Abstract

Photoelectron ionization spectra of an autoionization system interacting with a neighboring two-level atom are studied using the method of canonical transformation. Conditions for the occurrence of a Fano zero are exactly derived, together with its frequency. Ionization spectra are typically composed of at most four peaks in this case. Sharp peaks occur not far from the Fano zero due to the confluence of bound-free coherences. Spectral peaks close to the Fano zero are suppressed. Also dynamical zeros appearing once per the Rabi period in conditioned photoelectron ionization spectra are observed.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124, 1866–1878 (1961).
    [CrossRef]
  2. K. Rzażewski and J. H. Eberly, “Confluence of bound-free coherences in laser-induced autoionization,” Phys. Rev. Lett. 47, 408–412 (1981).
    [CrossRef]
  3. P. Lambropoulos and P. Zoller, “Autoionizing states in strong laser fields,” Phys. Rev. A 24, 379–397 (1981).
    [CrossRef]
  4. M. Lewenstein, J. W. Haus, and K. Rzażewski, “Photon spectrum in laser-induced autoionization,” Phys. Rev. Lett. 50, 417–420 (1983).
    [CrossRef]
  5. J. W. Haus, M. Lewenstein, and K. Rzażewski, “Laser-induced autoionization in the presence of radiative damping and transverse relaxation,” Phys. Rev. A 28, 2269–2281 (1983).
    [CrossRef]
  6. G. S. Agarwal, S. L. Haan, and J. Cooper, “Radiative decay of autoionizing states in laser fields. I. general theory,” Phys. Rev. A 29, 2552–2565 (1984).
    [CrossRef]
  7. K. Rzażewski and J. H. Eberly, “Photoexcitation of an autoionizing resonance in the presence of off-diagonal relaxation,” Phys. Rev. A 27, 2026–2042 (1983).
    [CrossRef]
  8. W. Leoński and V. Bužek, “Quantum laser field effect on the photoelectron spectrum for auto-ionizing systems,” J. Mod. Opt. 37, 1923–1934 (1990).
    [CrossRef]
  9. W. Leoński, “Squeezed-state effect on bound-continuum transitions,” J. Opt. Soc. Am. B 10, 244–252 (1993).
    [CrossRef]
  10. L. Journel, B. Rouvellou, D. Cubaynes, J. M. Bizau, F. J. Willeumier, M. Richter, P. Sladeczek, K.-H. Selbman, P. Zimmerman, and H. Bergerow, “First observation of a Fano profile following one step autoionization into a double photoionization continuum,” J. Physique IV 3, 217–226 (1993).
  11. E. Paspalakis, N. J. Kylstra, and P. L. Knight, “Propagation dynamics in an autoionization medium,” Phys. Rev. A 60, 642–647 (1999).
    [CrossRef]
  12. A. Raczyński, M. Rzepecka, J. Zaremba, and S. Zielińska-Kaniasty, “Electromagnetically induced transparency and light slowdown for Λ-like systems with a structured continuum,” Opt. Commun. 266, 552–557 (2006).
    [CrossRef]
  13. P. Durand, I. Paidarová, and F. X. Gadéa, “Theory of Fano profiles,” J. Phys. B At. Mol. Opt. Phys. 34, 1953–1966 (2001).
    [CrossRef]
  14. W. Leoński, R. Tanaś, and S. Kielich, “Laser-induced autoionization from a double Fano system,” J. Opt. Soc. Am. B 4, 72–77 (1987).
    [CrossRef]
  15. W. Leoński and R. Tanaś, “Dc-field effects on the photoelectron spectrum from a system with two autoionising levels,” J. Phys. B At. Mol. Opt. Phys. 21, 2835–2844 (1988).
    [CrossRef]
  16. W. Leoński, R. Tanaś, and S. Kielich, “Effect of dc field coupling on the photoelectron spectrum from double auto-ionising levels,” J. Phys. D 21, S125–S127 (1988).
    [CrossRef]
  17. A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82, 2257–2298 (2010).
    [CrossRef]
  18. A. Lukš, V. Peřinová, J. Peřina, J. Křepelka, and W. Leoński, “Photoelectron spectra for an atom with one autoionizing level that interacts with a neighbor,” in “Wave and Quantum Aspects of Contemporary Optics: Proceedings of SPIE, Vol. 7746,” J. Müllerová, D. Senderáková, and S. Jurecka, eds. (SPIE, Bellingham, 2010), p. 77460W.
  19. J. Peřina, A. Lukš, W. Leoński, and V. Peřinová, “Photoionization electron spectra in a system interacting with a neighboring atom,” Phys. Rev. A 83, 053416 (2011).
    [CrossRef]
  20. J. Peřina, A. Lukš, W. Leoński, and V. Peřinová, “Photoelectron spectra in an autoionization system interacting with a neighboring atom,” Phys. Rev. A 83, 053430 (2011).
    [CrossRef]
  21. B. Najjari, A. B. Voitkiv, and C. Müller, “Two-center resonant photoionization,” Phys. Rev. Lett. 105, 153002 (2010).
    [CrossRef]
  22. E. A. Silinsh and V. Čápek, Organic Molecular Crystals: Interaction, Localization and Transport Phenomena (Oxford University Press/American Institute of Physics, 1994).
  23. A. B. Voitkiv and B. Najjari, “Two-center dielectronic recombination and resonant photoionization,” Phys. Rev. A 82, 052708 (2010).
    [CrossRef]
  24. P. Meystre and P. Sargent, Elements of Quantum Optics (Springer, 2007).
    [CrossRef]

2011 (2)

J. Peřina, A. Lukš, W. Leoński, and V. Peřinová, “Photoionization electron spectra in a system interacting with a neighboring atom,” Phys. Rev. A 83, 053416 (2011).
[CrossRef]

J. Peřina, A. Lukš, W. Leoński, and V. Peřinová, “Photoelectron spectra in an autoionization system interacting with a neighboring atom,” Phys. Rev. A 83, 053430 (2011).
[CrossRef]

2010 (3)

B. Najjari, A. B. Voitkiv, and C. Müller, “Two-center resonant photoionization,” Phys. Rev. Lett. 105, 153002 (2010).
[CrossRef]

A. B. Voitkiv and B. Najjari, “Two-center dielectronic recombination and resonant photoionization,” Phys. Rev. A 82, 052708 (2010).
[CrossRef]

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82, 2257–2298 (2010).
[CrossRef]

2006 (1)

A. Raczyński, M. Rzepecka, J. Zaremba, and S. Zielińska-Kaniasty, “Electromagnetically induced transparency and light slowdown for Λ-like systems with a structured continuum,” Opt. Commun. 266, 552–557 (2006).
[CrossRef]

2001 (1)

P. Durand, I. Paidarová, and F. X. Gadéa, “Theory of Fano profiles,” J. Phys. B At. Mol. Opt. Phys. 34, 1953–1966 (2001).
[CrossRef]

1999 (1)

E. Paspalakis, N. J. Kylstra, and P. L. Knight, “Propagation dynamics in an autoionization medium,” Phys. Rev. A 60, 642–647 (1999).
[CrossRef]

1993 (2)

W. Leoński, “Squeezed-state effect on bound-continuum transitions,” J. Opt. Soc. Am. B 10, 244–252 (1993).
[CrossRef]

L. Journel, B. Rouvellou, D. Cubaynes, J. M. Bizau, F. J. Willeumier, M. Richter, P. Sladeczek, K.-H. Selbman, P. Zimmerman, and H. Bergerow, “First observation of a Fano profile following one step autoionization into a double photoionization continuum,” J. Physique IV 3, 217–226 (1993).

1990 (1)

W. Leoński and V. Bužek, “Quantum laser field effect on the photoelectron spectrum for auto-ionizing systems,” J. Mod. Opt. 37, 1923–1934 (1990).
[CrossRef]

1988 (2)

W. Leoński and R. Tanaś, “Dc-field effects on the photoelectron spectrum from a system with two autoionising levels,” J. Phys. B At. Mol. Opt. Phys. 21, 2835–2844 (1988).
[CrossRef]

W. Leoński, R. Tanaś, and S. Kielich, “Effect of dc field coupling on the photoelectron spectrum from double auto-ionising levels,” J. Phys. D 21, S125–S127 (1988).
[CrossRef]

1987 (1)

1984 (1)

G. S. Agarwal, S. L. Haan, and J. Cooper, “Radiative decay of autoionizing states in laser fields. I. general theory,” Phys. Rev. A 29, 2552–2565 (1984).
[CrossRef]

1983 (3)

K. Rzażewski and J. H. Eberly, “Photoexcitation of an autoionizing resonance in the presence of off-diagonal relaxation,” Phys. Rev. A 27, 2026–2042 (1983).
[CrossRef]

M. Lewenstein, J. W. Haus, and K. Rzażewski, “Photon spectrum in laser-induced autoionization,” Phys. Rev. Lett. 50, 417–420 (1983).
[CrossRef]

J. W. Haus, M. Lewenstein, and K. Rzażewski, “Laser-induced autoionization in the presence of radiative damping and transverse relaxation,” Phys. Rev. A 28, 2269–2281 (1983).
[CrossRef]

1981 (2)

K. Rzażewski and J. H. Eberly, “Confluence of bound-free coherences in laser-induced autoionization,” Phys. Rev. Lett. 47, 408–412 (1981).
[CrossRef]

P. Lambropoulos and P. Zoller, “Autoionizing states in strong laser fields,” Phys. Rev. A 24, 379–397 (1981).
[CrossRef]

1961 (1)

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124, 1866–1878 (1961).
[CrossRef]

Agarwal, G. S.

G. S. Agarwal, S. L. Haan, and J. Cooper, “Radiative decay of autoionizing states in laser fields. I. general theory,” Phys. Rev. A 29, 2552–2565 (1984).
[CrossRef]

Bergerow, H.

L. Journel, B. Rouvellou, D. Cubaynes, J. M. Bizau, F. J. Willeumier, M. Richter, P. Sladeczek, K.-H. Selbman, P. Zimmerman, and H. Bergerow, “First observation of a Fano profile following one step autoionization into a double photoionization continuum,” J. Physique IV 3, 217–226 (1993).

Bizau, J. M.

L. Journel, B. Rouvellou, D. Cubaynes, J. M. Bizau, F. J. Willeumier, M. Richter, P. Sladeczek, K.-H. Selbman, P. Zimmerman, and H. Bergerow, “First observation of a Fano profile following one step autoionization into a double photoionization continuum,” J. Physique IV 3, 217–226 (1993).

Bužek, V.

W. Leoński and V. Bužek, “Quantum laser field effect on the photoelectron spectrum for auto-ionizing systems,” J. Mod. Opt. 37, 1923–1934 (1990).
[CrossRef]

Cápek, V.

E. A. Silinsh and V. Čápek, Organic Molecular Crystals: Interaction, Localization and Transport Phenomena (Oxford University Press/American Institute of Physics, 1994).

Cooper, J.

G. S. Agarwal, S. L. Haan, and J. Cooper, “Radiative decay of autoionizing states in laser fields. I. general theory,” Phys. Rev. A 29, 2552–2565 (1984).
[CrossRef]

Cubaynes, D.

L. Journel, B. Rouvellou, D. Cubaynes, J. M. Bizau, F. J. Willeumier, M. Richter, P. Sladeczek, K.-H. Selbman, P. Zimmerman, and H. Bergerow, “First observation of a Fano profile following one step autoionization into a double photoionization continuum,” J. Physique IV 3, 217–226 (1993).

Durand, P.

P. Durand, I. Paidarová, and F. X. Gadéa, “Theory of Fano profiles,” J. Phys. B At. Mol. Opt. Phys. 34, 1953–1966 (2001).
[CrossRef]

Eberly, J. H.

K. Rzażewski and J. H. Eberly, “Photoexcitation of an autoionizing resonance in the presence of off-diagonal relaxation,” Phys. Rev. A 27, 2026–2042 (1983).
[CrossRef]

K. Rzażewski and J. H. Eberly, “Confluence of bound-free coherences in laser-induced autoionization,” Phys. Rev. Lett. 47, 408–412 (1981).
[CrossRef]

Fano, U.

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124, 1866–1878 (1961).
[CrossRef]

Flach, S.

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82, 2257–2298 (2010).
[CrossRef]

Gadéa, F. X.

P. Durand, I. Paidarová, and F. X. Gadéa, “Theory of Fano profiles,” J. Phys. B At. Mol. Opt. Phys. 34, 1953–1966 (2001).
[CrossRef]

Haan, S. L.

G. S. Agarwal, S. L. Haan, and J. Cooper, “Radiative decay of autoionizing states in laser fields. I. general theory,” Phys. Rev. A 29, 2552–2565 (1984).
[CrossRef]

Haus, J. W.

M. Lewenstein, J. W. Haus, and K. Rzażewski, “Photon spectrum in laser-induced autoionization,” Phys. Rev. Lett. 50, 417–420 (1983).
[CrossRef]

J. W. Haus, M. Lewenstein, and K. Rzażewski, “Laser-induced autoionization in the presence of radiative damping and transverse relaxation,” Phys. Rev. A 28, 2269–2281 (1983).
[CrossRef]

Journel, L.

L. Journel, B. Rouvellou, D. Cubaynes, J. M. Bizau, F. J. Willeumier, M. Richter, P. Sladeczek, K.-H. Selbman, P. Zimmerman, and H. Bergerow, “First observation of a Fano profile following one step autoionization into a double photoionization continuum,” J. Physique IV 3, 217–226 (1993).

Jurecka, S.

A. Lukš, V. Peřinová, J. Peřina, J. Křepelka, and W. Leoński, “Photoelectron spectra for an atom with one autoionizing level that interacts with a neighbor,” in “Wave and Quantum Aspects of Contemporary Optics: Proceedings of SPIE, Vol. 7746,” J. Müllerová, D. Senderáková, and S. Jurecka, eds. (SPIE, Bellingham, 2010), p. 77460W.

Kielich, S.

W. Leoński, R. Tanaś, and S. Kielich, “Effect of dc field coupling on the photoelectron spectrum from double auto-ionising levels,” J. Phys. D 21, S125–S127 (1988).
[CrossRef]

W. Leoński, R. Tanaś, and S. Kielich, “Laser-induced autoionization from a double Fano system,” J. Opt. Soc. Am. B 4, 72–77 (1987).
[CrossRef]

Kivshar, Y. S.

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82, 2257–2298 (2010).
[CrossRef]

Knight, P. L.

E. Paspalakis, N. J. Kylstra, and P. L. Knight, “Propagation dynamics in an autoionization medium,” Phys. Rev. A 60, 642–647 (1999).
[CrossRef]

Krepelka, J.

A. Lukš, V. Peřinová, J. Peřina, J. Křepelka, and W. Leoński, “Photoelectron spectra for an atom with one autoionizing level that interacts with a neighbor,” in “Wave and Quantum Aspects of Contemporary Optics: Proceedings of SPIE, Vol. 7746,” J. Müllerová, D. Senderáková, and S. Jurecka, eds. (SPIE, Bellingham, 2010), p. 77460W.

Kylstra, N. J.

E. Paspalakis, N. J. Kylstra, and P. L. Knight, “Propagation dynamics in an autoionization medium,” Phys. Rev. A 60, 642–647 (1999).
[CrossRef]

Lambropoulos, P.

P. Lambropoulos and P. Zoller, “Autoionizing states in strong laser fields,” Phys. Rev. A 24, 379–397 (1981).
[CrossRef]

Leonski, W.

J. Peřina, A. Lukš, W. Leoński, and V. Peřinová, “Photoionization electron spectra in a system interacting with a neighboring atom,” Phys. Rev. A 83, 053416 (2011).
[CrossRef]

J. Peřina, A. Lukš, W. Leoński, and V. Peřinová, “Photoelectron spectra in an autoionization system interacting with a neighboring atom,” Phys. Rev. A 83, 053430 (2011).
[CrossRef]

W. Leoński, “Squeezed-state effect on bound-continuum transitions,” J. Opt. Soc. Am. B 10, 244–252 (1993).
[CrossRef]

W. Leoński and V. Bužek, “Quantum laser field effect on the photoelectron spectrum for auto-ionizing systems,” J. Mod. Opt. 37, 1923–1934 (1990).
[CrossRef]

W. Leoński and R. Tanaś, “Dc-field effects on the photoelectron spectrum from a system with two autoionising levels,” J. Phys. B At. Mol. Opt. Phys. 21, 2835–2844 (1988).
[CrossRef]

W. Leoński, R. Tanaś, and S. Kielich, “Effect of dc field coupling on the photoelectron spectrum from double auto-ionising levels,” J. Phys. D 21, S125–S127 (1988).
[CrossRef]

W. Leoński, R. Tanaś, and S. Kielich, “Laser-induced autoionization from a double Fano system,” J. Opt. Soc. Am. B 4, 72–77 (1987).
[CrossRef]

A. Lukš, V. Peřinová, J. Peřina, J. Křepelka, and W. Leoński, “Photoelectron spectra for an atom with one autoionizing level that interacts with a neighbor,” in “Wave and Quantum Aspects of Contemporary Optics: Proceedings of SPIE, Vol. 7746,” J. Müllerová, D. Senderáková, and S. Jurecka, eds. (SPIE, Bellingham, 2010), p. 77460W.

Lewenstein, M.

J. W. Haus, M. Lewenstein, and K. Rzażewski, “Laser-induced autoionization in the presence of radiative damping and transverse relaxation,” Phys. Rev. A 28, 2269–2281 (1983).
[CrossRef]

M. Lewenstein, J. W. Haus, and K. Rzażewski, “Photon spectrum in laser-induced autoionization,” Phys. Rev. Lett. 50, 417–420 (1983).
[CrossRef]

Lukš, A.

J. Peřina, A. Lukš, W. Leoński, and V. Peřinová, “Photoionization electron spectra in a system interacting with a neighboring atom,” Phys. Rev. A 83, 053416 (2011).
[CrossRef]

J. Peřina, A. Lukš, W. Leoński, and V. Peřinová, “Photoelectron spectra in an autoionization system interacting with a neighboring atom,” Phys. Rev. A 83, 053430 (2011).
[CrossRef]

A. Lukš, V. Peřinová, J. Peřina, J. Křepelka, and W. Leoński, “Photoelectron spectra for an atom with one autoionizing level that interacts with a neighbor,” in “Wave and Quantum Aspects of Contemporary Optics: Proceedings of SPIE, Vol. 7746,” J. Müllerová, D. Senderáková, and S. Jurecka, eds. (SPIE, Bellingham, 2010), p. 77460W.

Meystre, P.

P. Meystre and P. Sargent, Elements of Quantum Optics (Springer, 2007).
[CrossRef]

Miroshnichenko, A. E.

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82, 2257–2298 (2010).
[CrossRef]

Müller, C.

B. Najjari, A. B. Voitkiv, and C. Müller, “Two-center resonant photoionization,” Phys. Rev. Lett. 105, 153002 (2010).
[CrossRef]

Müllerová, J.

A. Lukš, V. Peřinová, J. Peřina, J. Křepelka, and W. Leoński, “Photoelectron spectra for an atom with one autoionizing level that interacts with a neighbor,” in “Wave and Quantum Aspects of Contemporary Optics: Proceedings of SPIE, Vol. 7746,” J. Müllerová, D. Senderáková, and S. Jurecka, eds. (SPIE, Bellingham, 2010), p. 77460W.

Najjari, B.

B. Najjari, A. B. Voitkiv, and C. Müller, “Two-center resonant photoionization,” Phys. Rev. Lett. 105, 153002 (2010).
[CrossRef]

A. B. Voitkiv and B. Najjari, “Two-center dielectronic recombination and resonant photoionization,” Phys. Rev. A 82, 052708 (2010).
[CrossRef]

Paidarová, I.

P. Durand, I. Paidarová, and F. X. Gadéa, “Theory of Fano profiles,” J. Phys. B At. Mol. Opt. Phys. 34, 1953–1966 (2001).
[CrossRef]

Paspalakis, E.

E. Paspalakis, N. J. Kylstra, and P. L. Knight, “Propagation dynamics in an autoionization medium,” Phys. Rev. A 60, 642–647 (1999).
[CrossRef]

Perina, J.

J. Peřina, A. Lukš, W. Leoński, and V. Peřinová, “Photoelectron spectra in an autoionization system interacting with a neighboring atom,” Phys. Rev. A 83, 053430 (2011).
[CrossRef]

J. Peřina, A. Lukš, W. Leoński, and V. Peřinová, “Photoionization electron spectra in a system interacting with a neighboring atom,” Phys. Rev. A 83, 053416 (2011).
[CrossRef]

A. Lukš, V. Peřinová, J. Peřina, J. Křepelka, and W. Leoński, “Photoelectron spectra for an atom with one autoionizing level that interacts with a neighbor,” in “Wave and Quantum Aspects of Contemporary Optics: Proceedings of SPIE, Vol. 7746,” J. Müllerová, D. Senderáková, and S. Jurecka, eds. (SPIE, Bellingham, 2010), p. 77460W.

Perinová, V.

J. Peřina, A. Lukš, W. Leoński, and V. Peřinová, “Photoionization electron spectra in a system interacting with a neighboring atom,” Phys. Rev. A 83, 053416 (2011).
[CrossRef]

J. Peřina, A. Lukš, W. Leoński, and V. Peřinová, “Photoelectron spectra in an autoionization system interacting with a neighboring atom,” Phys. Rev. A 83, 053430 (2011).
[CrossRef]

A. Lukš, V. Peřinová, J. Peřina, J. Křepelka, and W. Leoński, “Photoelectron spectra for an atom with one autoionizing level that interacts with a neighbor,” in “Wave and Quantum Aspects of Contemporary Optics: Proceedings of SPIE, Vol. 7746,” J. Müllerová, D. Senderáková, and S. Jurecka, eds. (SPIE, Bellingham, 2010), p. 77460W.

Raczynski, A.

A. Raczyński, M. Rzepecka, J. Zaremba, and S. Zielińska-Kaniasty, “Electromagnetically induced transparency and light slowdown for Λ-like systems with a structured continuum,” Opt. Commun. 266, 552–557 (2006).
[CrossRef]

Richter, M.

L. Journel, B. Rouvellou, D. Cubaynes, J. M. Bizau, F. J. Willeumier, M. Richter, P. Sladeczek, K.-H. Selbman, P. Zimmerman, and H. Bergerow, “First observation of a Fano profile following one step autoionization into a double photoionization continuum,” J. Physique IV 3, 217–226 (1993).

Rouvellou, B.

L. Journel, B. Rouvellou, D. Cubaynes, J. M. Bizau, F. J. Willeumier, M. Richter, P. Sladeczek, K.-H. Selbman, P. Zimmerman, and H. Bergerow, “First observation of a Fano profile following one step autoionization into a double photoionization continuum,” J. Physique IV 3, 217–226 (1993).

Rzazewski, K.

J. W. Haus, M. Lewenstein, and K. Rzażewski, “Laser-induced autoionization in the presence of radiative damping and transverse relaxation,” Phys. Rev. A 28, 2269–2281 (1983).
[CrossRef]

M. Lewenstein, J. W. Haus, and K. Rzażewski, “Photon spectrum in laser-induced autoionization,” Phys. Rev. Lett. 50, 417–420 (1983).
[CrossRef]

K. Rzażewski and J. H. Eberly, “Photoexcitation of an autoionizing resonance in the presence of off-diagonal relaxation,” Phys. Rev. A 27, 2026–2042 (1983).
[CrossRef]

K. Rzażewski and J. H. Eberly, “Confluence of bound-free coherences in laser-induced autoionization,” Phys. Rev. Lett. 47, 408–412 (1981).
[CrossRef]

Rzepecka, M.

A. Raczyński, M. Rzepecka, J. Zaremba, and S. Zielińska-Kaniasty, “Electromagnetically induced transparency and light slowdown for Λ-like systems with a structured continuum,” Opt. Commun. 266, 552–557 (2006).
[CrossRef]

Sargent, P.

P. Meystre and P. Sargent, Elements of Quantum Optics (Springer, 2007).
[CrossRef]

Selbman, K.-H.

L. Journel, B. Rouvellou, D. Cubaynes, J. M. Bizau, F. J. Willeumier, M. Richter, P. Sladeczek, K.-H. Selbman, P. Zimmerman, and H. Bergerow, “First observation of a Fano profile following one step autoionization into a double photoionization continuum,” J. Physique IV 3, 217–226 (1993).

Senderáková, D.

A. Lukš, V. Peřinová, J. Peřina, J. Křepelka, and W. Leoński, “Photoelectron spectra for an atom with one autoionizing level that interacts with a neighbor,” in “Wave and Quantum Aspects of Contemporary Optics: Proceedings of SPIE, Vol. 7746,” J. Müllerová, D. Senderáková, and S. Jurecka, eds. (SPIE, Bellingham, 2010), p. 77460W.

Silinsh, E. A.

E. A. Silinsh and V. Čápek, Organic Molecular Crystals: Interaction, Localization and Transport Phenomena (Oxford University Press/American Institute of Physics, 1994).

Sladeczek, P.

L. Journel, B. Rouvellou, D. Cubaynes, J. M. Bizau, F. J. Willeumier, M. Richter, P. Sladeczek, K.-H. Selbman, P. Zimmerman, and H. Bergerow, “First observation of a Fano profile following one step autoionization into a double photoionization continuum,” J. Physique IV 3, 217–226 (1993).

Tanas, R.

W. Leoński, R. Tanaś, and S. Kielich, “Effect of dc field coupling on the photoelectron spectrum from double auto-ionising levels,” J. Phys. D 21, S125–S127 (1988).
[CrossRef]

W. Leoński and R. Tanaś, “Dc-field effects on the photoelectron spectrum from a system with two autoionising levels,” J. Phys. B At. Mol. Opt. Phys. 21, 2835–2844 (1988).
[CrossRef]

W. Leoński, R. Tanaś, and S. Kielich, “Laser-induced autoionization from a double Fano system,” J. Opt. Soc. Am. B 4, 72–77 (1987).
[CrossRef]

Voitkiv, A. B.

B. Najjari, A. B. Voitkiv, and C. Müller, “Two-center resonant photoionization,” Phys. Rev. Lett. 105, 153002 (2010).
[CrossRef]

A. B. Voitkiv and B. Najjari, “Two-center dielectronic recombination and resonant photoionization,” Phys. Rev. A 82, 052708 (2010).
[CrossRef]

Willeumier, F. J.

L. Journel, B. Rouvellou, D. Cubaynes, J. M. Bizau, F. J. Willeumier, M. Richter, P. Sladeczek, K.-H. Selbman, P. Zimmerman, and H. Bergerow, “First observation of a Fano profile following one step autoionization into a double photoionization continuum,” J. Physique IV 3, 217–226 (1993).

Zaremba, J.

A. Raczyński, M. Rzepecka, J. Zaremba, and S. Zielińska-Kaniasty, “Electromagnetically induced transparency and light slowdown for Λ-like systems with a structured continuum,” Opt. Commun. 266, 552–557 (2006).
[CrossRef]

Zielinska-Kaniasty, S.

A. Raczyński, M. Rzepecka, J. Zaremba, and S. Zielińska-Kaniasty, “Electromagnetically induced transparency and light slowdown for Λ-like systems with a structured continuum,” Opt. Commun. 266, 552–557 (2006).
[CrossRef]

Zimmerman, P.

L. Journel, B. Rouvellou, D. Cubaynes, J. M. Bizau, F. J. Willeumier, M. Richter, P. Sladeczek, K.-H. Selbman, P. Zimmerman, and H. Bergerow, “First observation of a Fano profile following one step autoionization into a double photoionization continuum,” J. Physique IV 3, 217–226 (1993).

Zoller, P.

P. Lambropoulos and P. Zoller, “Autoionizing states in strong laser fields,” Phys. Rev. A 24, 379–397 (1981).
[CrossRef]

J. Mod. Opt. (1)

W. Leoński and V. Bužek, “Quantum laser field effect on the photoelectron spectrum for auto-ionizing systems,” J. Mod. Opt. 37, 1923–1934 (1990).
[CrossRef]

J. Opt. Soc. Am. B (2)

J. Phys. B At. Mol. Opt. Phys. (2)

W. Leoński and R. Tanaś, “Dc-field effects on the photoelectron spectrum from a system with two autoionising levels,” J. Phys. B At. Mol. Opt. Phys. 21, 2835–2844 (1988).
[CrossRef]

P. Durand, I. Paidarová, and F. X. Gadéa, “Theory of Fano profiles,” J. Phys. B At. Mol. Opt. Phys. 34, 1953–1966 (2001).
[CrossRef]

J. Phys. D (1)

W. Leoński, R. Tanaś, and S. Kielich, “Effect of dc field coupling on the photoelectron spectrum from double auto-ionising levels,” J. Phys. D 21, S125–S127 (1988).
[CrossRef]

J. Physique IV (1)

L. Journel, B. Rouvellou, D. Cubaynes, J. M. Bizau, F. J. Willeumier, M. Richter, P. Sladeczek, K.-H. Selbman, P. Zimmerman, and H. Bergerow, “First observation of a Fano profile following one step autoionization into a double photoionization continuum,” J. Physique IV 3, 217–226 (1993).

Opt. Commun. (1)

A. Raczyński, M. Rzepecka, J. Zaremba, and S. Zielińska-Kaniasty, “Electromagnetically induced transparency and light slowdown for Λ-like systems with a structured continuum,” Opt. Commun. 266, 552–557 (2006).
[CrossRef]

Phys. Rev. (1)

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124, 1866–1878 (1961).
[CrossRef]

Phys. Rev. A (8)

P. Lambropoulos and P. Zoller, “Autoionizing states in strong laser fields,” Phys. Rev. A 24, 379–397 (1981).
[CrossRef]

E. Paspalakis, N. J. Kylstra, and P. L. Knight, “Propagation dynamics in an autoionization medium,” Phys. Rev. A 60, 642–647 (1999).
[CrossRef]

J. W. Haus, M. Lewenstein, and K. Rzażewski, “Laser-induced autoionization in the presence of radiative damping and transverse relaxation,” Phys. Rev. A 28, 2269–2281 (1983).
[CrossRef]

G. S. Agarwal, S. L. Haan, and J. Cooper, “Radiative decay of autoionizing states in laser fields. I. general theory,” Phys. Rev. A 29, 2552–2565 (1984).
[CrossRef]

K. Rzażewski and J. H. Eberly, “Photoexcitation of an autoionizing resonance in the presence of off-diagonal relaxation,” Phys. Rev. A 27, 2026–2042 (1983).
[CrossRef]

J. Peřina, A. Lukš, W. Leoński, and V. Peřinová, “Photoionization electron spectra in a system interacting with a neighboring atom,” Phys. Rev. A 83, 053416 (2011).
[CrossRef]

J. Peřina, A. Lukš, W. Leoński, and V. Peřinová, “Photoelectron spectra in an autoionization system interacting with a neighboring atom,” Phys. Rev. A 83, 053430 (2011).
[CrossRef]

A. B. Voitkiv and B. Najjari, “Two-center dielectronic recombination and resonant photoionization,” Phys. Rev. A 82, 052708 (2010).
[CrossRef]

Phys. Rev. Lett. (3)

B. Najjari, A. B. Voitkiv, and C. Müller, “Two-center resonant photoionization,” Phys. Rev. Lett. 105, 153002 (2010).
[CrossRef]

M. Lewenstein, J. W. Haus, and K. Rzażewski, “Photon spectrum in laser-induced autoionization,” Phys. Rev. Lett. 50, 417–420 (1983).
[CrossRef]

K. Rzażewski and J. H. Eberly, “Confluence of bound-free coherences in laser-induced autoionization,” Phys. Rev. Lett. 47, 408–412 (1981).
[CrossRef]

Rev. Mod. Phys. (1)

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82, 2257–2298 (2010).
[CrossRef]

Other (3)

A. Lukš, V. Peřinová, J. Peřina, J. Křepelka, and W. Leoński, “Photoelectron spectra for an atom with one autoionizing level that interacts with a neighbor,” in “Wave and Quantum Aspects of Contemporary Optics: Proceedings of SPIE, Vol. 7746,” J. Müllerová, D. Senderáková, and S. Jurecka, eds. (SPIE, Bellingham, 2010), p. 77460W.

E. A. Silinsh and V. Čápek, Organic Molecular Crystals: Interaction, Localization and Transport Phenomena (Oxford University Press/American Institute of Physics, 1994).

P. Meystre and P. Sargent, Elements of Quantum Optics (Springer, 2007).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Scheme of the autoionization system b interacting with a two-level atom a. The excited state of atom a with energy Ea is denoted as |1〉 a . The excited bound [free] state of atom b with energy Eb [E] is named |1〉 b [|E〉]. Symbols μa , μb , and μ refer to the dipole moments between the ground states |0〉 a and |0〉 b and the corresponding excited states; αL is the electric-field amplitude, V stands for the Coulomb configurational coupling between the states |1〉 b and |E〉. Energy transfer (dipole-dipole interaction) between states |1〉 a and |E〉 (|1〉 b ) is quantified by J (Jab ). Double arrows indicate the participation of both electrons at atoms a and b in the interaction.

Fig. 2
Fig. 2

Long-time intensity photoelectron ionization spectrum I lt (solid curve), steady-state intensities I 0 st (solid curve with ○) and I 1 st (solid curve with *), and magnitude I osc of intensity oscillations (solid curve with ▵). A Fano zero is located at (ED Eb )/Γ = −0.5; qa = μa /(πμJ *), γa = π|J|2, qb = μb /(πμV* ), γb = π|V|2, q trans = Jab /(πJV *), Ω = 4 π Γ ( Q + i ) μ α L , Γ = γa + γb , Q = (γaqa + γbqb )/Γ. Spectra are normalized such that ∫ dEI lt(E) = 1; qa = qb = q trans = 1, γa = γb = 1, Ω = 8, Ea = Eb = EL = 1.

Fig. 3
Fig. 3

Long-time photoelectron ionization spectra I lt for (a) qa = qb = 1 and (b) qa = 100, qb = 1 for different values of optical-interaction parameter Ω: Ω = 0.5 (solid curve with ○), Ω = 1 (solid curve), Ω = 2 (solid curve with *), Ω = 4 (solid curve with ▵), and Ω = 6 (solid curve with ♦). The Fano zero occurs at (EF Eb )/Γ = −0.5; q trans = 1, γa = γb = 1, Ea = Eb = EL = 1.

Fig. 4
Fig. 4

Normalized frequencies (ED Eb )/Γ of dynamical zeros as they depend on optical-interaction parameter Ω for resonant pumping of atom a; values of parameters are given in the caption to Fig. 3.

Fig. 5
Fig. 5

Long-time photoelectron ionization spectra I lt for different values of optical-interaction parameter Ω: (a) Ω = 5 × 10−4 (solid curve) and Ω = 3 × 10−2 (solid curve with *, only the central part is shown) and (b) Ω = 1 (solid curve with *), Ω = 2.5 (solid curve) and Ω = 4 (solid curve with ▵). The Fano zero occurs at (EF Eb )/Γ ≈ −1; qa = 100, γa = 1 × 10−4, qb = γb = 1, q trans = 1, Ea = Eb = EL = 1.

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

H ^ b = E b | 1 b b 1 | + d E E | E E | + d E ( V | E b 1 | + H . c . ) + [ μ b α L exp ( i E L t ) | 1 b b 0 | + H . c . ] + d E [ μ α L exp ( i E L t ) | E b 0 | + H . c . ] .
H ^ a = E a | 1 a a 1 | + [ μ a α L exp ( i E L t ) | 1 a a 0 | + H . c . ] .
H ^ trans = ( J a b | 1 b b 0 | | 0 a a 1 | + H . c . ) + d E ( J | E b 0 | | 0 a a 1 | + H . c . ) .
H ^ diag = E b | 1 b b 1 | + d E E | E E | + d E ( V | E b 1 | + H . c . ) ;
| E ) = b ( E ) | 1 b + d E β ( E , E ) | E ,
E b b ( E ) + d E V * ( E ) β ( E , E ) = E b ( E ) , V ( E ) b ( E ) + E β ( E , E ) = E β ( E , E ) .
β ( E , E ) = V ( E ) b ( E ) E E + i ɛ + F ( E ) δ ( E E ) ,
b ( E ) = V * ( E ) F ( E ) E E ˜ b + i γ b .
b ( E ) = V * ( E ) E b + i γ b , β ( E , E ) = V ( E ) b ( E ) E E + i ɛ + δ ( E E ) .
H ^ b = d E E | E ) ( E | + d E [ μ ¯ ( E ) α L exp ( i E L t ) | E ) b 0 | + H . c . ] .
μ ¯ ( E ) = μ b b * ( E ) + d E μ ( E ) β * ( E , E ) .
μ ¯ ( E ) = μ ɛ ( E ) + q b ɛ ( E ) + i ;
H ^ trans = d E [ J ¯ ( E ) | E ) b 0 | | 0 a a 1 | + H . c . ] .
J ¯ ( E ) = J a b b * ( E ) + d E J ( E ) β * ( E , E ) = J ɛ ( E ) + q trans ɛ ( E ) + i ;
μ b / μ = J a b / J .
E F = E ˜ b γ b q b .
μ ¯ ( E ) α L = ( E | H ^ 2 | 0 b exp ( i E L t ) = 1 E E ˜ b i γ b ( μ α L , V , E E ˜ b ) ( 0 μ b α L μ α L ) , J ¯ ( E ) = a 0 | ( E | H ^ 2 | 0 b | 1 a = 1 E E ˜ b i γ b ( μ α L , V , E E ˜ b ) ( 0 J a b J ) .
I lt ( E ) = I 0 lt ( E ) + I 1 lt ( E ) .
d j lt ( E , t ) = k = 1 2 l = 1 4 A j , l ξ k E Λ l ξ k exp [ i ( ξ k E ) t ] , j = 0 , 1 .
I 0 lt ( E , t ) = I 0 st ( E ) + I osc ( E ) cos [ δ ξ t + φ ( E ) ] , I 1 lt ( E , t ) = I 1 st ( E ) I osc ( E ) cos [ δ ξ t + φ ( E ) ] .
I lt ( E F ) = 0 ,
I j st ( E D ) = I osc ( E D ) , j = 0 , 1 ,

Metrics