Abstract

Strain-balanced In0.6Ga0.4As/Al0.56In0.44As quantum cascade lasers emitting at a wavelength of 7.1 μm are reported. The active region is based on a three-phonon-resonance quantum design with a low voltage defect of 120 meV at injection resonance. A maximum wall-plug efficiency of 19% is demonstrated in pulsed mode at 293 K. Continuous-wave output power of 1.4 W and wall-plug efficiency of 10% are measured at the same temperature, as well as 1.2 W of average power in uncooled operation. A model for backfilling of the lower laser level which takes into account the number of subbands in the injector is presented and applied to determine the optimum value of the voltage defect to maximize wall-plug efficiency at room temperature, which is found to be ~100 meV, in good agreement with experimental results.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3 W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett. 95(14), 141113 (2009).
    [CrossRef]
  2. Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98(18), 181102 (2011).
    [CrossRef]
  3. Y. Yao, X. Wang, J.-Y. Fan, and C. F. Gmachl, “High performance ‘continuum-to-continuum’ quantum cascade lasers with a broad gain bandwidth of over 400 cm−1,” Appl. Phys. Lett. 97(8), 081115 (2010).
    [CrossRef]
  4. R. Maulini, A. Lyakh, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, F. Capasso, and C. K. N. Patel, “High power thermoelectrically cooled and uncooled quantum cascade lasers with optimized reflectivity facet coatings,” Appl. Phys. Lett. 95(15), 151112 (2009).
    [CrossRef]
  5. R. Maulini, A. Lyakh, A. Tsekoun, R. Go, and C. K. N. Patel, “High average power uncooled mid-wave infrared quantum cascade lasers,” Electron. Lett. 47(6), 395 (2011).
    [CrossRef]
  6. A. Bismuto, R. Terazzi, M. Beck, and J. Faist, “Electrically tunable, high performance quantum cascade laser,” Appl. Phys. Lett. 96(14), 141105 (2010).
    [CrossRef]
  7. M. Troccoli, X. Wang, and J. Fan, “Quantum cascade lasers: high-power emission and single-mode operation in the long-wave infrared (λ>6 μm),” Opt. Eng. 49(11), 111106 (2010).
    [CrossRef]
  8. R. P. Leavitt, J. L. Bradshaw, K. M. Lascola, G. P. Meissner, F. Micalizzi, F. J. Towner, and J. T. Pham, “High-performance quantum cascade lasers in the 7.3- to 7.8-μm wavelength band using strained active regions,” Opt. Eng. 49(11), 111109 (2010).
    [CrossRef]
  9. J. S. Yu, S. Slivken, and M. Razeghi, “Injector doping level-dependent continuous-wave operation of InP-based QCLs at λ ~ 7.3 μm above room temperature,” Semicond. Sci. Technol. 25(12), 125015 (2010).
    [CrossRef]
  10. A. Lyakh, R. Maulini, A. Tsekoun, R. Go, S. Von der Porten, C. Pflügl, L. Diehl, F. Capasso, and C. K. N. Patel, “High-performance continuous-wave room temperature 4.0-μm quantum cascade lasers with single-facet optical emission exceeding 2 W,” Proc. Natl. Acad. Sci. U.S.A. 107(44), 18799–18802 (2010).
    [CrossRef]
  11. J. Faist, “Wallplug efficiency of quantum cascade lasers: critical parameters and fundamental limits,” Appl. Phys. Lett. 90(25), 253512 (2007).
    [CrossRef]
  12. Q. J. Wang, C. Pflügl, L. Diehl, F. Capasso, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “High performance quantum cascade lasers based on three-phonon-resonance design,” Appl. Phys. Lett. 94(1), 011103 (2009).
    [CrossRef]
  13. A. Tsekoun, R. Go, M. Pushkarsky, M. Razeghi, and C. K. N. Patel, “Improved performance of quantum cascade lasers through a scalable, manufacturable epitaxial-side-down mounting process,” Proc. Natl. Acad. Sci. U.S.A. 103(13), 4831–4835 (2006).
    [CrossRef] [PubMed]
  14. S. S. Howard, Z. Liu, D. Wasserman, A. J. Hoffman, T. S. Ko, and C. F. Gmachl, “High-performance quantum cascade lasers: optimized design through waveguide and thermal modeling,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1054–1064 (2007).
    [CrossRef]
  15. S. Katz, A. Vizbaras, G. Boehm, and M.-C. Amann, “Injectorless quantum cascade laser operating in continuous wave above room temperature,” Semicond. Sci. Technol. 24(12), 122001 (2009).
    [CrossRef]
  16. K. J. Franz, P. Q. Liu, J. Raftery, M. D. Escarra, A. J. Hoffman, S. S. Howard, Y. Yao, Y. Dikmelik, X. Wang, J. Fan, J. B. Khurgin, and C. Gmachl, “Short injector quantum cascade lasers,” IEEE J. Quantum Electron. 46(5), 591–600 (2010).
    [CrossRef]

2011

R. Maulini, A. Lyakh, A. Tsekoun, R. Go, and C. K. N. Patel, “High average power uncooled mid-wave infrared quantum cascade lasers,” Electron. Lett. 47(6), 395 (2011).
[CrossRef]

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98(18), 181102 (2011).
[CrossRef]

2010

Y. Yao, X. Wang, J.-Y. Fan, and C. F. Gmachl, “High performance ‘continuum-to-continuum’ quantum cascade lasers with a broad gain bandwidth of over 400 cm−1,” Appl. Phys. Lett. 97(8), 081115 (2010).
[CrossRef]

A. Bismuto, R. Terazzi, M. Beck, and J. Faist, “Electrically tunable, high performance quantum cascade laser,” Appl. Phys. Lett. 96(14), 141105 (2010).
[CrossRef]

M. Troccoli, X. Wang, and J. Fan, “Quantum cascade lasers: high-power emission and single-mode operation in the long-wave infrared (λ>6 μm),” Opt. Eng. 49(11), 111106 (2010).
[CrossRef]

R. P. Leavitt, J. L. Bradshaw, K. M. Lascola, G. P. Meissner, F. Micalizzi, F. J. Towner, and J. T. Pham, “High-performance quantum cascade lasers in the 7.3- to 7.8-μm wavelength band using strained active regions,” Opt. Eng. 49(11), 111109 (2010).
[CrossRef]

J. S. Yu, S. Slivken, and M. Razeghi, “Injector doping level-dependent continuous-wave operation of InP-based QCLs at λ ~ 7.3 μm above room temperature,” Semicond. Sci. Technol. 25(12), 125015 (2010).
[CrossRef]

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, S. Von der Porten, C. Pflügl, L. Diehl, F. Capasso, and C. K. N. Patel, “High-performance continuous-wave room temperature 4.0-μm quantum cascade lasers with single-facet optical emission exceeding 2 W,” Proc. Natl. Acad. Sci. U.S.A. 107(44), 18799–18802 (2010).
[CrossRef]

K. J. Franz, P. Q. Liu, J. Raftery, M. D. Escarra, A. J. Hoffman, S. S. Howard, Y. Yao, Y. Dikmelik, X. Wang, J. Fan, J. B. Khurgin, and C. Gmachl, “Short injector quantum cascade lasers,” IEEE J. Quantum Electron. 46(5), 591–600 (2010).
[CrossRef]

2009

S. Katz, A. Vizbaras, G. Boehm, and M.-C. Amann, “Injectorless quantum cascade laser operating in continuous wave above room temperature,” Semicond. Sci. Technol. 24(12), 122001 (2009).
[CrossRef]

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3 W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett. 95(14), 141113 (2009).
[CrossRef]

R. Maulini, A. Lyakh, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, F. Capasso, and C. K. N. Patel, “High power thermoelectrically cooled and uncooled quantum cascade lasers with optimized reflectivity facet coatings,” Appl. Phys. Lett. 95(15), 151112 (2009).
[CrossRef]

Q. J. Wang, C. Pflügl, L. Diehl, F. Capasso, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “High performance quantum cascade lasers based on three-phonon-resonance design,” Appl. Phys. Lett. 94(1), 011103 (2009).
[CrossRef]

2007

J. Faist, “Wallplug efficiency of quantum cascade lasers: critical parameters and fundamental limits,” Appl. Phys. Lett. 90(25), 253512 (2007).
[CrossRef]

S. S. Howard, Z. Liu, D. Wasserman, A. J. Hoffman, T. S. Ko, and C. F. Gmachl, “High-performance quantum cascade lasers: optimized design through waveguide and thermal modeling,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1054–1064 (2007).
[CrossRef]

2006

A. Tsekoun, R. Go, M. Pushkarsky, M. Razeghi, and C. K. N. Patel, “Improved performance of quantum cascade lasers through a scalable, manufacturable epitaxial-side-down mounting process,” Proc. Natl. Acad. Sci. U.S.A. 103(13), 4831–4835 (2006).
[CrossRef] [PubMed]

Amann, M.-C.

S. Katz, A. Vizbaras, G. Boehm, and M.-C. Amann, “Injectorless quantum cascade laser operating in continuous wave above room temperature,” Semicond. Sci. Technol. 24(12), 122001 (2009).
[CrossRef]

Bai, Y.

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98(18), 181102 (2011).
[CrossRef]

Bandyopadhyay, N.

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98(18), 181102 (2011).
[CrossRef]

Beck, M.

A. Bismuto, R. Terazzi, M. Beck, and J. Faist, “Electrically tunable, high performance quantum cascade laser,” Appl. Phys. Lett. 96(14), 141105 (2010).
[CrossRef]

Bismuto, A.

A. Bismuto, R. Terazzi, M. Beck, and J. Faist, “Electrically tunable, high performance quantum cascade laser,” Appl. Phys. Lett. 96(14), 141105 (2010).
[CrossRef]

Boehm, G.

S. Katz, A. Vizbaras, G. Boehm, and M.-C. Amann, “Injectorless quantum cascade laser operating in continuous wave above room temperature,” Semicond. Sci. Technol. 24(12), 122001 (2009).
[CrossRef]

Bradshaw, J. L.

R. P. Leavitt, J. L. Bradshaw, K. M. Lascola, G. P. Meissner, F. Micalizzi, F. J. Towner, and J. T. Pham, “High-performance quantum cascade lasers in the 7.3- to 7.8-μm wavelength band using strained active regions,” Opt. Eng. 49(11), 111109 (2010).
[CrossRef]

Capasso, F.

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, S. Von der Porten, C. Pflügl, L. Diehl, F. Capasso, and C. K. N. Patel, “High-performance continuous-wave room temperature 4.0-μm quantum cascade lasers with single-facet optical emission exceeding 2 W,” Proc. Natl. Acad. Sci. U.S.A. 107(44), 18799–18802 (2010).
[CrossRef]

Q. J. Wang, C. Pflügl, L. Diehl, F. Capasso, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “High performance quantum cascade lasers based on three-phonon-resonance design,” Appl. Phys. Lett. 94(1), 011103 (2009).
[CrossRef]

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3 W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett. 95(14), 141113 (2009).
[CrossRef]

R. Maulini, A. Lyakh, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, F. Capasso, and C. K. N. Patel, “High power thermoelectrically cooled and uncooled quantum cascade lasers with optimized reflectivity facet coatings,” Appl. Phys. Lett. 95(15), 151112 (2009).
[CrossRef]

Diehl, L.

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, S. Von der Porten, C. Pflügl, L. Diehl, F. Capasso, and C. K. N. Patel, “High-performance continuous-wave room temperature 4.0-μm quantum cascade lasers with single-facet optical emission exceeding 2 W,” Proc. Natl. Acad. Sci. U.S.A. 107(44), 18799–18802 (2010).
[CrossRef]

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3 W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett. 95(14), 141113 (2009).
[CrossRef]

Q. J. Wang, C. Pflügl, L. Diehl, F. Capasso, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “High performance quantum cascade lasers based on three-phonon-resonance design,” Appl. Phys. Lett. 94(1), 011103 (2009).
[CrossRef]

R. Maulini, A. Lyakh, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, F. Capasso, and C. K. N. Patel, “High power thermoelectrically cooled and uncooled quantum cascade lasers with optimized reflectivity facet coatings,” Appl. Phys. Lett. 95(15), 151112 (2009).
[CrossRef]

Dikmelik, Y.

K. J. Franz, P. Q. Liu, J. Raftery, M. D. Escarra, A. J. Hoffman, S. S. Howard, Y. Yao, Y. Dikmelik, X. Wang, J. Fan, J. B. Khurgin, and C. Gmachl, “Short injector quantum cascade lasers,” IEEE J. Quantum Electron. 46(5), 591–600 (2010).
[CrossRef]

Edamura, T.

Q. J. Wang, C. Pflügl, L. Diehl, F. Capasso, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “High performance quantum cascade lasers based on three-phonon-resonance design,” Appl. Phys. Lett. 94(1), 011103 (2009).
[CrossRef]

Escarra, M. D.

K. J. Franz, P. Q. Liu, J. Raftery, M. D. Escarra, A. J. Hoffman, S. S. Howard, Y. Yao, Y. Dikmelik, X. Wang, J. Fan, J. B. Khurgin, and C. Gmachl, “Short injector quantum cascade lasers,” IEEE J. Quantum Electron. 46(5), 591–600 (2010).
[CrossRef]

Faist, J.

A. Bismuto, R. Terazzi, M. Beck, and J. Faist, “Electrically tunable, high performance quantum cascade laser,” Appl. Phys. Lett. 96(14), 141105 (2010).
[CrossRef]

J. Faist, “Wallplug efficiency of quantum cascade lasers: critical parameters and fundamental limits,” Appl. Phys. Lett. 90(25), 253512 (2007).
[CrossRef]

Fan, J.

M. Troccoli, X. Wang, and J. Fan, “Quantum cascade lasers: high-power emission and single-mode operation in the long-wave infrared (λ>6 μm),” Opt. Eng. 49(11), 111106 (2010).
[CrossRef]

K. J. Franz, P. Q. Liu, J. Raftery, M. D. Escarra, A. J. Hoffman, S. S. Howard, Y. Yao, Y. Dikmelik, X. Wang, J. Fan, J. B. Khurgin, and C. Gmachl, “Short injector quantum cascade lasers,” IEEE J. Quantum Electron. 46(5), 591–600 (2010).
[CrossRef]

Fan, J.-Y.

Y. Yao, X. Wang, J.-Y. Fan, and C. F. Gmachl, “High performance ‘continuum-to-continuum’ quantum cascade lasers with a broad gain bandwidth of over 400 cm−1,” Appl. Phys. Lett. 97(8), 081115 (2010).
[CrossRef]

Franz, K. J.

K. J. Franz, P. Q. Liu, J. Raftery, M. D. Escarra, A. J. Hoffman, S. S. Howard, Y. Yao, Y. Dikmelik, X. Wang, J. Fan, J. B. Khurgin, and C. Gmachl, “Short injector quantum cascade lasers,” IEEE J. Quantum Electron. 46(5), 591–600 (2010).
[CrossRef]

Furuta, S.

Q. J. Wang, C. Pflügl, L. Diehl, F. Capasso, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “High performance quantum cascade lasers based on three-phonon-resonance design,” Appl. Phys. Lett. 94(1), 011103 (2009).
[CrossRef]

Gmachl, C.

K. J. Franz, P. Q. Liu, J. Raftery, M. D. Escarra, A. J. Hoffman, S. S. Howard, Y. Yao, Y. Dikmelik, X. Wang, J. Fan, J. B. Khurgin, and C. Gmachl, “Short injector quantum cascade lasers,” IEEE J. Quantum Electron. 46(5), 591–600 (2010).
[CrossRef]

Gmachl, C. F.

Y. Yao, X. Wang, J.-Y. Fan, and C. F. Gmachl, “High performance ‘continuum-to-continuum’ quantum cascade lasers with a broad gain bandwidth of over 400 cm−1,” Appl. Phys. Lett. 97(8), 081115 (2010).
[CrossRef]

S. S. Howard, Z. Liu, D. Wasserman, A. J. Hoffman, T. S. Ko, and C. F. Gmachl, “High-performance quantum cascade lasers: optimized design through waveguide and thermal modeling,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1054–1064 (2007).
[CrossRef]

Go, R.

R. Maulini, A. Lyakh, A. Tsekoun, R. Go, and C. K. N. Patel, “High average power uncooled mid-wave infrared quantum cascade lasers,” Electron. Lett. 47(6), 395 (2011).
[CrossRef]

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, S. Von der Porten, C. Pflügl, L. Diehl, F. Capasso, and C. K. N. Patel, “High-performance continuous-wave room temperature 4.0-μm quantum cascade lasers with single-facet optical emission exceeding 2 W,” Proc. Natl. Acad. Sci. U.S.A. 107(44), 18799–18802 (2010).
[CrossRef]

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3 W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett. 95(14), 141113 (2009).
[CrossRef]

R. Maulini, A. Lyakh, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, F. Capasso, and C. K. N. Patel, “High power thermoelectrically cooled and uncooled quantum cascade lasers with optimized reflectivity facet coatings,” Appl. Phys. Lett. 95(15), 151112 (2009).
[CrossRef]

A. Tsekoun, R. Go, M. Pushkarsky, M. Razeghi, and C. K. N. Patel, “Improved performance of quantum cascade lasers through a scalable, manufacturable epitaxial-side-down mounting process,” Proc. Natl. Acad. Sci. U.S.A. 103(13), 4831–4835 (2006).
[CrossRef] [PubMed]

Hoffman, A. J.

K. J. Franz, P. Q. Liu, J. Raftery, M. D. Escarra, A. J. Hoffman, S. S. Howard, Y. Yao, Y. Dikmelik, X. Wang, J. Fan, J. B. Khurgin, and C. Gmachl, “Short injector quantum cascade lasers,” IEEE J. Quantum Electron. 46(5), 591–600 (2010).
[CrossRef]

S. S. Howard, Z. Liu, D. Wasserman, A. J. Hoffman, T. S. Ko, and C. F. Gmachl, “High-performance quantum cascade lasers: optimized design through waveguide and thermal modeling,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1054–1064 (2007).
[CrossRef]

Howard, S. S.

K. J. Franz, P. Q. Liu, J. Raftery, M. D. Escarra, A. J. Hoffman, S. S. Howard, Y. Yao, Y. Dikmelik, X. Wang, J. Fan, J. B. Khurgin, and C. Gmachl, “Short injector quantum cascade lasers,” IEEE J. Quantum Electron. 46(5), 591–600 (2010).
[CrossRef]

S. S. Howard, Z. Liu, D. Wasserman, A. J. Hoffman, T. S. Ko, and C. F. Gmachl, “High-performance quantum cascade lasers: optimized design through waveguide and thermal modeling,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1054–1064 (2007).
[CrossRef]

Kan, H.

Q. J. Wang, C. Pflügl, L. Diehl, F. Capasso, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “High performance quantum cascade lasers based on three-phonon-resonance design,” Appl. Phys. Lett. 94(1), 011103 (2009).
[CrossRef]

Katz, S.

S. Katz, A. Vizbaras, G. Boehm, and M.-C. Amann, “Injectorless quantum cascade laser operating in continuous wave above room temperature,” Semicond. Sci. Technol. 24(12), 122001 (2009).
[CrossRef]

Khurgin, J. B.

K. J. Franz, P. Q. Liu, J. Raftery, M. D. Escarra, A. J. Hoffman, S. S. Howard, Y. Yao, Y. Dikmelik, X. Wang, J. Fan, J. B. Khurgin, and C. Gmachl, “Short injector quantum cascade lasers,” IEEE J. Quantum Electron. 46(5), 591–600 (2010).
[CrossRef]

Ko, T. S.

S. S. Howard, Z. Liu, D. Wasserman, A. J. Hoffman, T. S. Ko, and C. F. Gmachl, “High-performance quantum cascade lasers: optimized design through waveguide and thermal modeling,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1054–1064 (2007).
[CrossRef]

Lascola, K. M.

R. P. Leavitt, J. L. Bradshaw, K. M. Lascola, G. P. Meissner, F. Micalizzi, F. J. Towner, and J. T. Pham, “High-performance quantum cascade lasers in the 7.3- to 7.8-μm wavelength band using strained active regions,” Opt. Eng. 49(11), 111109 (2010).
[CrossRef]

Leavitt, R. P.

R. P. Leavitt, J. L. Bradshaw, K. M. Lascola, G. P. Meissner, F. Micalizzi, F. J. Towner, and J. T. Pham, “High-performance quantum cascade lasers in the 7.3- to 7.8-μm wavelength band using strained active regions,” Opt. Eng. 49(11), 111109 (2010).
[CrossRef]

Liu, P. Q.

K. J. Franz, P. Q. Liu, J. Raftery, M. D. Escarra, A. J. Hoffman, S. S. Howard, Y. Yao, Y. Dikmelik, X. Wang, J. Fan, J. B. Khurgin, and C. Gmachl, “Short injector quantum cascade lasers,” IEEE J. Quantum Electron. 46(5), 591–600 (2010).
[CrossRef]

Liu, Z.

S. S. Howard, Z. Liu, D. Wasserman, A. J. Hoffman, T. S. Ko, and C. F. Gmachl, “High-performance quantum cascade lasers: optimized design through waveguide and thermal modeling,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1054–1064 (2007).
[CrossRef]

Lyakh, A.

R. Maulini, A. Lyakh, A. Tsekoun, R. Go, and C. K. N. Patel, “High average power uncooled mid-wave infrared quantum cascade lasers,” Electron. Lett. 47(6), 395 (2011).
[CrossRef]

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, S. Von der Porten, C. Pflügl, L. Diehl, F. Capasso, and C. K. N. Patel, “High-performance continuous-wave room temperature 4.0-μm quantum cascade lasers with single-facet optical emission exceeding 2 W,” Proc. Natl. Acad. Sci. U.S.A. 107(44), 18799–18802 (2010).
[CrossRef]

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3 W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett. 95(14), 141113 (2009).
[CrossRef]

R. Maulini, A. Lyakh, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, F. Capasso, and C. K. N. Patel, “High power thermoelectrically cooled and uncooled quantum cascade lasers with optimized reflectivity facet coatings,” Appl. Phys. Lett. 95(15), 151112 (2009).
[CrossRef]

Maulini, R.

R. Maulini, A. Lyakh, A. Tsekoun, R. Go, and C. K. N. Patel, “High average power uncooled mid-wave infrared quantum cascade lasers,” Electron. Lett. 47(6), 395 (2011).
[CrossRef]

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, S. Von der Porten, C. Pflügl, L. Diehl, F. Capasso, and C. K. N. Patel, “High-performance continuous-wave room temperature 4.0-μm quantum cascade lasers with single-facet optical emission exceeding 2 W,” Proc. Natl. Acad. Sci. U.S.A. 107(44), 18799–18802 (2010).
[CrossRef]

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3 W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett. 95(14), 141113 (2009).
[CrossRef]

R. Maulini, A. Lyakh, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, F. Capasso, and C. K. N. Patel, “High power thermoelectrically cooled and uncooled quantum cascade lasers with optimized reflectivity facet coatings,” Appl. Phys. Lett. 95(15), 151112 (2009).
[CrossRef]

Meissner, G. P.

R. P. Leavitt, J. L. Bradshaw, K. M. Lascola, G. P. Meissner, F. Micalizzi, F. J. Towner, and J. T. Pham, “High-performance quantum cascade lasers in the 7.3- to 7.8-μm wavelength band using strained active regions,” Opt. Eng. 49(11), 111109 (2010).
[CrossRef]

Micalizzi, F.

R. P. Leavitt, J. L. Bradshaw, K. M. Lascola, G. P. Meissner, F. Micalizzi, F. J. Towner, and J. T. Pham, “High-performance quantum cascade lasers in the 7.3- to 7.8-μm wavelength band using strained active regions,” Opt. Eng. 49(11), 111109 (2010).
[CrossRef]

Patel, C. K. N.

R. Maulini, A. Lyakh, A. Tsekoun, R. Go, and C. K. N. Patel, “High average power uncooled mid-wave infrared quantum cascade lasers,” Electron. Lett. 47(6), 395 (2011).
[CrossRef]

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, S. Von der Porten, C. Pflügl, L. Diehl, F. Capasso, and C. K. N. Patel, “High-performance continuous-wave room temperature 4.0-μm quantum cascade lasers with single-facet optical emission exceeding 2 W,” Proc. Natl. Acad. Sci. U.S.A. 107(44), 18799–18802 (2010).
[CrossRef]

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3 W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett. 95(14), 141113 (2009).
[CrossRef]

R. Maulini, A. Lyakh, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, F. Capasso, and C. K. N. Patel, “High power thermoelectrically cooled and uncooled quantum cascade lasers with optimized reflectivity facet coatings,” Appl. Phys. Lett. 95(15), 151112 (2009).
[CrossRef]

A. Tsekoun, R. Go, M. Pushkarsky, M. Razeghi, and C. K. N. Patel, “Improved performance of quantum cascade lasers through a scalable, manufacturable epitaxial-side-down mounting process,” Proc. Natl. Acad. Sci. U.S.A. 103(13), 4831–4835 (2006).
[CrossRef] [PubMed]

Pflügl, C.

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, S. Von der Porten, C. Pflügl, L. Diehl, F. Capasso, and C. K. N. Patel, “High-performance continuous-wave room temperature 4.0-μm quantum cascade lasers with single-facet optical emission exceeding 2 W,” Proc. Natl. Acad. Sci. U.S.A. 107(44), 18799–18802 (2010).
[CrossRef]

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3 W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett. 95(14), 141113 (2009).
[CrossRef]

Q. J. Wang, C. Pflügl, L. Diehl, F. Capasso, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “High performance quantum cascade lasers based on three-phonon-resonance design,” Appl. Phys. Lett. 94(1), 011103 (2009).
[CrossRef]

R. Maulini, A. Lyakh, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, F. Capasso, and C. K. N. Patel, “High power thermoelectrically cooled and uncooled quantum cascade lasers with optimized reflectivity facet coatings,” Appl. Phys. Lett. 95(15), 151112 (2009).
[CrossRef]

Pham, J. T.

R. P. Leavitt, J. L. Bradshaw, K. M. Lascola, G. P. Meissner, F. Micalizzi, F. J. Towner, and J. T. Pham, “High-performance quantum cascade lasers in the 7.3- to 7.8-μm wavelength band using strained active regions,” Opt. Eng. 49(11), 111109 (2010).
[CrossRef]

Pushkarsky, M.

A. Tsekoun, R. Go, M. Pushkarsky, M. Razeghi, and C. K. N. Patel, “Improved performance of quantum cascade lasers through a scalable, manufacturable epitaxial-side-down mounting process,” Proc. Natl. Acad. Sci. U.S.A. 103(13), 4831–4835 (2006).
[CrossRef] [PubMed]

Raftery, J.

K. J. Franz, P. Q. Liu, J. Raftery, M. D. Escarra, A. J. Hoffman, S. S. Howard, Y. Yao, Y. Dikmelik, X. Wang, J. Fan, J. B. Khurgin, and C. Gmachl, “Short injector quantum cascade lasers,” IEEE J. Quantum Electron. 46(5), 591–600 (2010).
[CrossRef]

Razeghi, M.

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98(18), 181102 (2011).
[CrossRef]

J. S. Yu, S. Slivken, and M. Razeghi, “Injector doping level-dependent continuous-wave operation of InP-based QCLs at λ ~ 7.3 μm above room temperature,” Semicond. Sci. Technol. 25(12), 125015 (2010).
[CrossRef]

A. Tsekoun, R. Go, M. Pushkarsky, M. Razeghi, and C. K. N. Patel, “Improved performance of quantum cascade lasers through a scalable, manufacturable epitaxial-side-down mounting process,” Proc. Natl. Acad. Sci. U.S.A. 103(13), 4831–4835 (2006).
[CrossRef] [PubMed]

Slivken, S.

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98(18), 181102 (2011).
[CrossRef]

J. S. Yu, S. Slivken, and M. Razeghi, “Injector doping level-dependent continuous-wave operation of InP-based QCLs at λ ~ 7.3 μm above room temperature,” Semicond. Sci. Technol. 25(12), 125015 (2010).
[CrossRef]

Terazzi, R.

A. Bismuto, R. Terazzi, M. Beck, and J. Faist, “Electrically tunable, high performance quantum cascade laser,” Appl. Phys. Lett. 96(14), 141105 (2010).
[CrossRef]

Towner, F. J.

R. P. Leavitt, J. L. Bradshaw, K. M. Lascola, G. P. Meissner, F. Micalizzi, F. J. Towner, and J. T. Pham, “High-performance quantum cascade lasers in the 7.3- to 7.8-μm wavelength band using strained active regions,” Opt. Eng. 49(11), 111109 (2010).
[CrossRef]

Troccoli, M.

M. Troccoli, X. Wang, and J. Fan, “Quantum cascade lasers: high-power emission and single-mode operation in the long-wave infrared (λ>6 μm),” Opt. Eng. 49(11), 111106 (2010).
[CrossRef]

Tsao, S.

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98(18), 181102 (2011).
[CrossRef]

Tsekoun, A.

R. Maulini, A. Lyakh, A. Tsekoun, R. Go, and C. K. N. Patel, “High average power uncooled mid-wave infrared quantum cascade lasers,” Electron. Lett. 47(6), 395 (2011).
[CrossRef]

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, S. Von der Porten, C. Pflügl, L. Diehl, F. Capasso, and C. K. N. Patel, “High-performance continuous-wave room temperature 4.0-μm quantum cascade lasers with single-facet optical emission exceeding 2 W,” Proc. Natl. Acad. Sci. U.S.A. 107(44), 18799–18802 (2010).
[CrossRef]

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3 W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett. 95(14), 141113 (2009).
[CrossRef]

R. Maulini, A. Lyakh, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, F. Capasso, and C. K. N. Patel, “High power thermoelectrically cooled and uncooled quantum cascade lasers with optimized reflectivity facet coatings,” Appl. Phys. Lett. 95(15), 151112 (2009).
[CrossRef]

A. Tsekoun, R. Go, M. Pushkarsky, M. Razeghi, and C. K. N. Patel, “Improved performance of quantum cascade lasers through a scalable, manufacturable epitaxial-side-down mounting process,” Proc. Natl. Acad. Sci. U.S.A. 103(13), 4831–4835 (2006).
[CrossRef] [PubMed]

Vizbaras, A.

S. Katz, A. Vizbaras, G. Boehm, and M.-C. Amann, “Injectorless quantum cascade laser operating in continuous wave above room temperature,” Semicond. Sci. Technol. 24(12), 122001 (2009).
[CrossRef]

Von der Porten, S.

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, S. Von der Porten, C. Pflügl, L. Diehl, F. Capasso, and C. K. N. Patel, “High-performance continuous-wave room temperature 4.0-μm quantum cascade lasers with single-facet optical emission exceeding 2 W,” Proc. Natl. Acad. Sci. U.S.A. 107(44), 18799–18802 (2010).
[CrossRef]

Wang, Q. J.

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3 W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett. 95(14), 141113 (2009).
[CrossRef]

Q. J. Wang, C. Pflügl, L. Diehl, F. Capasso, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “High performance quantum cascade lasers based on three-phonon-resonance design,” Appl. Phys. Lett. 94(1), 011103 (2009).
[CrossRef]

Wang, X.

Y. Yao, X. Wang, J.-Y. Fan, and C. F. Gmachl, “High performance ‘continuum-to-continuum’ quantum cascade lasers with a broad gain bandwidth of over 400 cm−1,” Appl. Phys. Lett. 97(8), 081115 (2010).
[CrossRef]

K. J. Franz, P. Q. Liu, J. Raftery, M. D. Escarra, A. J. Hoffman, S. S. Howard, Y. Yao, Y. Dikmelik, X. Wang, J. Fan, J. B. Khurgin, and C. Gmachl, “Short injector quantum cascade lasers,” IEEE J. Quantum Electron. 46(5), 591–600 (2010).
[CrossRef]

M. Troccoli, X. Wang, and J. Fan, “Quantum cascade lasers: high-power emission and single-mode operation in the long-wave infrared (λ>6 μm),” Opt. Eng. 49(11), 111106 (2010).
[CrossRef]

Wasserman, D.

S. S. Howard, Z. Liu, D. Wasserman, A. J. Hoffman, T. S. Ko, and C. F. Gmachl, “High-performance quantum cascade lasers: optimized design through waveguide and thermal modeling,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1054–1064 (2007).
[CrossRef]

Yamanishi, M.

Q. J. Wang, C. Pflügl, L. Diehl, F. Capasso, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “High performance quantum cascade lasers based on three-phonon-resonance design,” Appl. Phys. Lett. 94(1), 011103 (2009).
[CrossRef]

Yao, Y.

Y. Yao, X. Wang, J.-Y. Fan, and C. F. Gmachl, “High performance ‘continuum-to-continuum’ quantum cascade lasers with a broad gain bandwidth of over 400 cm−1,” Appl. Phys. Lett. 97(8), 081115 (2010).
[CrossRef]

K. J. Franz, P. Q. Liu, J. Raftery, M. D. Escarra, A. J. Hoffman, S. S. Howard, Y. Yao, Y. Dikmelik, X. Wang, J. Fan, J. B. Khurgin, and C. Gmachl, “Short injector quantum cascade lasers,” IEEE J. Quantum Electron. 46(5), 591–600 (2010).
[CrossRef]

Yu, J. S.

J. S. Yu, S. Slivken, and M. Razeghi, “Injector doping level-dependent continuous-wave operation of InP-based QCLs at λ ~ 7.3 μm above room temperature,” Semicond. Sci. Technol. 25(12), 125015 (2010).
[CrossRef]

Appl. Phys. Lett.

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3 W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett. 95(14), 141113 (2009).
[CrossRef]

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98(18), 181102 (2011).
[CrossRef]

Y. Yao, X. Wang, J.-Y. Fan, and C. F. Gmachl, “High performance ‘continuum-to-continuum’ quantum cascade lasers with a broad gain bandwidth of over 400 cm−1,” Appl. Phys. Lett. 97(8), 081115 (2010).
[CrossRef]

R. Maulini, A. Lyakh, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, F. Capasso, and C. K. N. Patel, “High power thermoelectrically cooled and uncooled quantum cascade lasers with optimized reflectivity facet coatings,” Appl. Phys. Lett. 95(15), 151112 (2009).
[CrossRef]

A. Bismuto, R. Terazzi, M. Beck, and J. Faist, “Electrically tunable, high performance quantum cascade laser,” Appl. Phys. Lett. 96(14), 141105 (2010).
[CrossRef]

J. Faist, “Wallplug efficiency of quantum cascade lasers: critical parameters and fundamental limits,” Appl. Phys. Lett. 90(25), 253512 (2007).
[CrossRef]

Q. J. Wang, C. Pflügl, L. Diehl, F. Capasso, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “High performance quantum cascade lasers based on three-phonon-resonance design,” Appl. Phys. Lett. 94(1), 011103 (2009).
[CrossRef]

Electron. Lett.

R. Maulini, A. Lyakh, A. Tsekoun, R. Go, and C. K. N. Patel, “High average power uncooled mid-wave infrared quantum cascade lasers,” Electron. Lett. 47(6), 395 (2011).
[CrossRef]

IEEE J. Quantum Electron.

K. J. Franz, P. Q. Liu, J. Raftery, M. D. Escarra, A. J. Hoffman, S. S. Howard, Y. Yao, Y. Dikmelik, X. Wang, J. Fan, J. B. Khurgin, and C. Gmachl, “Short injector quantum cascade lasers,” IEEE J. Quantum Electron. 46(5), 591–600 (2010).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

S. S. Howard, Z. Liu, D. Wasserman, A. J. Hoffman, T. S. Ko, and C. F. Gmachl, “High-performance quantum cascade lasers: optimized design through waveguide and thermal modeling,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1054–1064 (2007).
[CrossRef]

Opt. Eng.

M. Troccoli, X. Wang, and J. Fan, “Quantum cascade lasers: high-power emission and single-mode operation in the long-wave infrared (λ>6 μm),” Opt. Eng. 49(11), 111106 (2010).
[CrossRef]

R. P. Leavitt, J. L. Bradshaw, K. M. Lascola, G. P. Meissner, F. Micalizzi, F. J. Towner, and J. T. Pham, “High-performance quantum cascade lasers in the 7.3- to 7.8-μm wavelength band using strained active regions,” Opt. Eng. 49(11), 111109 (2010).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A.

A. Tsekoun, R. Go, M. Pushkarsky, M. Razeghi, and C. K. N. Patel, “Improved performance of quantum cascade lasers through a scalable, manufacturable epitaxial-side-down mounting process,” Proc. Natl. Acad. Sci. U.S.A. 103(13), 4831–4835 (2006).
[CrossRef] [PubMed]

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, S. Von der Porten, C. Pflügl, L. Diehl, F. Capasso, and C. K. N. Patel, “High-performance continuous-wave room temperature 4.0-μm quantum cascade lasers with single-facet optical emission exceeding 2 W,” Proc. Natl. Acad. Sci. U.S.A. 107(44), 18799–18802 (2010).
[CrossRef]

Semicond. Sci. Technol.

S. Katz, A. Vizbaras, G. Boehm, and M.-C. Amann, “Injectorless quantum cascade laser operating in continuous wave above room temperature,” Semicond. Sci. Technol. 24(12), 122001 (2009).
[CrossRef]

J. S. Yu, S. Slivken, and M. Razeghi, “Injector doping level-dependent continuous-wave operation of InP-based QCLs at λ ~ 7.3 μm above room temperature,” Semicond. Sci. Technol. 25(12), 125015 (2010).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic conduction band diagram of one gain stage of the QCL heterostructure under an applied electric field of 51 kV/cm, corresponding to a voltage defect of ~100 meV. The moduli squared of the relevant wavefunctions are shown at the corresponding energies. The upper and lower laser levels are shown in red and the ground state of the injector is shown in black. The red arrow marks the radiative transition.

Fig. 2
Fig. 2

Peak optical power, voltage, and wall-plug efficiency of a 3 mm x 8 μm quantum cascade laser emitting at 7.1 μm as function of current. Top: Measured voltage defect Δ per gain stage as a function of current.

Fig. 3
Fig. 3

Continuous-wave voltage, single-facet output power, and wall-plug efficiency of an 8 μm-wide, 4 mm-long, thermoelectrically-cooled quantum cascade laser as function of current at a temperature of 293 K. Inset: cw laser spectrum at a current of 1.12 A.

Fig. 4
Fig. 4

Beam picture of a continuous-wave packaged QCL at 1.06 W output power level. The picture was taken with a pyroelectric camera 2 m away from the laser.

Fig. 5
Fig. 5

Top: Single-facet average optical power as a function of duty cycle of an uncooled 7.1 μm QCL at a heatsink temperature of 293 K. Bottom: Wall-plug efficiency as a function of average optical power for the same laser.

Fig. 6
Fig. 6

Calculated maximum wall-plug efficiency of a 7.1 μm quantum cascade laser as a function of voltage defect. The lower laser level backfilling was computed using the model presented in this article. Inset: backfilling of the lower laser level as a function of voltage defect calculated with the traditional single-subband model and with our model.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

D ( E ) = D 0 i = 0 N i n j θ ( E i Δ E i n j ) ,
n ( E ) = n s Z D ( E ) f ( E ) ,
n t h e r m = 1 N i n j + 1 Δ n ( E ) d E ,
n t h e r m = n s e Δ 2 k T sinh [ Δ 2 N i n j k T ] sinh [ ( N i n j + 1 ) Δ 2 N i n j k T ] .

Metrics