Abstract

We have demonstrated the nonlinear absorption at 532 nm wavelength in an Au semi-continuous film (SF) resulting from smearing of the Fermi distribution and diffusion of conduction electrons into the substrate. The Au SF was irradiated by a pulsed laser with 8 ns pulse width at 532 nm in near resonance with the interband transition of the Au. We determined the temperature increase in the SF for different intensities by electrical measurement. We calculated the temperature increase by using a 1D heat transport equation; comparing the results of the calculation with measured values for the temperature increase, revealed the nonlinear absorption in the Au SF. We employed this deviation from linear behaviour to determine the nonlinear absorption coefficient.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. A. Maier and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98(1), 011101 (2005).
    [CrossRef]
  2. Y. A. Akimov and H. S. Chu, “Plasmon coupling effect on propagation of surface Plasmon polaritons at a continuous metal/dielectric interface,” Phys. Rev. B 83(16), 165412 (2011).
    [CrossRef]
  3. K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3(1), 55–58 (2009).
    [CrossRef]
  4. S. W. Liu and M. Xiao, “Electro-optic switch in ferroelectric thin films mediated by surface plasmons,” Appl. Phys. Lett. 88(14), 143512 (2006).
    [CrossRef]
  5. H. T. Miyazaki and Y. Kurokawa, “Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity,” Phys. Rev. Lett. 96(9), 097401 (2006).
    [CrossRef] [PubMed]
  6. S. Buil, J. Aubineau, J. Laverdant, and X. Quelin, “Local field intensity enhancements on gold semicontinuous films investigated with an aperture nearfield optical microscope in collection mode,” J. Appl. Phys. 100(6), 063530 (2006).
    [CrossRef]
  7. Y. Ekinci, H. H. Solak, and J. F. Loffler, “Plasmon resonances of aluminium nanoparticles and nanorods,” J. Appl. Phys. 104(8), 083107 (2008).
    [CrossRef]
  8. T. J. Davis, K. C. Vernon, and D. E. Gomez, “Designing plasmonic systems using optical coupling between nanoparticles,” Phys. Rev. B 79(15), 155423 (2009).
    [CrossRef]
  9. D. D. Smith, Y. Yoon, R. W. Boyd, J. K. Campbell, L. A. Baker, R. M. Crooks, and M. George, “z-scan measurement of the nonlinear absorption of a thin gold film,” J. Appl. Phys. 86(11), 6200 (1999).
    [CrossRef]
  10. S. Debrus, J. Lafait, M. May, N. Pincon, D. Prot, C. Sella, and J. Venturini, “Z-scan determination of the third-order optical nonlinearity of gold: silica nanocomposites,” J. Appl. Phys. 88(8), 4469 (2000).
    [CrossRef]
  11. C. S. Yelleswarapu and S. R. Kothapalli, “Nonlinear photoacoustics for measuring the nonlinear optical absorption coefficient,” Opt. Express 18(9), 9020–9025 (2010).
    [CrossRef] [PubMed]
  12. I. Levchenko, K. Ostrikov, K. Diwan, K. Winkler, and D. Mariotti, “Plasma-driven self-organization of Ni nanodot arrays on Si(100),” Appl. Phys. Lett. 93(18), 183102 (2008).
    [CrossRef]
  13. M. M. A. Yajadda, I. Levchenko, Z. J. Han, and K. Ostrikov, “Hierarchical multilevel arrays of self-assembled gold nanoparticles: Control of resistivity-temperature dependence,” Appl. Phys. Lett. 97(16), 163109 (2010).
    [CrossRef]
  14. J. D. Jackson, Classical Electrodynamics (John Wiley & Sons 1998).
  15. Y. Inaba, I. Zana, C. Swartz, Y. Kubota, T. Klemmer, J. W. Harrell, and G. B. Thompson, “Time-temperature-transormation measurements of Fe-Pt thin films in the millisecond regime using pulse laser processing,” J. Appl. Phys. 108(10), 103907 (2010).
    [CrossRef]
  16. R. Kato and I. Hatta, “Thermal Conductivity Measurement of Thermally-Oxidized SiO2 Films on a Silicon Wafer Using a Thermo-Reflectance Technique,” Int. J. Therm. 26(1), 179–190 (2005).
    [CrossRef]
  17. N. Rotenberg, A. D. Bristow, M. Pfeiffer, M. Betz, and H. M. van Driel, “Nonlinear absorption in Au films: Role of thermal effects,” Phys. Rev. B 75(15), 155426 (2007).
    [CrossRef]
  18. G. L. Eesley, “Generation of nonequilibrium electron and lattice temperature in copper by picoseconds laser pulses,” Phys. Rev. B 33(4), 2144–2151 (1986).
    [CrossRef]
  19. P. E. Hopkins and P. M. Norris, “Substrate influence in electron-phonon coupling measurements in thin Au films,” Appl. Surf. Sci. 253(15), 6289–6294 (2007).
    [CrossRef]
  20. Z. Lin, L. V. Zhigilei, and V. Celli, “Electron-phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium,” Phys. Rev. B 77(7), 075133 (2008).
    [CrossRef]
  21. M. M. A. Yajadda and D. I. Farrant are preparing a manuscript to be called “Laser induced electron diffusion into the substrate”.

2011 (1)

Y. A. Akimov and H. S. Chu, “Plasmon coupling effect on propagation of surface Plasmon polaritons at a continuous metal/dielectric interface,” Phys. Rev. B 83(16), 165412 (2011).
[CrossRef]

2010 (3)

M. M. A. Yajadda, I. Levchenko, Z. J. Han, and K. Ostrikov, “Hierarchical multilevel arrays of self-assembled gold nanoparticles: Control of resistivity-temperature dependence,” Appl. Phys. Lett. 97(16), 163109 (2010).
[CrossRef]

Y. Inaba, I. Zana, C. Swartz, Y. Kubota, T. Klemmer, J. W. Harrell, and G. B. Thompson, “Time-temperature-transormation measurements of Fe-Pt thin films in the millisecond regime using pulse laser processing,” J. Appl. Phys. 108(10), 103907 (2010).
[CrossRef]

C. S. Yelleswarapu and S. R. Kothapalli, “Nonlinear photoacoustics for measuring the nonlinear optical absorption coefficient,” Opt. Express 18(9), 9020–9025 (2010).
[CrossRef] [PubMed]

2009 (2)

K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3(1), 55–58 (2009).
[CrossRef]

T. J. Davis, K. C. Vernon, and D. E. Gomez, “Designing plasmonic systems using optical coupling between nanoparticles,” Phys. Rev. B 79(15), 155423 (2009).
[CrossRef]

2008 (3)

Y. Ekinci, H. H. Solak, and J. F. Loffler, “Plasmon resonances of aluminium nanoparticles and nanorods,” J. Appl. Phys. 104(8), 083107 (2008).
[CrossRef]

I. Levchenko, K. Ostrikov, K. Diwan, K. Winkler, and D. Mariotti, “Plasma-driven self-organization of Ni nanodot arrays on Si(100),” Appl. Phys. Lett. 93(18), 183102 (2008).
[CrossRef]

Z. Lin, L. V. Zhigilei, and V. Celli, “Electron-phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium,” Phys. Rev. B 77(7), 075133 (2008).
[CrossRef]

2007 (2)

P. E. Hopkins and P. M. Norris, “Substrate influence in electron-phonon coupling measurements in thin Au films,” Appl. Surf. Sci. 253(15), 6289–6294 (2007).
[CrossRef]

N. Rotenberg, A. D. Bristow, M. Pfeiffer, M. Betz, and H. M. van Driel, “Nonlinear absorption in Au films: Role of thermal effects,” Phys. Rev. B 75(15), 155426 (2007).
[CrossRef]

2006 (3)

S. W. Liu and M. Xiao, “Electro-optic switch in ferroelectric thin films mediated by surface plasmons,” Appl. Phys. Lett. 88(14), 143512 (2006).
[CrossRef]

H. T. Miyazaki and Y. Kurokawa, “Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity,” Phys. Rev. Lett. 96(9), 097401 (2006).
[CrossRef] [PubMed]

S. Buil, J. Aubineau, J. Laverdant, and X. Quelin, “Local field intensity enhancements on gold semicontinuous films investigated with an aperture nearfield optical microscope in collection mode,” J. Appl. Phys. 100(6), 063530 (2006).
[CrossRef]

2005 (2)

S. A. Maier and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98(1), 011101 (2005).
[CrossRef]

R. Kato and I. Hatta, “Thermal Conductivity Measurement of Thermally-Oxidized SiO2 Films on a Silicon Wafer Using a Thermo-Reflectance Technique,” Int. J. Therm. 26(1), 179–190 (2005).
[CrossRef]

2000 (1)

S. Debrus, J. Lafait, M. May, N. Pincon, D. Prot, C. Sella, and J. Venturini, “Z-scan determination of the third-order optical nonlinearity of gold: silica nanocomposites,” J. Appl. Phys. 88(8), 4469 (2000).
[CrossRef]

1999 (1)

D. D. Smith, Y. Yoon, R. W. Boyd, J. K. Campbell, L. A. Baker, R. M. Crooks, and M. George, “z-scan measurement of the nonlinear absorption of a thin gold film,” J. Appl. Phys. 86(11), 6200 (1999).
[CrossRef]

1986 (1)

G. L. Eesley, “Generation of nonequilibrium electron and lattice temperature in copper by picoseconds laser pulses,” Phys. Rev. B 33(4), 2144–2151 (1986).
[CrossRef]

Akimov, Y. A.

Y. A. Akimov and H. S. Chu, “Plasmon coupling effect on propagation of surface Plasmon polaritons at a continuous metal/dielectric interface,” Phys. Rev. B 83(16), 165412 (2011).
[CrossRef]

Atwater, H. A.

S. A. Maier and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98(1), 011101 (2005).
[CrossRef]

Aubineau, J.

S. Buil, J. Aubineau, J. Laverdant, and X. Quelin, “Local field intensity enhancements on gold semicontinuous films investigated with an aperture nearfield optical microscope in collection mode,” J. Appl. Phys. 100(6), 063530 (2006).
[CrossRef]

Baker, L. A.

D. D. Smith, Y. Yoon, R. W. Boyd, J. K. Campbell, L. A. Baker, R. M. Crooks, and M. George, “z-scan measurement of the nonlinear absorption of a thin gold film,” J. Appl. Phys. 86(11), 6200 (1999).
[CrossRef]

Betz, M.

N. Rotenberg, A. D. Bristow, M. Pfeiffer, M. Betz, and H. M. van Driel, “Nonlinear absorption in Au films: Role of thermal effects,” Phys. Rev. B 75(15), 155426 (2007).
[CrossRef]

Boyd, R. W.

D. D. Smith, Y. Yoon, R. W. Boyd, J. K. Campbell, L. A. Baker, R. M. Crooks, and M. George, “z-scan measurement of the nonlinear absorption of a thin gold film,” J. Appl. Phys. 86(11), 6200 (1999).
[CrossRef]

Bristow, A. D.

N. Rotenberg, A. D. Bristow, M. Pfeiffer, M. Betz, and H. M. van Driel, “Nonlinear absorption in Au films: Role of thermal effects,” Phys. Rev. B 75(15), 155426 (2007).
[CrossRef]

Buil, S.

S. Buil, J. Aubineau, J. Laverdant, and X. Quelin, “Local field intensity enhancements on gold semicontinuous films investigated with an aperture nearfield optical microscope in collection mode,” J. Appl. Phys. 100(6), 063530 (2006).
[CrossRef]

Campbell, J. K.

D. D. Smith, Y. Yoon, R. W. Boyd, J. K. Campbell, L. A. Baker, R. M. Crooks, and M. George, “z-scan measurement of the nonlinear absorption of a thin gold film,” J. Appl. Phys. 86(11), 6200 (1999).
[CrossRef]

Celli, V.

Z. Lin, L. V. Zhigilei, and V. Celli, “Electron-phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium,” Phys. Rev. B 77(7), 075133 (2008).
[CrossRef]

Chu, H. S.

Y. A. Akimov and H. S. Chu, “Plasmon coupling effect on propagation of surface Plasmon polaritons at a continuous metal/dielectric interface,” Phys. Rev. B 83(16), 165412 (2011).
[CrossRef]

Crooks, R. M.

D. D. Smith, Y. Yoon, R. W. Boyd, J. K. Campbell, L. A. Baker, R. M. Crooks, and M. George, “z-scan measurement of the nonlinear absorption of a thin gold film,” J. Appl. Phys. 86(11), 6200 (1999).
[CrossRef]

Davis, T. J.

T. J. Davis, K. C. Vernon, and D. E. Gomez, “Designing plasmonic systems using optical coupling between nanoparticles,” Phys. Rev. B 79(15), 155423 (2009).
[CrossRef]

Debrus, S.

S. Debrus, J. Lafait, M. May, N. Pincon, D. Prot, C. Sella, and J. Venturini, “Z-scan determination of the third-order optical nonlinearity of gold: silica nanocomposites,” J. Appl. Phys. 88(8), 4469 (2000).
[CrossRef]

Diwan, K.

I. Levchenko, K. Ostrikov, K. Diwan, K. Winkler, and D. Mariotti, “Plasma-driven self-organization of Ni nanodot arrays on Si(100),” Appl. Phys. Lett. 93(18), 183102 (2008).
[CrossRef]

Eesley, G. L.

G. L. Eesley, “Generation of nonequilibrium electron and lattice temperature in copper by picoseconds laser pulses,” Phys. Rev. B 33(4), 2144–2151 (1986).
[CrossRef]

Ekinci, Y.

Y. Ekinci, H. H. Solak, and J. F. Loffler, “Plasmon resonances of aluminium nanoparticles and nanorods,” J. Appl. Phys. 104(8), 083107 (2008).
[CrossRef]

George, M.

D. D. Smith, Y. Yoon, R. W. Boyd, J. K. Campbell, L. A. Baker, R. M. Crooks, and M. George, “z-scan measurement of the nonlinear absorption of a thin gold film,” J. Appl. Phys. 86(11), 6200 (1999).
[CrossRef]

Gomez, D. E.

T. J. Davis, K. C. Vernon, and D. E. Gomez, “Designing plasmonic systems using optical coupling between nanoparticles,” Phys. Rev. B 79(15), 155423 (2009).
[CrossRef]

Han, Z. J.

M. M. A. Yajadda, I. Levchenko, Z. J. Han, and K. Ostrikov, “Hierarchical multilevel arrays of self-assembled gold nanoparticles: Control of resistivity-temperature dependence,” Appl. Phys. Lett. 97(16), 163109 (2010).
[CrossRef]

Harrell, J. W.

Y. Inaba, I. Zana, C. Swartz, Y. Kubota, T. Klemmer, J. W. Harrell, and G. B. Thompson, “Time-temperature-transormation measurements of Fe-Pt thin films in the millisecond regime using pulse laser processing,” J. Appl. Phys. 108(10), 103907 (2010).
[CrossRef]

Hatta, I.

R. Kato and I. Hatta, “Thermal Conductivity Measurement of Thermally-Oxidized SiO2 Films on a Silicon Wafer Using a Thermo-Reflectance Technique,” Int. J. Therm. 26(1), 179–190 (2005).
[CrossRef]

Hopkins, P. E.

P. E. Hopkins and P. M. Norris, “Substrate influence in electron-phonon coupling measurements in thin Au films,” Appl. Surf. Sci. 253(15), 6289–6294 (2007).
[CrossRef]

Inaba, Y.

Y. Inaba, I. Zana, C. Swartz, Y. Kubota, T. Klemmer, J. W. Harrell, and G. B. Thompson, “Time-temperature-transormation measurements of Fe-Pt thin films in the millisecond regime using pulse laser processing,” J. Appl. Phys. 108(10), 103907 (2010).
[CrossRef]

Kato, R.

R. Kato and I. Hatta, “Thermal Conductivity Measurement of Thermally-Oxidized SiO2 Films on a Silicon Wafer Using a Thermo-Reflectance Technique,” Int. J. Therm. 26(1), 179–190 (2005).
[CrossRef]

Klemmer, T.

Y. Inaba, I. Zana, C. Swartz, Y. Kubota, T. Klemmer, J. W. Harrell, and G. B. Thompson, “Time-temperature-transormation measurements of Fe-Pt thin films in the millisecond regime using pulse laser processing,” J. Appl. Phys. 108(10), 103907 (2010).
[CrossRef]

Kothapalli, S. R.

Kubota, Y.

Y. Inaba, I. Zana, C. Swartz, Y. Kubota, T. Klemmer, J. W. Harrell, and G. B. Thompson, “Time-temperature-transormation measurements of Fe-Pt thin films in the millisecond regime using pulse laser processing,” J. Appl. Phys. 108(10), 103907 (2010).
[CrossRef]

Kurokawa, Y.

H. T. Miyazaki and Y. Kurokawa, “Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity,” Phys. Rev. Lett. 96(9), 097401 (2006).
[CrossRef] [PubMed]

Lafait, J.

S. Debrus, J. Lafait, M. May, N. Pincon, D. Prot, C. Sella, and J. Venturini, “Z-scan determination of the third-order optical nonlinearity of gold: silica nanocomposites,” J. Appl. Phys. 88(8), 4469 (2000).
[CrossRef]

Laverdant, J.

S. Buil, J. Aubineau, J. Laverdant, and X. Quelin, “Local field intensity enhancements on gold semicontinuous films investigated with an aperture nearfield optical microscope in collection mode,” J. Appl. Phys. 100(6), 063530 (2006).
[CrossRef]

Levchenko, I.

M. M. A. Yajadda, I. Levchenko, Z. J. Han, and K. Ostrikov, “Hierarchical multilevel arrays of self-assembled gold nanoparticles: Control of resistivity-temperature dependence,” Appl. Phys. Lett. 97(16), 163109 (2010).
[CrossRef]

I. Levchenko, K. Ostrikov, K. Diwan, K. Winkler, and D. Mariotti, “Plasma-driven self-organization of Ni nanodot arrays on Si(100),” Appl. Phys. Lett. 93(18), 183102 (2008).
[CrossRef]

Lin, Z.

Z. Lin, L. V. Zhigilei, and V. Celli, “Electron-phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium,” Phys. Rev. B 77(7), 075133 (2008).
[CrossRef]

Liu, S. W.

S. W. Liu and M. Xiao, “Electro-optic switch in ferroelectric thin films mediated by surface plasmons,” Appl. Phys. Lett. 88(14), 143512 (2006).
[CrossRef]

Loffler, J. F.

Y. Ekinci, H. H. Solak, and J. F. Loffler, “Plasmon resonances of aluminium nanoparticles and nanorods,” J. Appl. Phys. 104(8), 083107 (2008).
[CrossRef]

MacDonald, K. F.

K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3(1), 55–58 (2009).
[CrossRef]

Maier, S. A.

S. A. Maier and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98(1), 011101 (2005).
[CrossRef]

Mariotti, D.

I. Levchenko, K. Ostrikov, K. Diwan, K. Winkler, and D. Mariotti, “Plasma-driven self-organization of Ni nanodot arrays on Si(100),” Appl. Phys. Lett. 93(18), 183102 (2008).
[CrossRef]

May, M.

S. Debrus, J. Lafait, M. May, N. Pincon, D. Prot, C. Sella, and J. Venturini, “Z-scan determination of the third-order optical nonlinearity of gold: silica nanocomposites,” J. Appl. Phys. 88(8), 4469 (2000).
[CrossRef]

Miyazaki, H. T.

H. T. Miyazaki and Y. Kurokawa, “Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity,” Phys. Rev. Lett. 96(9), 097401 (2006).
[CrossRef] [PubMed]

Norris, P. M.

P. E. Hopkins and P. M. Norris, “Substrate influence in electron-phonon coupling measurements in thin Au films,” Appl. Surf. Sci. 253(15), 6289–6294 (2007).
[CrossRef]

Ostrikov, K.

M. M. A. Yajadda, I. Levchenko, Z. J. Han, and K. Ostrikov, “Hierarchical multilevel arrays of self-assembled gold nanoparticles: Control of resistivity-temperature dependence,” Appl. Phys. Lett. 97(16), 163109 (2010).
[CrossRef]

I. Levchenko, K. Ostrikov, K. Diwan, K. Winkler, and D. Mariotti, “Plasma-driven self-organization of Ni nanodot arrays on Si(100),” Appl. Phys. Lett. 93(18), 183102 (2008).
[CrossRef]

Pfeiffer, M.

N. Rotenberg, A. D. Bristow, M. Pfeiffer, M. Betz, and H. M. van Driel, “Nonlinear absorption in Au films: Role of thermal effects,” Phys. Rev. B 75(15), 155426 (2007).
[CrossRef]

Pincon, N.

S. Debrus, J. Lafait, M. May, N. Pincon, D. Prot, C. Sella, and J. Venturini, “Z-scan determination of the third-order optical nonlinearity of gold: silica nanocomposites,” J. Appl. Phys. 88(8), 4469 (2000).
[CrossRef]

Prot, D.

S. Debrus, J. Lafait, M. May, N. Pincon, D. Prot, C. Sella, and J. Venturini, “Z-scan determination of the third-order optical nonlinearity of gold: silica nanocomposites,” J. Appl. Phys. 88(8), 4469 (2000).
[CrossRef]

Quelin, X.

S. Buil, J. Aubineau, J. Laverdant, and X. Quelin, “Local field intensity enhancements on gold semicontinuous films investigated with an aperture nearfield optical microscope in collection mode,” J. Appl. Phys. 100(6), 063530 (2006).
[CrossRef]

Rotenberg, N.

N. Rotenberg, A. D. Bristow, M. Pfeiffer, M. Betz, and H. M. van Driel, “Nonlinear absorption in Au films: Role of thermal effects,” Phys. Rev. B 75(15), 155426 (2007).
[CrossRef]

Samson, Z. L.

K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3(1), 55–58 (2009).
[CrossRef]

Sella, C.

S. Debrus, J. Lafait, M. May, N. Pincon, D. Prot, C. Sella, and J. Venturini, “Z-scan determination of the third-order optical nonlinearity of gold: silica nanocomposites,” J. Appl. Phys. 88(8), 4469 (2000).
[CrossRef]

Smith, D. D.

D. D. Smith, Y. Yoon, R. W. Boyd, J. K. Campbell, L. A. Baker, R. M. Crooks, and M. George, “z-scan measurement of the nonlinear absorption of a thin gold film,” J. Appl. Phys. 86(11), 6200 (1999).
[CrossRef]

Solak, H. H.

Y. Ekinci, H. H. Solak, and J. F. Loffler, “Plasmon resonances of aluminium nanoparticles and nanorods,” J. Appl. Phys. 104(8), 083107 (2008).
[CrossRef]

Stockman, M. I.

K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3(1), 55–58 (2009).
[CrossRef]

Swartz, C.

Y. Inaba, I. Zana, C. Swartz, Y. Kubota, T. Klemmer, J. W. Harrell, and G. B. Thompson, “Time-temperature-transormation measurements of Fe-Pt thin films in the millisecond regime using pulse laser processing,” J. Appl. Phys. 108(10), 103907 (2010).
[CrossRef]

Thompson, G. B.

Y. Inaba, I. Zana, C. Swartz, Y. Kubota, T. Klemmer, J. W. Harrell, and G. B. Thompson, “Time-temperature-transormation measurements of Fe-Pt thin films in the millisecond regime using pulse laser processing,” J. Appl. Phys. 108(10), 103907 (2010).
[CrossRef]

van Driel, H. M.

N. Rotenberg, A. D. Bristow, M. Pfeiffer, M. Betz, and H. M. van Driel, “Nonlinear absorption in Au films: Role of thermal effects,” Phys. Rev. B 75(15), 155426 (2007).
[CrossRef]

Venturini, J.

S. Debrus, J. Lafait, M. May, N. Pincon, D. Prot, C. Sella, and J. Venturini, “Z-scan determination of the third-order optical nonlinearity of gold: silica nanocomposites,” J. Appl. Phys. 88(8), 4469 (2000).
[CrossRef]

Vernon, K. C.

T. J. Davis, K. C. Vernon, and D. E. Gomez, “Designing plasmonic systems using optical coupling between nanoparticles,” Phys. Rev. B 79(15), 155423 (2009).
[CrossRef]

Winkler, K.

I. Levchenko, K. Ostrikov, K. Diwan, K. Winkler, and D. Mariotti, “Plasma-driven self-organization of Ni nanodot arrays on Si(100),” Appl. Phys. Lett. 93(18), 183102 (2008).
[CrossRef]

Xiao, M.

S. W. Liu and M. Xiao, “Electro-optic switch in ferroelectric thin films mediated by surface plasmons,” Appl. Phys. Lett. 88(14), 143512 (2006).
[CrossRef]

Yajadda, M. M. A.

M. M. A. Yajadda, I. Levchenko, Z. J. Han, and K. Ostrikov, “Hierarchical multilevel arrays of self-assembled gold nanoparticles: Control of resistivity-temperature dependence,” Appl. Phys. Lett. 97(16), 163109 (2010).
[CrossRef]

Yelleswarapu, C. S.

Yoon, Y.

D. D. Smith, Y. Yoon, R. W. Boyd, J. K. Campbell, L. A. Baker, R. M. Crooks, and M. George, “z-scan measurement of the nonlinear absorption of a thin gold film,” J. Appl. Phys. 86(11), 6200 (1999).
[CrossRef]

Zana, I.

Y. Inaba, I. Zana, C. Swartz, Y. Kubota, T. Klemmer, J. W. Harrell, and G. B. Thompson, “Time-temperature-transormation measurements of Fe-Pt thin films in the millisecond regime using pulse laser processing,” J. Appl. Phys. 108(10), 103907 (2010).
[CrossRef]

Zheludev, N. I.

K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3(1), 55–58 (2009).
[CrossRef]

Zhigilei, L. V.

Z. Lin, L. V. Zhigilei, and V. Celli, “Electron-phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium,” Phys. Rev. B 77(7), 075133 (2008).
[CrossRef]

Appl. Phys. Lett. (3)

S. W. Liu and M. Xiao, “Electro-optic switch in ferroelectric thin films mediated by surface plasmons,” Appl. Phys. Lett. 88(14), 143512 (2006).
[CrossRef]

I. Levchenko, K. Ostrikov, K. Diwan, K. Winkler, and D. Mariotti, “Plasma-driven self-organization of Ni nanodot arrays on Si(100),” Appl. Phys. Lett. 93(18), 183102 (2008).
[CrossRef]

M. M. A. Yajadda, I. Levchenko, Z. J. Han, and K. Ostrikov, “Hierarchical multilevel arrays of self-assembled gold nanoparticles: Control of resistivity-temperature dependence,” Appl. Phys. Lett. 97(16), 163109 (2010).
[CrossRef]

Appl. Surf. Sci. (1)

P. E. Hopkins and P. M. Norris, “Substrate influence in electron-phonon coupling measurements in thin Au films,” Appl. Surf. Sci. 253(15), 6289–6294 (2007).
[CrossRef]

Int. J. Therm. (1)

R. Kato and I. Hatta, “Thermal Conductivity Measurement of Thermally-Oxidized SiO2 Films on a Silicon Wafer Using a Thermo-Reflectance Technique,” Int. J. Therm. 26(1), 179–190 (2005).
[CrossRef]

J. Appl. Phys. (6)

Y. Inaba, I. Zana, C. Swartz, Y. Kubota, T. Klemmer, J. W. Harrell, and G. B. Thompson, “Time-temperature-transormation measurements of Fe-Pt thin films in the millisecond regime using pulse laser processing,” J. Appl. Phys. 108(10), 103907 (2010).
[CrossRef]

S. A. Maier and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98(1), 011101 (2005).
[CrossRef]

S. Buil, J. Aubineau, J. Laverdant, and X. Quelin, “Local field intensity enhancements on gold semicontinuous films investigated with an aperture nearfield optical microscope in collection mode,” J. Appl. Phys. 100(6), 063530 (2006).
[CrossRef]

Y. Ekinci, H. H. Solak, and J. F. Loffler, “Plasmon resonances of aluminium nanoparticles and nanorods,” J. Appl. Phys. 104(8), 083107 (2008).
[CrossRef]

D. D. Smith, Y. Yoon, R. W. Boyd, J. K. Campbell, L. A. Baker, R. M. Crooks, and M. George, “z-scan measurement of the nonlinear absorption of a thin gold film,” J. Appl. Phys. 86(11), 6200 (1999).
[CrossRef]

S. Debrus, J. Lafait, M. May, N. Pincon, D. Prot, C. Sella, and J. Venturini, “Z-scan determination of the third-order optical nonlinearity of gold: silica nanocomposites,” J. Appl. Phys. 88(8), 4469 (2000).
[CrossRef]

Nat. Photonics (1)

K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3(1), 55–58 (2009).
[CrossRef]

Opt. Express (1)

Phys. Rev. B (5)

N. Rotenberg, A. D. Bristow, M. Pfeiffer, M. Betz, and H. M. van Driel, “Nonlinear absorption in Au films: Role of thermal effects,” Phys. Rev. B 75(15), 155426 (2007).
[CrossRef]

G. L. Eesley, “Generation of nonequilibrium electron and lattice temperature in copper by picoseconds laser pulses,” Phys. Rev. B 33(4), 2144–2151 (1986).
[CrossRef]

Z. Lin, L. V. Zhigilei, and V. Celli, “Electron-phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium,” Phys. Rev. B 77(7), 075133 (2008).
[CrossRef]

T. J. Davis, K. C. Vernon, and D. E. Gomez, “Designing plasmonic systems using optical coupling between nanoparticles,” Phys. Rev. B 79(15), 155423 (2009).
[CrossRef]

Y. A. Akimov and H. S. Chu, “Plasmon coupling effect on propagation of surface Plasmon polaritons at a continuous metal/dielectric interface,” Phys. Rev. B 83(16), 165412 (2011).
[CrossRef]

Phys. Rev. Lett. (1)

H. T. Miyazaki and Y. Kurokawa, “Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity,” Phys. Rev. Lett. 96(9), 097401 (2006).
[CrossRef] [PubMed]

Other (2)

M. M. A. Yajadda and D. I. Farrant are preparing a manuscript to be called “Laser induced electron diffusion into the substrate”.

J. D. Jackson, Classical Electrodynamics (John Wiley & Sons 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Sample design and schematic of the measurement circuit. Au sample thickness is 15 nm; laser beam cross-section is much larger than the sample area. (b) Typical pulse shape of the Nd:YAG laser.

Fig. 2
Fig. 2

3D images of the 15 nm Au on SiO2/Si/SiO2 substrate at low (a) and high (b) magnification.

Fig. 3
Fig. 3

(a) Temperature dependency of the sample’s resistance on the temperature range of 30 K to 300 K. Calculated value of TCR η = 1.2×10−3 K−1 which is three times smaller than that of the bulk metal. (b) Experimental data recorded from the digital oscilloscope as an electric pulse (with different amplitudes) was applied to the circuit using a function generator in the absence of a laser pulse. The solid line represents the results of the calculation by considering negligible contribution of the inductance and the capacitance of the circuit.

Fig. 4
Fig. 4

(a) Temporal response of the sample to pulsed laser at 532 nm (b) Nonlinear intensity-dependant absorption of the Au SF at 532 nm.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ T = 2 I A t π γ ζ κ

Metrics