Abstract

Phase-modulated ring resonant switches are receiving increasing attention for monolithic Silicon photonic networks. Resilience to fabrication variations and operational tolerances are however required to create networks with sufficient connectivity and bandwidth. In this work we use the combination of vectorial optical-mode propagation and transfer matrix calculation to map fabrication-level feature size variation to the optical switch performance metrics for extinction ratio, bandwidth and power penalty. Fabrication tolerances may be relaxed considerably through the combination of moderate size directional couplers of up to 30 µm, moderate 400 GHz free spectral range resonator design and the use of fifth order resonance. High speed 10Gb/s, wavelength-multiplex-compliant, optical signal routing is predicted with on-state power penalties of 0.2 dB – 0.7 dB and off-state signal extinctions of – 62dB.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Lipson, “Compact electro-optic modulators on a Silicon chip,” IEEE J. Sel. Top. Quantum. Electron. 12(6), 1520–1526 (2006).
    [CrossRef]
  2. D. Marris-Morini, L. Vivien, G. Rasigade, J.-M. Fedeli, E. Cassan, X. Le Roux, P. Crozat, S. Maine, A. Lupu, P. Lyan, P. Rivallin, M. Halbwax, and S. Laval, “Recent progress in high-speed Silicon-based optical modulators,” Proc. IEEE 97(7), 1199–1215 (2009).
    [CrossRef]
  3. Q. Xu, S. Manipatruni, B. Schimdt, J. Shakya, and M. Lipson, “12.5 Gbit/s carrier-injection based Silicon microring modulators,” Opt. Express 15(2), 430–436 (2007).
    [CrossRef] [PubMed]
  4. D. Vantrease, R. Schreiber, M. Monchiero, M. McLaren, N. P. Jouppi, M. Fiorentino, A. Davis, N. Binkert, R. G. Beausoleil, and J. H. Ahn, “Corona: System implications of emerging nanophotonic technology”, Proceedings of the 35th International Symposium on Computer Architecture, Beijing, China, June 2008.
  5. Y. Pan, P. Kumar, J. Kim, G. Memik, Y. Zhang, and A. Choudhary, “Firefly: Illuminating future network-on-chip with nanophotonics”, 36th International Symposium on Computer Architecture, Austin, 2009.
  6. F. Xia, M. Rooks, L. Sekaric, and Y. Vlasov, “Ultra-compact high order ring resonator filters using submicron silicon photonic wires for on-chip optical interconnects,” Opt. Express 15(19), 11934–11941 (2007).
    [CrossRef] [PubMed]
  7. Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2(4), 242–246 (2008).
    [CrossRef]
  8. R. A. Soref and B. R. Bennett, “Electrooptical effects in Silicon,” J. Quantum Electron. 23(1), 123–129 (1987).
    [CrossRef]
  9. C. K. Madsen and J. H. Zhao, Optical filter design and analysis (John Wiley & Sons, 1999).
  10. S. K. Selvaraja, P. Jaenen, W. Bogaerts, D. van Thourhout, P. Dumon, and R. Baets, “Fabrication of photonic wire and crystal circuits in Silicon-on-Insulator using 193nm optical lithography,” J. Lightwave Technol. 27(18), 4076–4083 (2009).
    [CrossRef]
  11. FimmProp from Photon Design, Oxford, UK.
  12. I. H. White, E. T. Aw, K. A. Williams, H. Wang, A. Wonfor, and R. V. Penty, “Scalable optical switches for computing applications,” J. Opt. Netw. 8(2), 215–224 (2009).
    [CrossRef]
  13. E. A. J. Marcatili, “Bends in optical guides,” Bell Syst. Tech. J. 48, 2103 (1969).
  14. R. Beausoliel, Private Communication.

2009 (3)

2008 (1)

Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2(4), 242–246 (2008).
[CrossRef]

2007 (2)

2006 (1)

M. Lipson, “Compact electro-optic modulators on a Silicon chip,” IEEE J. Sel. Top. Quantum. Electron. 12(6), 1520–1526 (2006).
[CrossRef]

1987 (1)

R. A. Soref and B. R. Bennett, “Electrooptical effects in Silicon,” J. Quantum Electron. 23(1), 123–129 (1987).
[CrossRef]

1969 (1)

E. A. J. Marcatili, “Bends in optical guides,” Bell Syst. Tech. J. 48, 2103 (1969).

Aw, E. T.

Baets, R.

Bennett, B. R.

R. A. Soref and B. R. Bennett, “Electrooptical effects in Silicon,” J. Quantum Electron. 23(1), 123–129 (1987).
[CrossRef]

Bogaerts, W.

Cassan, E.

D. Marris-Morini, L. Vivien, G. Rasigade, J.-M. Fedeli, E. Cassan, X. Le Roux, P. Crozat, S. Maine, A. Lupu, P. Lyan, P. Rivallin, M. Halbwax, and S. Laval, “Recent progress in high-speed Silicon-based optical modulators,” Proc. IEEE 97(7), 1199–1215 (2009).
[CrossRef]

Crozat, P.

D. Marris-Morini, L. Vivien, G. Rasigade, J.-M. Fedeli, E. Cassan, X. Le Roux, P. Crozat, S. Maine, A. Lupu, P. Lyan, P. Rivallin, M. Halbwax, and S. Laval, “Recent progress in high-speed Silicon-based optical modulators,” Proc. IEEE 97(7), 1199–1215 (2009).
[CrossRef]

Dumon, P.

Fedeli, J.-M.

D. Marris-Morini, L. Vivien, G. Rasigade, J.-M. Fedeli, E. Cassan, X. Le Roux, P. Crozat, S. Maine, A. Lupu, P. Lyan, P. Rivallin, M. Halbwax, and S. Laval, “Recent progress in high-speed Silicon-based optical modulators,” Proc. IEEE 97(7), 1199–1215 (2009).
[CrossRef]

Green, W. M. J.

Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2(4), 242–246 (2008).
[CrossRef]

Halbwax, M.

D. Marris-Morini, L. Vivien, G. Rasigade, J.-M. Fedeli, E. Cassan, X. Le Roux, P. Crozat, S. Maine, A. Lupu, P. Lyan, P. Rivallin, M. Halbwax, and S. Laval, “Recent progress in high-speed Silicon-based optical modulators,” Proc. IEEE 97(7), 1199–1215 (2009).
[CrossRef]

Jaenen, P.

Laval, S.

D. Marris-Morini, L. Vivien, G. Rasigade, J.-M. Fedeli, E. Cassan, X. Le Roux, P. Crozat, S. Maine, A. Lupu, P. Lyan, P. Rivallin, M. Halbwax, and S. Laval, “Recent progress in high-speed Silicon-based optical modulators,” Proc. IEEE 97(7), 1199–1215 (2009).
[CrossRef]

Le Roux, X.

D. Marris-Morini, L. Vivien, G. Rasigade, J.-M. Fedeli, E. Cassan, X. Le Roux, P. Crozat, S. Maine, A. Lupu, P. Lyan, P. Rivallin, M. Halbwax, and S. Laval, “Recent progress in high-speed Silicon-based optical modulators,” Proc. IEEE 97(7), 1199–1215 (2009).
[CrossRef]

Lipson, M.

Q. Xu, S. Manipatruni, B. Schimdt, J. Shakya, and M. Lipson, “12.5 Gbit/s carrier-injection based Silicon microring modulators,” Opt. Express 15(2), 430–436 (2007).
[CrossRef] [PubMed]

M. Lipson, “Compact electro-optic modulators on a Silicon chip,” IEEE J. Sel. Top. Quantum. Electron. 12(6), 1520–1526 (2006).
[CrossRef]

Lupu, A.

D. Marris-Morini, L. Vivien, G. Rasigade, J.-M. Fedeli, E. Cassan, X. Le Roux, P. Crozat, S. Maine, A. Lupu, P. Lyan, P. Rivallin, M. Halbwax, and S. Laval, “Recent progress in high-speed Silicon-based optical modulators,” Proc. IEEE 97(7), 1199–1215 (2009).
[CrossRef]

Lyan, P.

D. Marris-Morini, L. Vivien, G. Rasigade, J.-M. Fedeli, E. Cassan, X. Le Roux, P. Crozat, S. Maine, A. Lupu, P. Lyan, P. Rivallin, M. Halbwax, and S. Laval, “Recent progress in high-speed Silicon-based optical modulators,” Proc. IEEE 97(7), 1199–1215 (2009).
[CrossRef]

Maine, S.

D. Marris-Morini, L. Vivien, G. Rasigade, J.-M. Fedeli, E. Cassan, X. Le Roux, P. Crozat, S. Maine, A. Lupu, P. Lyan, P. Rivallin, M. Halbwax, and S. Laval, “Recent progress in high-speed Silicon-based optical modulators,” Proc. IEEE 97(7), 1199–1215 (2009).
[CrossRef]

Manipatruni, S.

Marcatili, E. A. J.

E. A. J. Marcatili, “Bends in optical guides,” Bell Syst. Tech. J. 48, 2103 (1969).

Marris-Morini, D.

D. Marris-Morini, L. Vivien, G. Rasigade, J.-M. Fedeli, E. Cassan, X. Le Roux, P. Crozat, S. Maine, A. Lupu, P. Lyan, P. Rivallin, M. Halbwax, and S. Laval, “Recent progress in high-speed Silicon-based optical modulators,” Proc. IEEE 97(7), 1199–1215 (2009).
[CrossRef]

Penty, R. V.

Rasigade, G.

D. Marris-Morini, L. Vivien, G. Rasigade, J.-M. Fedeli, E. Cassan, X. Le Roux, P. Crozat, S. Maine, A. Lupu, P. Lyan, P. Rivallin, M. Halbwax, and S. Laval, “Recent progress in high-speed Silicon-based optical modulators,” Proc. IEEE 97(7), 1199–1215 (2009).
[CrossRef]

Rivallin, P.

D. Marris-Morini, L. Vivien, G. Rasigade, J.-M. Fedeli, E. Cassan, X. Le Roux, P. Crozat, S. Maine, A. Lupu, P. Lyan, P. Rivallin, M. Halbwax, and S. Laval, “Recent progress in high-speed Silicon-based optical modulators,” Proc. IEEE 97(7), 1199–1215 (2009).
[CrossRef]

Rooks, M.

Schimdt, B.

Sekaric, L.

Selvaraja, S. K.

Shakya, J.

Soref, R. A.

R. A. Soref and B. R. Bennett, “Electrooptical effects in Silicon,” J. Quantum Electron. 23(1), 123–129 (1987).
[CrossRef]

van Thourhout, D.

Vivien, L.

D. Marris-Morini, L. Vivien, G. Rasigade, J.-M. Fedeli, E. Cassan, X. Le Roux, P. Crozat, S. Maine, A. Lupu, P. Lyan, P. Rivallin, M. Halbwax, and S. Laval, “Recent progress in high-speed Silicon-based optical modulators,” Proc. IEEE 97(7), 1199–1215 (2009).
[CrossRef]

Vlasov, Y.

Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2(4), 242–246 (2008).
[CrossRef]

F. Xia, M. Rooks, L. Sekaric, and Y. Vlasov, “Ultra-compact high order ring resonator filters using submicron silicon photonic wires for on-chip optical interconnects,” Opt. Express 15(19), 11934–11941 (2007).
[CrossRef] [PubMed]

Wang, H.

White, I. H.

Williams, K. A.

Wonfor, A.

Xia, F.

Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2(4), 242–246 (2008).
[CrossRef]

F. Xia, M. Rooks, L. Sekaric, and Y. Vlasov, “Ultra-compact high order ring resonator filters using submicron silicon photonic wires for on-chip optical interconnects,” Opt. Express 15(19), 11934–11941 (2007).
[CrossRef] [PubMed]

Xu, Q.

Bell Syst. Tech. J. (1)

E. A. J. Marcatili, “Bends in optical guides,” Bell Syst. Tech. J. 48, 2103 (1969).

J. Lightwave Technol. (1)

J. Opt. Netw. (1)

J. Quantum Electron. (1)

R. A. Soref and B. R. Bennett, “Electrooptical effects in Silicon,” J. Quantum Electron. 23(1), 123–129 (1987).
[CrossRef]

J. Sel. Top. Quantum. Electron. (1)

M. Lipson, “Compact electro-optic modulators on a Silicon chip,” IEEE J. Sel. Top. Quantum. Electron. 12(6), 1520–1526 (2006).
[CrossRef]

Nat. Photonics (1)

Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2(4), 242–246 (2008).
[CrossRef]

Opt. Express (2)

Proc. IEEE (1)

D. Marris-Morini, L. Vivien, G. Rasigade, J.-M. Fedeli, E. Cassan, X. Le Roux, P. Crozat, S. Maine, A. Lupu, P. Lyan, P. Rivallin, M. Halbwax, and S. Laval, “Recent progress in high-speed Silicon-based optical modulators,” Proc. IEEE 97(7), 1199–1215 (2009).
[CrossRef]

Other (5)

D. Vantrease, R. Schreiber, M. Monchiero, M. McLaren, N. P. Jouppi, M. Fiorentino, A. Davis, N. Binkert, R. G. Beausoleil, and J. H. Ahn, “Corona: System implications of emerging nanophotonic technology”, Proceedings of the 35th International Symposium on Computer Architecture, Beijing, China, June 2008.

Y. Pan, P. Kumar, J. Kim, G. Memik, Y. Zhang, and A. Choudhary, “Firefly: Illuminating future network-on-chip with nanophotonics”, 36th International Symposium on Computer Architecture, Austin, 2009.

C. K. Madsen and J. H. Zhao, Optical filter design and analysis (John Wiley & Sons, 1999).

FimmProp from Photon Design, Oxford, UK.

R. Beausoliel, Private Communication.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Resonant switch elements showing waveguides (dark lines) and electrodes (shaded areas) (i) First order switch also includes terminology used for the transfer matrix description (ii) Third order switch with three coupled ring resonators (iii) Fifth order switch with five coupled ring resonators

Fig. 2
Fig. 2

Mapping root mean square difference between target transfer functions and idealized filter responses (i) Third order resonator compared to 0.126Δffsr flat pass-band-width filter with – 60 dB/decade roll-off (ii) Fifth order resonator compared to 0.126Δffsr flat pass-band-width filter with – 100 dB/decade roll-off

Fig. 3
Fig. 3

Sensitivity of pass-band transfer function to coupling coefficient in fifth order resonators. (i) Outermost coupling coefficient κ1, (ii) κ2 and (iii) innermost coefficient κ3 . Transfer functions plotted for the target coupling coefficients (black) and also for deviations from this value of 0.8 (blue), 0.9 (green), 1.1 (yellow) and 1.2 (red) multiples of the target coupling coefficient. The absolute frequency axis is used to enlarge details for the symmetrical transfer functions.

Fig. 4
Fig. 4

Schematic diagram for a directional coupler with design variables

Fig. 5
Fig. 5

Fabrication induced power coupling error in short directional coupler designs Target waveguide separations of 100 nm (black) 180 nm (blue) and 280 nm (red) are shown for target power coupling in the range 0.05 to 0.45.

Fig. 6
Fig. 6

Bandwidth narrowing as a result of optical path length phase error and loss in high-order switches. Systematic error (black lines) plotted as a function of phase error Random error (red lines with error bars) plotted as a function of standard deviation for (i) first ring resonant switch, (ii) third ring resonant switch and (iii) fifth order ring resonant switch Data for varied levels of waveguide loss are also shown with solid and dashed lines.

Fig. 7
Fig. 7

Loss dependence on phase modulation for a 5th order resonant switch using two modulated rings (i) Phase is swept continuously from 0 to π for the contour map (ii) Transfer functions plotted for the ring-coupled path for four values of phase, 0, π/4, π/2 and π.

Fig. 8
Fig. 8

Signal extinction for the ring coupled path (left) and by-pass path (right) for ϕ = 0 and π/2 switch states in first (ο), third (Δ) and fifth (⋄) order ring resonant switches. The vertical lines differentiate the two switch states for the two paths.

Fig. 9
Fig. 9

Worst case power penalty for 10 Gb/s on-off-keyed data transmitted though the resonant switch designs. The optical frequency detuning is scanned to show spectral tolerance. The range of fabricated waveguide widths is represented by the worst case. First (black), third (blue) and fifth (red) order resonances are shown.

Tables (1)

Tables Icon

Table 1 Calculated Coupler Lengths in Selected Waveguide Directional Coupler Designs

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

( T N + 1 R N + 1 ) = n = 0 N 1 j κ n z 1 γ exp { j ϕ n } ( 1 - ( 1 - κ n ) ( 1 - κ n ) z - 1 γ exp { - j ϕ n } - z - 1 γ exp { - j ϕ n } ) . ( T 0 R 0 )
f Δ f fsr = 1 2 π cos - 1 { 1 + ( 1 - κ ) 2 - κ 2 H 1 , ring 2 ( 1 - κ ) }
H 1 , extinction ( f = Δ f fsr / 4 ) = ( 1 + ( 1 - κ ) 2 ) κ - 2
n r L i λ i = i c / f i = c / Δ f fsr
δ f / Δ f fsr n r δ L / λ i = ϕ / 2 π
δ f / Δ f f s r δ n r L / λ i = ϕ / 2 π

Metrics