Abstract

A two-dimensional spectral-shearing interferogram has been acquired instantaneously by frequency- and time-resolved sum-frequency conversion where the phase-matching angle and transverse-delay of crossed-pump beams in a nonlinear crystal serve as frequency-time decomposed imaging. The two spectrally sheared components travel the same path after upconversion. A picoseconds delay-scanned interferogram is accumulated on a 2D image sensor.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Baumert, T. Brixner, V. Seyfried, M. Strehle, and G. Gerber, “Femtosecond pulse shaping by an evolutionary algorithm with feedback,” Appl. Phys. B 65(6), 779–782 (1997).
    [CrossRef]
  2. J. Roslund, O. M. Shir, A. Dogariu, R. Miles, and H. Rabitz, “Control of nitromethane photoionization efficiency with shaped femtosecond pulses,” J. Chem. Phys. 134(15), 154301 (2011).
    [CrossRef] [PubMed]
  3. C. Iaconis and I. A. Walmsley, “Spectral phase interferometry for direct electric-field reconstruction of ultrashort optical pulses,” Opt. Lett. 23(10), 792–794 (1998).
    [CrossRef] [PubMed]
  4. L. Gallmann, D. H. Sutter, N. Matuschek, G. Steinmeyer, U. Keller, C. Iaconis, and I. A. Walmsley, “Characterization of sub-6-fs optical pulses with spectral phase interferometry for direct electric-field reconstruction,” Opt. Lett. 24(18), 1314–1316 (1999).
    [CrossRef] [PubMed]
  5. W. Kornelis, J. Biegert, J. W. G. Tisch, M. Nisoli, G. Sansone, C. Vozzi, S. De Silvestri, and U. Keller, “Single-shot kilohertz characterization of ultrashort pulses by spectral phase interferometry for direct electric-field reconstruction,” Opt. Lett. 28(4), 281–283 (2003).
    [CrossRef] [PubMed]
  6. J. R. Birge, R. Ell, and F. X. Kärtner, “Two-dimensional spectral shearing interferometry for few-cycle pulse characterization,” Opt. Lett. 31(13), 2063–2065 (2006).
    [CrossRef] [PubMed]
  7. E. M. Kosik, A. S. Radunsky, I. A. Walmsley, and C. Dorrer, “Interferometric technique for measuring broadband ultrashort pulses at the sampling limit,” Opt. Lett. 30(3), 326–328 (2005).
    [CrossRef] [PubMed]
  8. T. Witting, D. R. Austin, and I. A. Walmsley, “Improved ancilla preparation in spectral shearing interferometry for accurate ultrafast pulse characterization,” Opt. Lett. 34(7), 881–883 (2009).
    [CrossRef] [PubMed]
  9. T. Witting, F. Frank, C. A. Arrell, W. A. Okell, J. P. Marangos, and J. W. G. Tisch, “Characterization of high-intensity sub-4-fs laser pulses using spatially encoded spectral shearing interferometry,” Opt. Lett. 36(9), 1680–1682 (2011).
    [CrossRef] [PubMed]
  10. S. P. Gorza, P. Wasylczyk, and I. A. Walmsley, “Spectral shearing interferometry with spatially chirped replicas for measuring ultrashort pulses,” Opt. Express 15(23), 15168–15174 (2007).
    [CrossRef] [PubMed]
  11. M. Lelek, F. Louradour, A. Barthélémy, C. Froehly, T. Mansourian, L. Mouradian, J.-P. Chambaret, G. Chériaux, and B. Mercier, “Two-dimensional spectral shearing interferometry resolved in time for ultrashort optical pulse characterization,” J. Opt. Soc. Am. B 25(6), A17–A24 (2008).
    [CrossRef]
  12. H. Tomita and H. Nishioka, “Wide temporal coverage spectral shearing interferometer with a dual frequency mixer,” in Proceedings of IEEE conference on Lasers and Electro-Optics Society (IEEE, 2007), pp. 842–843.
  13. H. Tomita and H. Nishioka, “Wide-time-range spectral-shearing interferometry,” Opt. Express 17(16), 14023–14028 (2009).
    [CrossRef] [PubMed]
  14. D. H. Auston, “Nonlinear spectroscopy of picoseconds pulses,” Opt. Commun. 3(4), 272–276 (1971).
    [CrossRef]
  15. C. Radzewicz, P. Wasylczyk, and J. S. Krasinski, “A poor man’s FROG,” Opt. Commun. 186(4-6), 329–333 (2000).
    [CrossRef]
  16. H. Tomita and H. Nishioka, “High-resolution spectral-shearing interferometry,” in Proceedings of IEEE conference on Lasers and Electro-Optics Society (IEEE, 2008), pp. 701–702.
  17. Schott, http://www.schott.com/korea/korean/download/datasheet_fused_silica_.pdf .
  18. S. Kleinfelder, S. H. Lim, X. Liu, and A. El Gamal, “A 10 000 frames/s CMOS digital pixel sensor,” IEEE J. Solid-state Circuits 36(12), 2049–2059 (2001).
    [CrossRef]
  19. J. Dubois, D. Ginhac, M. Paindavoine, and B. Heyrman, “A 10 000 fps CMOS sensor with massively parallel image processing,” IEEE J. Solid-state Circuits 43(3), 706–717 (2008).
    [CrossRef]

2011 (2)

J. Roslund, O. M. Shir, A. Dogariu, R. Miles, and H. Rabitz, “Control of nitromethane photoionization efficiency with shaped femtosecond pulses,” J. Chem. Phys. 134(15), 154301 (2011).
[CrossRef] [PubMed]

T. Witting, F. Frank, C. A. Arrell, W. A. Okell, J. P. Marangos, and J. W. G. Tisch, “Characterization of high-intensity sub-4-fs laser pulses using spatially encoded spectral shearing interferometry,” Opt. Lett. 36(9), 1680–1682 (2011).
[CrossRef] [PubMed]

2009 (2)

2008 (2)

2007 (1)

2006 (1)

2005 (1)

2003 (1)

2001 (1)

S. Kleinfelder, S. H. Lim, X. Liu, and A. El Gamal, “A 10 000 frames/s CMOS digital pixel sensor,” IEEE J. Solid-state Circuits 36(12), 2049–2059 (2001).
[CrossRef]

2000 (1)

C. Radzewicz, P. Wasylczyk, and J. S. Krasinski, “A poor man’s FROG,” Opt. Commun. 186(4-6), 329–333 (2000).
[CrossRef]

1999 (1)

1998 (1)

1997 (1)

T. Baumert, T. Brixner, V. Seyfried, M. Strehle, and G. Gerber, “Femtosecond pulse shaping by an evolutionary algorithm with feedback,” Appl. Phys. B 65(6), 779–782 (1997).
[CrossRef]

1971 (1)

D. H. Auston, “Nonlinear spectroscopy of picoseconds pulses,” Opt. Commun. 3(4), 272–276 (1971).
[CrossRef]

Arrell, C. A.

Austin, D. R.

Auston, D. H.

D. H. Auston, “Nonlinear spectroscopy of picoseconds pulses,” Opt. Commun. 3(4), 272–276 (1971).
[CrossRef]

Barthélémy, A.

Baumert, T.

T. Baumert, T. Brixner, V. Seyfried, M. Strehle, and G. Gerber, “Femtosecond pulse shaping by an evolutionary algorithm with feedback,” Appl. Phys. B 65(6), 779–782 (1997).
[CrossRef]

Biegert, J.

Birge, J. R.

Brixner, T.

T. Baumert, T. Brixner, V. Seyfried, M. Strehle, and G. Gerber, “Femtosecond pulse shaping by an evolutionary algorithm with feedback,” Appl. Phys. B 65(6), 779–782 (1997).
[CrossRef]

Chambaret, J.-P.

Chériaux, G.

De Silvestri, S.

Dogariu, A.

J. Roslund, O. M. Shir, A. Dogariu, R. Miles, and H. Rabitz, “Control of nitromethane photoionization efficiency with shaped femtosecond pulses,” J. Chem. Phys. 134(15), 154301 (2011).
[CrossRef] [PubMed]

Dorrer, C.

Dubois, J.

J. Dubois, D. Ginhac, M. Paindavoine, and B. Heyrman, “A 10 000 fps CMOS sensor with massively parallel image processing,” IEEE J. Solid-state Circuits 43(3), 706–717 (2008).
[CrossRef]

El Gamal, A.

S. Kleinfelder, S. H. Lim, X. Liu, and A. El Gamal, “A 10 000 frames/s CMOS digital pixel sensor,” IEEE J. Solid-state Circuits 36(12), 2049–2059 (2001).
[CrossRef]

Ell, R.

Frank, F.

Froehly, C.

Gallmann, L.

Gerber, G.

T. Baumert, T. Brixner, V. Seyfried, M. Strehle, and G. Gerber, “Femtosecond pulse shaping by an evolutionary algorithm with feedback,” Appl. Phys. B 65(6), 779–782 (1997).
[CrossRef]

Ginhac, D.

J. Dubois, D. Ginhac, M. Paindavoine, and B. Heyrman, “A 10 000 fps CMOS sensor with massively parallel image processing,” IEEE J. Solid-state Circuits 43(3), 706–717 (2008).
[CrossRef]

Gorza, S. P.

Heyrman, B.

J. Dubois, D. Ginhac, M. Paindavoine, and B. Heyrman, “A 10 000 fps CMOS sensor with massively parallel image processing,” IEEE J. Solid-state Circuits 43(3), 706–717 (2008).
[CrossRef]

Iaconis, C.

Kärtner, F. X.

Keller, U.

Kleinfelder, S.

S. Kleinfelder, S. H. Lim, X. Liu, and A. El Gamal, “A 10 000 frames/s CMOS digital pixel sensor,” IEEE J. Solid-state Circuits 36(12), 2049–2059 (2001).
[CrossRef]

Kornelis, W.

Kosik, E. M.

Krasinski, J. S.

C. Radzewicz, P. Wasylczyk, and J. S. Krasinski, “A poor man’s FROG,” Opt. Commun. 186(4-6), 329–333 (2000).
[CrossRef]

Lelek, M.

Lim, S. H.

S. Kleinfelder, S. H. Lim, X. Liu, and A. El Gamal, “A 10 000 frames/s CMOS digital pixel sensor,” IEEE J. Solid-state Circuits 36(12), 2049–2059 (2001).
[CrossRef]

Liu, X.

S. Kleinfelder, S. H. Lim, X. Liu, and A. El Gamal, “A 10 000 frames/s CMOS digital pixel sensor,” IEEE J. Solid-state Circuits 36(12), 2049–2059 (2001).
[CrossRef]

Louradour, F.

Mansourian, T.

Marangos, J. P.

Matuschek, N.

Mercier, B.

Miles, R.

J. Roslund, O. M. Shir, A. Dogariu, R. Miles, and H. Rabitz, “Control of nitromethane photoionization efficiency with shaped femtosecond pulses,” J. Chem. Phys. 134(15), 154301 (2011).
[CrossRef] [PubMed]

Mouradian, L.

Nishioka, H.

Nisoli, M.

Okell, W. A.

Paindavoine, M.

J. Dubois, D. Ginhac, M. Paindavoine, and B. Heyrman, “A 10 000 fps CMOS sensor with massively parallel image processing,” IEEE J. Solid-state Circuits 43(3), 706–717 (2008).
[CrossRef]

Rabitz, H.

J. Roslund, O. M. Shir, A. Dogariu, R. Miles, and H. Rabitz, “Control of nitromethane photoionization efficiency with shaped femtosecond pulses,” J. Chem. Phys. 134(15), 154301 (2011).
[CrossRef] [PubMed]

Radunsky, A. S.

Radzewicz, C.

C. Radzewicz, P. Wasylczyk, and J. S. Krasinski, “A poor man’s FROG,” Opt. Commun. 186(4-6), 329–333 (2000).
[CrossRef]

Roslund, J.

J. Roslund, O. M. Shir, A. Dogariu, R. Miles, and H. Rabitz, “Control of nitromethane photoionization efficiency with shaped femtosecond pulses,” J. Chem. Phys. 134(15), 154301 (2011).
[CrossRef] [PubMed]

Sansone, G.

Seyfried, V.

T. Baumert, T. Brixner, V. Seyfried, M. Strehle, and G. Gerber, “Femtosecond pulse shaping by an evolutionary algorithm with feedback,” Appl. Phys. B 65(6), 779–782 (1997).
[CrossRef]

Shir, O. M.

J. Roslund, O. M. Shir, A. Dogariu, R. Miles, and H. Rabitz, “Control of nitromethane photoionization efficiency with shaped femtosecond pulses,” J. Chem. Phys. 134(15), 154301 (2011).
[CrossRef] [PubMed]

Steinmeyer, G.

Strehle, M.

T. Baumert, T. Brixner, V. Seyfried, M. Strehle, and G. Gerber, “Femtosecond pulse shaping by an evolutionary algorithm with feedback,” Appl. Phys. B 65(6), 779–782 (1997).
[CrossRef]

Sutter, D. H.

Tisch, J. W. G.

Tomita, H.

Vozzi, C.

Walmsley, I. A.

Wasylczyk, P.

Witting, T.

Appl. Phys. B (1)

T. Baumert, T. Brixner, V. Seyfried, M. Strehle, and G. Gerber, “Femtosecond pulse shaping by an evolutionary algorithm with feedback,” Appl. Phys. B 65(6), 779–782 (1997).
[CrossRef]

IEEE J. Solid-state Circuits (2)

S. Kleinfelder, S. H. Lim, X. Liu, and A. El Gamal, “A 10 000 frames/s CMOS digital pixel sensor,” IEEE J. Solid-state Circuits 36(12), 2049–2059 (2001).
[CrossRef]

J. Dubois, D. Ginhac, M. Paindavoine, and B. Heyrman, “A 10 000 fps CMOS sensor with massively parallel image processing,” IEEE J. Solid-state Circuits 43(3), 706–717 (2008).
[CrossRef]

J. Chem. Phys. (1)

J. Roslund, O. M. Shir, A. Dogariu, R. Miles, and H. Rabitz, “Control of nitromethane photoionization efficiency with shaped femtosecond pulses,” J. Chem. Phys. 134(15), 154301 (2011).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B (1)

Opt. Commun. (2)

D. H. Auston, “Nonlinear spectroscopy of picoseconds pulses,” Opt. Commun. 3(4), 272–276 (1971).
[CrossRef]

C. Radzewicz, P. Wasylczyk, and J. S. Krasinski, “A poor man’s FROG,” Opt. Commun. 186(4-6), 329–333 (2000).
[CrossRef]

Opt. Express (2)

Opt. Lett. (7)

C. Iaconis and I. A. Walmsley, “Spectral phase interferometry for direct electric-field reconstruction of ultrashort optical pulses,” Opt. Lett. 23(10), 792–794 (1998).
[CrossRef] [PubMed]

L. Gallmann, D. H. Sutter, N. Matuschek, G. Steinmeyer, U. Keller, C. Iaconis, and I. A. Walmsley, “Characterization of sub-6-fs optical pulses with spectral phase interferometry for direct electric-field reconstruction,” Opt. Lett. 24(18), 1314–1316 (1999).
[CrossRef] [PubMed]

W. Kornelis, J. Biegert, J. W. G. Tisch, M. Nisoli, G. Sansone, C. Vozzi, S. De Silvestri, and U. Keller, “Single-shot kilohertz characterization of ultrashort pulses by spectral phase interferometry for direct electric-field reconstruction,” Opt. Lett. 28(4), 281–283 (2003).
[CrossRef] [PubMed]

J. R. Birge, R. Ell, and F. X. Kärtner, “Two-dimensional spectral shearing interferometry for few-cycle pulse characterization,” Opt. Lett. 31(13), 2063–2065 (2006).
[CrossRef] [PubMed]

E. M. Kosik, A. S. Radunsky, I. A. Walmsley, and C. Dorrer, “Interferometric technique for measuring broadband ultrashort pulses at the sampling limit,” Opt. Lett. 30(3), 326–328 (2005).
[CrossRef] [PubMed]

T. Witting, D. R. Austin, and I. A. Walmsley, “Improved ancilla preparation in spectral shearing interferometry for accurate ultrafast pulse characterization,” Opt. Lett. 34(7), 881–883 (2009).
[CrossRef] [PubMed]

T. Witting, F. Frank, C. A. Arrell, W. A. Okell, J. P. Marangos, and J. W. G. Tisch, “Characterization of high-intensity sub-4-fs laser pulses using spatially encoded spectral shearing interferometry,” Opt. Lett. 36(9), 1680–1682 (2011).
[CrossRef] [PubMed]

Other (3)

H. Tomita and H. Nishioka, “Wide temporal coverage spectral shearing interferometer with a dual frequency mixer,” in Proceedings of IEEE conference on Lasers and Electro-Optics Society (IEEE, 2007), pp. 842–843.

H. Tomita and H. Nishioka, “High-resolution spectral-shearing interferometry,” in Proceedings of IEEE conference on Lasers and Electro-Optics Society (IEEE, 2008), pp. 701–702.

Schott, http://www.schott.com/korea/korean/download/datasheet_fused_silica_.pdf .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Experimental setup for SSI with a frequency time-resolved up converter. Spectral shear is given by frequency mixing between the signal pulse and two longitudinal modes of a narrow-gap etalon. BPF: band-pass filter; CM: cylindrical mirror (f = 50 mm); Sum-frequency generation (SFG): 1-mm-thick type-I BBO crystal for sum-frequency generation. (b) Spectrum of the two-monochromatic collinear fields. (c) A schematic for instantaneously acquired delay and frequency-resolved interferogram. Side view: frequency is resolved with phase-match angle dispersion of the SFG crystal. Top view: delay is scanned transversely by crossed pump beams. Crossing angle is 12°. (d) Time- and frequency-resolved image.

Fig. 2
Fig. 2

Phase-match angle as a function of sum frequency. (a) Calculated phase-match curves for frequency mixing between a broadband signal and cw (frequency: 375 THz). (b) Experimental result.

Fig. 3
Fig. 3

(a) Instantaneously acquired delay sweeping of the spectral-shearing interferogram. One fringe corresponds to 122 fs. (b) Evaluation of filtering width and linearity of the delay sweeping. Power spectral density and phase of 1D FFT at a center frequency of 377 THz described as dots and triangles, respectively. The thin curve is the power density of the beat estimated from the two modes of the etalon. (c) Retrieved spectral phase with beat-frequency filtering. (d) Reconstructed waveform.

Fig. 4
Fig. 4

Allan deviation of spectral-phase difference as a function of the accumulated number of interferograms. Squares and triangles are 33 ms and 1 s exposure time, respectively.

Fig. 5
Fig. 5

Relative accuracy verification using synthesized-quartz plates. (a) Spectral phase as a function of the glass thickness. Dotted line shows calculation from the Sellmeier equation. (b) Group delay. (c) Diamonds show second-order spectral phase as a function of the glass thickness. Thick line is calculation.

Tables (1)

Tables Icon

Table 1 Comparison of Phase-Match Type of a BBO Crystal: Ordinary (o)/Extraordinary (e) Wave Combinations of a Measured Broadband Pulse (signal), Two-Monochromatic Fields (CW) and a Broadband Sum-Frequency (SF)*

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I ( ω , τ ) = | E ( ω + Ω S ) | 2 + | E ( ω ) | 2 + 2 | E ( ω + Ω S ) E ( ω ) | cos [ Φ ( ω , τ ) ]
Φ ( ω , τ ) = φ ( ω + Ω S ) φ ( ω ) + Ω S τ ,
n ( λ ) 1 = B 1 λ 2 / ( λ 2 C 1 ) + B 2 λ 2 / ( λ 2 C 2 ) + B 3 λ 2 / ( λ 2 C 3 ) ,

Metrics