics (Optical Society of America, Baltimore, MD, 2009), paper CThI.

Lindle, J. R.

W. W. Bewley, C. L. Felix, I. Vurgaftman, E. H. Aifer, J. R. Meyer, L. Goldberg, J. R. Lindle, D. H. Chow, and E. Selvig, “Continuous-wave mid-infrared VCSELs,” IEEE Photon. Technol. Lett. 10, 660–662 (1998).
[CrossRef]

Liu, J. T. C.

J. T. C. Liu, J. B. Jeffries, and R. K. Hanson, “Wavelength modulation absorption spectroscopy with 2f detection using multiplexed diode lasers for rapid temperature measurements in gaseous flows,” Appl. Phys. B: Lasers Opt. 78, 503–511 (2004).
[CrossRef]

MacDougal, M. H.

G. M. Yang, M. H. MacDougal, V. Pudikov, and P. D. Dapkus, “Influence of mirror reflectivity on laser performance of very-low-threshold vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 7, 1228–1230 (1995).
[CrossRef]

Maki, A. G.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2005).
[CrossRef]

Mandin, J.-Y.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2005).
[CrossRef]

Massie, S. T.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2005).
[CrossRef]

McAndrew, J. J. F.

R. S. Inman and J. J. F. McAndrew, “Application of tunable diode laser absorption spectroscopy to trace moisture measurements in gases,” Anal. Chem. 66, 2471–2479 (1994).
[CrossRef]

Meyer, J. R.

T. Borca-Tasciuca, D. W. Song, J. R. Meyer, I. Vurgaftman, M.-J. Yang, B. Z. Noshob, L. J. Whitman, and G. Chen, “Thermal conductivity of AlAs0.07Sb0.93 and Al0.9Ga0.1As0.07Sb0.93 alloys and (AlAs)1/(AlSb)11 digital-alloy superlattices,” J. Appl. Phys. 92, 4994–4998 (2002).
[CrossRef]

W. W. Bewley, C. L. Felix, I. Vurgaftman, E. H. Aifer, J. R. Meyer, L. Goldberg, J. R. Lindle, D. H. Chow, and E. Selvig, “Continuous-wave mid-infrared VCSELs,” IEEE Photon. Technol. Lett. 10, 660–662 (1998).
[CrossRef]

Michalzik, R.

R. Michalzik, M. Grabherr, R. Jaeger, M. Miller, and K. J. Ebeling,“Progress in high-power VCSELs and arrays,” Proc. SPIE 3419, 187–195 (1998).
[CrossRef]

Mihindou, S.

A. Perona, A. Garnache, L. Cerutti, A. Ducanchez, S. Mihindou, P. Grech, G. Boissier, and F. Genty, “AlAsSb/GaSb doped distributed Bragg reflectors for electrically pumped VCSELs emitting around 2.3 μm,” Semicond. Sci. Technol. 22, 1140–1144 (2007).
[CrossRef]

Miller, M.

R. Michalzik, M. Grabherr, R. Jaeger, M. Miller, and K. J. Ebeling,“Progress in high-power VCSELs and arrays,” Proc. SPIE 3419, 187–195 (1998).
[CrossRef]

Moloney, J. V.

C. Bückers, A. Thränhardt, S. W. Koch, M. Rattunde, N. Schulz, J. Wagner, J. Hader, and J. V. Moloney, “Microscopic calculation and measurement of the laser gain in a (GaIn)Sb quantum well structure,” Appl. Phys. Lett. 92, 071107 (2008).
[CrossRef]

Nakwaski, W.

M. Osinski and W. Nakwaski, “Effective thermal conductivity analysis of 1.55 μm InGaAsP/InP vertical-cavity top-surface-emitting microlasers,” Electron. Lett. 29, 1015–1016 (1993).
[CrossRef]

Noshob, B. Z.

T. Borca-Tasciuca, D. W. Song, J. R. Meyer, I. Vurgaftman, M.-J. Yang, B. Z. Noshob, L. J. Whitman, and G. Chen, “Thermal conductivity of AlAs0.07Sb0.93 and Al0.9Ga0.1As0.07Sb0.93 alloys and (AlAs)1/(AlSb)11 digital-alloy superlattices,” J. Appl. Phys. 92, 4994–4998 (2002).
[CrossRef]

Orphal, J.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2005).
[CrossRef]

Ortsiefer, M.

Osinski, M.

M. Osinski and W. Nakwaski, “Effective thermal conductivity analysis of 1.55 μm InGaAsP/InP vertical-cavity top-surface-emitting microlasers,” Electron. Lett. 29, 1015–1016 (1993).
[CrossRef]

Perona, A.

A. Perona, A. Garnache, L. Cerutti, A. Ducanchez, S. Mihindou, P. Grech, G. Boissier, and F. Genty, “AlAsSb/GaSb doped distributed Bragg reflectors for electrically pumped VCSELs emitting around 2.3 μm,” Semicond. Sci. Technol. 22, 1140–1144 (2007).
[CrossRef]

Perrin, A.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2005).
[CrossRef]

Pudikov, V.

G. M. Yang, M. H. MacDougal, V. Pudikov, and P. D. Dapkus, “Influence of mirror reflectivity on laser performance of very-low-threshold vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 7, 1228–1230 (1995).
[CrossRef]

Rattunde, M.

C. Bückers, A. Thränhardt, S. W. Koch, M. Rattunde, N. Schulz, J. Wagner, J. Hader, and J. V. Moloney, “Microscopic calculation and measurement of the laser gain in a (GaIn)Sb quantum well structure,” Appl. Phys. Lett. 92, 071107 (2008).
[CrossRef]

N. Schulz, J.-M. Hopkins, M. Rattunde, D. Burns, and J. Wagner, “High-brightness long-wavelength semiconductor disk lasers,” Laser & Photon. Rev. 2, 160–181 (2008).
[CrossRef] [PubMed]

Rinsland, C. P.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2005).
[CrossRef]

Romanini, D.

E. R. T. Kerstel, R. Q. Iannone, M. Chenevier, S. Kassi, H.-J. Jost, and D. Romanini, “A water isotope (2H, 17O, and 18O) spectrometer based on optical feedback cavity-enhanced absorption for in situ airborne applications,” Appl. Phys. B: Lasers Opt. 85, 397–406 (2006).
[CrossRef]

Rothman, L. S.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2005).
[CrossRef]

Schneider, R. P.

K. L. Lear, R. P. Schneider, K. D. Choquette, and S. P. Kilcoyne, “Index guiding dependent effects in implant and oxide confined vertical-cavity lasers,” IEEE Photon. Technol. Lett. 8, 740–742 (1996).
[CrossRef]

Schulz, N.

C. Bückers, A. Thränhardt, S. W. Koch, M. Rattunde, N. Schulz, J. Wagner, J. Hader, and J. V. Moloney, “Microscopic calculation and measurement of the laser gain in a (GaIn)Sb quantum well structure,” Appl. Phys. Lett. 92, 071107 (2008).
[CrossRef]

N. Schulz, J.-M. Hopkins, M. Rattunde, D. Burns, and J. Wagner, “High-brightness long-wavelength semiconductor disk lasers,” Laser & Photon. Rev. 2, 160–181 (2008).
[CrossRef] [PubMed]

Selvig, E.

W. W. Bewley, C. L. Felix, I. Vurgaftman, E. H. Aifer, J. R. Meyer, L. Goldberg, J. R. Lindle, D. H. Chow, and E. Selvig, “Continuous-wave mid-infrared VCSELs,” IEEE Photon. Technol. Lett. 10, 660–662 (1998).
[CrossRef]

Smith, M. A. H.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2005).
[CrossRef]

Song, D. W.

T. Borca-Tasciuca, D. W. Song, J. R. Meyer, I. Vurgaftman, M.-J. Yang, B. Z. Noshob, L. J. Whitman, and G. Chen, “Thermal conductivity of AlAs0.07Sb0.93 and Al0.9Ga0.1As0.07Sb0.93 alloys and (AlAs)1/(AlSb)11 digital-alloy superlattices,” J. Appl. Phys. 92, 4994–4998 (2002).
[CrossRef]

Strzoda, R.

A. Hangauer, J. Chen, R. Strzoda, and M.-C. Amann, “The frequency modulation response of vertical-cavity surface-emitting lasers: experiment and theory,” IEEE J. Sel. Top. Quantum Electron. 17, 1–10 (2011).

A. Hangauer, J. Chen, R. Strzoda, M. Ortsiefer, and M.-C. Amann, “Wavelength modulation spectroscopy with a widely tunable InP-based 2.3 μm vertical-cavity surface-emitting laser,” Opt. Lett. 33, 1566–1568 (2008).
[CrossRef] [PubMed]

J. Chen, A. Hangauer, A. Bachmann, T. Lim, K. Kashani-Shirazi, R. Strzoda, and M.-C. Amann, “CO and CH4 sensing with single mode 2.3 μm GaSb-based VCSEL,” in Conference on Lasers and Electro-Optics (Optical Society of America, Baltimore, MD, 2009), paper CThI.

Tennyson, J.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2005).
[CrossRef]

Thränhardt, A.

C. Bückers, A. Thränhardt, S. W. Koch, M. Rattunde, N. Schulz, J. Wagner, J. Hader, and J. V. Moloney, “Microscopic calculation and measurement of the laser gain in a (GaIn)Sb quantum well structure,” Appl. Phys. Lett. 92, 071107 (2008).
[CrossRef]

Tolchenov, R. N.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2005).
[CrossRef]

Toth, R. A.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2005).
[CrossRef]

Tournie, E.

A. Ducanchez, L. Cerutti, P. Grech, F. Genty, and E. Tournie, “Mid-infrared GaSb-based EP-VCSEL emitting at 2.63 μm,” Electron. Lett. 45, 265–267 (2009).
[CrossRef]

Vander Auwera, J.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2005).
[CrossRef]

Varanasi, P.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2005).
[CrossRef]

Vurgaftman, I.

T. Borca-Tasciuca, D. W. Song, J. R. Meyer, I. Vurgaftman, M.-J. Yang, B. Z. Noshob, L. J. Whitman, and G. Chen, “Thermal conductivity of AlAs0.07Sb0.93 and Al0.9Ga0.1As0.07Sb0.93 alloys and (AlAs)1/(AlSb)11 digital-alloy superlattices,” J. Appl. Phys. 92, 4994–4998 (2002).
[CrossRef]

W. W. Bewley, C. L. Felix, I. Vurgaftman, E. H. Aifer, J. R. Meyer, L. Goldberg, J. R. Lindle, D. H. Chow, and E. Selvig, “Continuous-wave mid-infrared VCSELs,” IEEE Photon. Technol. Lett. 10, 660–662 (1998).
[CrossRef]

Wagner, G.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2005).
[CrossRef]

Wagner, J.

N. Schulz, J.-M. Hopkins, M. Rattunde, D. Burns, and J. Wagner, “High-brightness long-wavelength semiconductor disk lasers,” Laser & Photon. Rev. 2, 160–181 (2008).
[CrossRef] [PubMed]

C. Bückers, A. Thränhardt, S. W. Koch, M. Rattunde, N. Schulz, J. Wagner, J. Hader, and J. V. Moloney, “Microscopic calculation and measurement of the laser gain in a (GaIn)Sb quantum well structure,” Appl. Phys. Lett. 92, 071107 (2008).
[CrossRef]

Whitman, L. J.

T. Borca-Tasciuca, D. W. Song, J. R. Meyer, I. Vurgaftman, M.-J. Yang, B. Z. Noshob, L. J. Whitman, and G. Chen, “Thermal conductivity of AlAs0.07Sb0.93 and Al0.9Ga0.1As0.07Sb0.93 alloys and (AlAs)1/(AlSb)11 digital-alloy superlattices,” J. Appl. Phys. 92, 4994–4998 (2002).
[CrossRef]

Yang, G. M.

G. M. Yang, M. H. MacDougal, V. Pudikov, and P. D. Dapkus, “Influence of mirror reflectivity on laser performance of very-low-threshold vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 7, 1228–1230 (1995).
[CrossRef]

Yang, M.-J.

T. Borca-Tasciuca, D. W. Song, J. R. Meyer, I. Vurgaftman, M.-J. Yang, B. Z. Noshob, L. J. Whitman, and G. Chen, “Thermal conductivity of AlAs0.07Sb0.93 and Al0.9Ga0.1As0.07Sb0.93 alloys and (AlAs)1/(AlSb)11 digital-alloy superlattices,” J. Appl. Phys. 92, 4994–4998 (2002).
[CrossRef]

Anal. Chem. (1)

R. S. Inman and J. J. F. McAndrew, “Application of tunable diode laser absorption spectroscopy to trace moisture measurements in gases,” Anal. Chem. 66, 2471–2479 (1994).
[CrossRef]

Appl. Phys. B: Lasers Opt. (2)

E. R. T. Kerstel, R. Q. Iannone, M. Chenevier, S. Kassi, H.-J. Jost, and D. Romanini, “A water isotope (2H, 17O, and 18O) spectrometer based on optical feedback cavity-enhanced absorption for in situ airborne applications,” Appl. Phys. B: Lasers Opt. 85, 397–406 (2006).
[CrossRef]

J. T. C. Liu, J. B. Jeffries, and R. K. Hanson, “Wavelength modulation absorption spectroscopy with 2f detection using multiplexed diode lasers for rapid temperature measurements in gaseous flows,” Appl. Phys. B: Lasers Opt. 78, 503–511 (2004).
[CrossRef]

Appl. Phys. Lett. (2)

C. Bückers, A. Thränhardt, S. W. Koch, M. Rattunde, N. Schulz, J. Wagner, J. Hader, and J. V. Moloney, “Microscopic calculation and measurement of the laser gain in a (GaIn)Sb quantum well structure,” Appl. Phys. Lett. 92, 071107 (2008).
[CrossRef]

S. Arafin, A. Bachmann, K. Kashani-Shirazi, and M.-C. Amann, “Electrically-pumped continuous-wave vertical-cavity surface-emitting lasers at 2.6 μm,” Appl. Phys. Lett. 95, 131120 (2009).
[CrossRef]

Electron. Lett. (2)

A. Ducanchez, L. Cerutti, P. Grech, F. Genty, and E. Tournie, “Mid-infrared GaSb-based EP-VCSEL emitting at 2.63 μm,” Electron. Lett. 45, 265–267 (2009).
[CrossRef]

M. Osinski and W. Nakwaski, “Effective thermal conductivity analysis of 1.55 μm InGaAsP/InP vertical-cavity top-surface-emitting microlasers,” Electron. Lett. 29, 1015–1016 (1993).
[CrossRef]

IEEE J. Quantum Electron. (1)

D. I. Babic, Y. Chung, N. Dagli, and J. E. Bowers, “Modal reflection of quarter-wave mirrors in vertical-cavity lasers,” IEEE J. Quantum Electron. 29, 1950–1962 (1993).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (3)

S. Arafin, A. Bachmann, and M.-C. Amann, “Transverse-mode characteristics of GaSb-based VCSELs with buried-tunnel junctions,” IEEE J. Sel. Top. Quantum Electron. 9, 1–8 (2011).

A. Hangauer, J. Chen, R. Strzoda, and M.-C. Amann, “The frequency modulation response of vertical-cavity surface-emitting lasers: experiment and theory,” IEEE J. Sel. Top. Quantum Electron. 17, 1–10 (2011).

A. Bachmann, K. Kashani-Shirazi, S. Arafin, and M.-C. Amann, “GaSb-based VCSEL with buried tunnel junction for emission around 2.3 μm,” IEEE J. Sel. Top. Quantum Electron. 15, 933–940 (2009).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

W. W. Bewley, C. L. Felix, I. Vurgaftman, E. H. Aifer, J. R. Meyer, L. Goldberg, J. R. Lindle, D. H. Chow, and E. Selvig, “Continuous-wave mid-infrared VCSELs,” IEEE Photon. Technol. Lett. 10, 660–662 (1998).
[CrossRef]

A. N. Al-Omari and K. L. Lear, “VCSELs with a self-aligned contact and copper-plated heatsink,” IEEE Photon. Technol. Lett. 17, 1767–17697 (2005).
[CrossRef]

K. L. Lear, R. P. Schneider, K. D. Choquette, and S. P. Kilcoyne, “Index guiding dependent effects in implant and oxide confined vertical-cavity lasers,” IEEE Photon. Technol. Lett. 8, 740–742 (1996).
[CrossRef]

G. M. Yang, M. H. MacDougal, V. Pudikov, and P. D. Dapkus, “Influence of mirror reflectivity on laser performance of very-low-threshold vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 7, 1228–1230 (1995).
[CrossRef]

J. Appl. Phys. (3)

R. Arndt, “Analytical line shapes for Lorentzian signals broadened by modulation,” J. Appl. Phys. 36, 2522–2524 (1965).
[CrossRef]

S. Adachi, “Lattice thermal conductivity of group-IV and III–V semiconductor alloys,” J. Appl. Phys. 102, 063502 (2007).
[CrossRef]

T. Borca-Tasciuca, D. W. Song, J. R. Meyer, I. Vurgaftman, M.-J. Yang, B. Z. Noshob, L. J. Whitman, and G. Chen, “Thermal conductivity of AlAs0.07Sb0.93 and Al0.9Ga0.1As0.07Sb0.93 alloys and (AlAs)1/(AlSb)11 digital-alloy superlattices,” J. Appl. Phys. 92, 4994–4998 (2002).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (1)

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2005).
[CrossRef]

Laser & Photon. Rev. (1)

N. Schulz, J.-M. Hopkins, M. Rattunde, D. Burns, and J. Wagner, “High-brightness long-wavelength semiconductor disk lasers,” Laser & Photon. Rev. 2, 160–181 (2008).
[CrossRef] [PubMed]

N. J. Phys. (1)

A. Bachmann, S. Arafin, and K. Kashani-Shirazi, “Single-mode electrically pumped GaSb-based VCSELs emitting continuous-wave at 2.4 and 2.6 μm,” N. J. Phys. 11, 125014 (2009).
[CrossRef]

Opt. Lett. (1)

Proc. SPIE (1)

R. Michalzik, M. Grabherr, R. Jaeger, M. Miller, and K. J. Ebeling,“Progress in high-power VCSELs and arrays,” Proc. SPIE 3419, 187–195 (1998).
[CrossRef]

Semicond. Sci. Technol. (1)

A. Perona, A. Garnache, L. Cerutti, A. Ducanchez, S. Mihindou, P. Grech, G. Boissier, and F. Genty, “AlAsSb/GaSb doped distributed Bragg reflectors for electrically pumped VCSELs emitting around 2.3 μm,” Semicond. Sci. Technol. 22, 1140–1144 (2007).
[CrossRef]

Other (7)

A. Hangauer, J. Chen, and M.-C. Amann, “Vertical-cavity surface-emitting laser light-current characteristic at constant internal temperature,” IEEE Photon. Technol. Lett. available online,(2011).
[CrossRef]

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).

http://www.comsol.com/

M. Ortsiefer, “Langwellige Vertikalresonator-Laserdioden im Materialsystem InGaAlAs/InP,” PhD thesis (Technische Universität München, 2000).

F. Genty, A. Garnache, and L. Cerutti, “VCSELs emitting in the 2–3 μm wavelength range,” in Mid-infrared Semiconductor Optoelectronics, A. Krier, ed. Springer Series in Optical Sciences (Springer, 2006), Vol. 118, pp. 159–188.
[CrossRef]

J. Chen, A. Hangauer, A. Bachmann, T. Lim, K. Kashani-Shirazi, R. Strzoda, and M.-C. Amann, “CO and CH4 sensing with single mode 2.3 μm GaSb-based VCSEL,” in Conference on Lasers and Electro-Optics (Optical Society of America, Baltimore, MD, 2009), paper CThI.

A. Bachmann, K. Kashani-Shirazi, and M.-C. Amann, “GaSb-based electrically pumped VCSEL with buried tunnel junction operating continuous wave up to 50°C,” in Proceedings of IEEE Conference on Semiconductor Laser (Institute of Electrical and Electronic Engineers, Italy, 2008), paper TuA1, pp. 39–40.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic cross-sectional view of the GaSb-based VCSEL structure with BTJ. The current path is shown. The upper right corner is the SEM photograph of the top-emitting device after fabrication.

Fig. 2
Fig. 2

a) Two-dimensional (2-D) GaSb-based top emitting VCSEL structure employing a rotational structural symmetry along the z-axis used in the simulation. The contribution of different layers of the device in dissipating the heat is shown in percentage as well. b) 2-D steady state heat flux and temperature distribution. The black rectangle represents the QW region which has been assumed to be the main heat source in this simulation. The bottom epitaxial Bragg mirror on top of 500 μm thick GaSb substrate and top dielectric Bragg mirror have been marked with yellow border lines. White arrows represent the magnitude and the direction of the heat flow.

Fig. 3
Fig. 3

Square root of the measured CW threshold current at constant internal temperature against BTJ diameter of VCSELs emitting at a) 2.35 μm and b) 2.6 μm. Extracting the carrier diffusion length from these figures and taking that into account, the threshold current densities in such devices have been calculated shown as displayed in inset. The increase of the threshold current in devices with small aperture diameters is due to the high diffraction losses.

Fig. 4
Fig. 4

The dependence of a) maximum CW lasing temperature (T max) and b) thermal resistance at 20°C as a function of BTJ diameter of 2.6 μm VCSELs. The measured thermal resistance points are obtained by Eq. (6), whereas, the simulated (red-marked) points are by the finite element method (FEM) simulation, showing a good agreement. The curve fitting was done to the measured data. c) The consumed threshold power at a constant internal temperature and the temperature rise of the active region with respect to the heatsink temperature against BTJ diameter of 2.6 μm VCSELs. The continuously increasing temperature rise of the devices with BTJ diameters indicates that the device performance can be further improved by a better thermal design.

Fig. 5
Fig. 5

a) Simulated diffraction loss as a function of the BTJ diameter. Two different cavities are analyzed, the 2.3 μm VCSEL and the 2.6 μm VCSEL, the latter with a smaller BTJ-induced step in the cavity structure, thereby reducing the diffraction loss. For each cavity the diffraction loss for the fundamental mode field (LP01) and for the first higher order mode field (LP11) is calculated. b) Calculation of loss budget for 2.6 μm VCSELs with D BTJ = 8 μm.

Fig. 6
Fig. 6

a) Curves of constant laser emission wavelength at different driving current and heatsink temperature. Each constant wavelength curve represents the constant internal temperature of the device which can be extracted by extrapolating them to I = 0. The laser turn-off temperature can be determined to ≈ 77 ° C which is independent of T hs. Temperature dependent PI characteristics of the device with D BTJ = 9 μm is shown in inset. The maximum CW operating heatsink temperature of the device is approximately 59°C. b) Internal rollover temperature (T ro) and laser turn off temperatures (T off) as a function a T hs.

Fig. 7
Fig. 7

a) The slope of the PI characteristics calculated at constant internal temperature as a function of internal temperature, T in, b) Temperature dependent IV characteristics of the test structures with D pc = 23 μm representing device central part with BTJ and outer part without BTJ in order to show the current confinement efficiency in VCSELs as a function of temperature.

Fig. 8
Fig. 8

a) Inverse differential quantum efficiency ( η d 1 ) against the inverse of mirror loss α m 1 in order to extract the internal parameters, η i and α i, Using a linear fit. b) Band diagram of the active region, consisting of quaternary InGaAsSb embedded in GaSb barriers, used in 2.6 μm VCSELs.

Fig. 9
Fig. 9

a) Quantum well threshold gain against threshold current density for 2.6 μm VCSELs with D BTJ = 8 μm at 0° C and 10° C. The measured points are fitted using Eq. (12). b) Gain-current density curve for 2.6 μm VCSELs based on threshold gain variation with aperture diameter of the device. c) Calculated CW threshold current density as a function of number of QWs in the device.

Fig. 10
Fig. 10

a) Measured WMS first and second harmonic spectra of H2O absorption lines (black lines) and the fit using absorption line parameters from HITRAN database [1] (blue lines). The detected signal at the photodetector for VCSELs emitting at 2.6 μm and the fit extracted from corresponding first and second harmonic spectra as shown in inset. Due to the lack of the temperature stability in the measurement setup, a mismatch appears between these two signals. b) The driving current dependent emission spectra at T = 20°C, showing the single-mode emission and the range of tunability.

Tables (2)

Tables Icon

Table 1 Thermal Conductivity for Different Layers in GaSb-Based BTJ VCSELs

Tables Icon

Table 2 Thermal Conductivity for VCSELs with Active Diameter, 5 μm ≤ D a ≤ 13 μm (D aD BTJ) on Different Material System

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

k l = d 1 k 1 + d 2 k 2 d 1 + d 2 , k v = d 1 + d 2 d 1 / k 1 + d 2 / k 2
Q = I th V ac V = I th V ac π 4 ( D BTJ + 2 r diff ) 2 h
V ac = V th I th R s
I th = π 4 ( D BTJ + 2 r diff ) 2 J th ( D BTJ + 2 r diff ) 2
Δ T = R th Δ P th
R t h = Δ λ Δ P el | T = c o n s t . Δ λ Δ T | P el = c o n s t .
α ¯ m FCA = n L α H + n H α L n H + n L
T ro = T hs + P ro R th
T off = T hs + P off R th
1 η d = α i η i . 1 α m + 1 η i
α m = 1 2 L eff ln ( 1 R oc R b )
g th = g o l n ( η i J th N QW J tr )
g th = 1 Γ z ( α i + 1 2 L eff ln ( 1 R oc R b ) )
2 N QW L QW Γ r g th = η i T oc η d
δ = 2 N QW L QW Γ r ( N QW ) g th ( J th N QW )
J th = N QW J tr η i exp ( δ 2 N QW L QW Γ r g 0 )

Metrics