Abstract

We report the generation of 200-nm-bandwidth mid-infrared pulses at 3.5-µm from an optical parametric oscillator incorporating a 25-mm MgO:PPLN crystal and synchronously-pumped by chirped pulses from a fiber-amplified Yb:KYW laser. A long nonlinear crystal permits efficient transfer of the pump bandwidth into the idler pulses, achieves exceptional passive stability and enables pumping using chirped pulses directly from a fiber-amplifier, avoiding the need to use lossy pulse-compression optics.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Galvanauskas, “Mode-scalable fiber-based chirped pulse amplification systems,” IEEE J. Sel. Top. Quantum Electron. 7(4), 504–517 (2001).
    [CrossRef]
  2. K. A. Tillman, R. R. J. Maier, D. T. Reid, and E. D. McNaghten, “Mid-infrared absorption spectroscopy of methane using a broadband femtosecond optical parametric oscillator based on aperiodically poled lithium niobate,” J. Opt. A, Pure Appl. Opt. 7(6), S408–S414 (2005).
    [CrossRef]
  3. N. Gayraud, U. W. Kornaszewski, J. M. Stone, J. C. Knight, D. T. Reid, D. P. Hand, and W. N. MacPherson, “Mid-infrared gas sensing using a photonic bandgap fiber,” Appl. Opt. 47(9), 1269–1277 (2008).
    [PubMed]
  4. G. M. Gale, M. Cavallari, T. J. Driscoll, and F. Hache, “Sub-20-fs tunable pulses in the visible from an 82-MHz optical parametric oscillator,” Opt. Lett. 20(14), 1562–1564 (1995).
    [CrossRef] [PubMed]
  5. D. T. Reid and I. G. Cormack, “Single-shot sonogram: a real-time chirp monitor for ultrafast oscillators,” Opt. Lett. 27(8), 658–660 (2002).
    [CrossRef] [PubMed]
  6. A. S. Radunsky, E. M. Kosik Williams, I. A. Walmsley, P. Wasylczyk, W. Wasilewski, A. B. U’Ren, and M. E. Anderson, “Simplified spectral phase interferometry for direct electric-field reconstruction by using a thick nonlinear crystal,” Opt. Lett. 31(7), 1008–1010 (2006).
    [CrossRef] [PubMed]
  7. O. Paul, A. Quosig, T. Bauer, M. Nittmann, J. Bartschke, G. Anstett, and J. A. L’Huillier, “Temperature-dependent Sellmeier equation in the MIR for the extraordinary refractive index of 5% MgO doped congruent LiNbO3,” Appl. Phys. B 86(1), 111–115 (2006).
    [CrossRef]
  8. A. V. Smith, “Bandwidth and group-velocity effects in nanosecond optical parametric amplifiers and oscillators,” J. Opt. Soc. Am. B 22(9), 1953 (2005).
    [CrossRef]
  9. H. S. S. Hung, J. Prawiharjo, N. K. Daga, D. C. Hanna, and D. P. Shepherd, “Experimental investigation of parametric transfer in synchronously pumped optical parametric oscillators,” J. Opt. Soc. Am. B 24(12), 2998 (2007).
    [CrossRef]
  10. D. T. Reid, M. Padgett, C. McGowan, W. E. Sleat, and W. Sibbett, “Light-emitting diodes as measurement devices for femtosecond laser pulses,” Opt. Lett. 22(4), 233–235 (1997).
    [CrossRef] [PubMed]
  11. D. T. Reid, W. Sibbett, J. M. Dudley, L. P. Barry, B. Thomsen, and J. D. Harvey, “Commercial semiconductor devices for two-photon absorption autocorrelation of ultrashort light pulses,” Appl. Opt. 37, 8142 (1998).
    [CrossRef]

2008 (1)

2007 (1)

2006 (2)

O. Paul, A. Quosig, T. Bauer, M. Nittmann, J. Bartschke, G. Anstett, and J. A. L’Huillier, “Temperature-dependent Sellmeier equation in the MIR for the extraordinary refractive index of 5% MgO doped congruent LiNbO3,” Appl. Phys. B 86(1), 111–115 (2006).
[CrossRef]

A. S. Radunsky, E. M. Kosik Williams, I. A. Walmsley, P. Wasylczyk, W. Wasilewski, A. B. U’Ren, and M. E. Anderson, “Simplified spectral phase interferometry for direct electric-field reconstruction by using a thick nonlinear crystal,” Opt. Lett. 31(7), 1008–1010 (2006).
[CrossRef] [PubMed]

2005 (2)

A. V. Smith, “Bandwidth and group-velocity effects in nanosecond optical parametric amplifiers and oscillators,” J. Opt. Soc. Am. B 22(9), 1953 (2005).
[CrossRef]

K. A. Tillman, R. R. J. Maier, D. T. Reid, and E. D. McNaghten, “Mid-infrared absorption spectroscopy of methane using a broadband femtosecond optical parametric oscillator based on aperiodically poled lithium niobate,” J. Opt. A, Pure Appl. Opt. 7(6), S408–S414 (2005).
[CrossRef]

2002 (1)

2001 (1)

A. Galvanauskas, “Mode-scalable fiber-based chirped pulse amplification systems,” IEEE J. Sel. Top. Quantum Electron. 7(4), 504–517 (2001).
[CrossRef]

1998 (1)

1997 (1)

1995 (1)

Anderson, M. E.

Anstett, G.

O. Paul, A. Quosig, T. Bauer, M. Nittmann, J. Bartschke, G. Anstett, and J. A. L’Huillier, “Temperature-dependent Sellmeier equation in the MIR for the extraordinary refractive index of 5% MgO doped congruent LiNbO3,” Appl. Phys. B 86(1), 111–115 (2006).
[CrossRef]

Barry, L. P.

Bartschke, J.

O. Paul, A. Quosig, T. Bauer, M. Nittmann, J. Bartschke, G. Anstett, and J. A. L’Huillier, “Temperature-dependent Sellmeier equation in the MIR for the extraordinary refractive index of 5% MgO doped congruent LiNbO3,” Appl. Phys. B 86(1), 111–115 (2006).
[CrossRef]

Bauer, T.

O. Paul, A. Quosig, T. Bauer, M. Nittmann, J. Bartschke, G. Anstett, and J. A. L’Huillier, “Temperature-dependent Sellmeier equation in the MIR for the extraordinary refractive index of 5% MgO doped congruent LiNbO3,” Appl. Phys. B 86(1), 111–115 (2006).
[CrossRef]

Cavallari, M.

Cormack, I. G.

Daga, N. K.

Driscoll, T. J.

Dudley, J. M.

Gale, G. M.

Galvanauskas, A.

A. Galvanauskas, “Mode-scalable fiber-based chirped pulse amplification systems,” IEEE J. Sel. Top. Quantum Electron. 7(4), 504–517 (2001).
[CrossRef]

Gayraud, N.

Hache, F.

Hand, D. P.

Hanna, D. C.

Harvey, J. D.

Hung, H. S. S.

Knight, J. C.

Kornaszewski, U. W.

Kosik Williams, E. M.

L’Huillier, J. A.

O. Paul, A. Quosig, T. Bauer, M. Nittmann, J. Bartschke, G. Anstett, and J. A. L’Huillier, “Temperature-dependent Sellmeier equation in the MIR for the extraordinary refractive index of 5% MgO doped congruent LiNbO3,” Appl. Phys. B 86(1), 111–115 (2006).
[CrossRef]

MacPherson, W. N.

Maier, R. R. J.

K. A. Tillman, R. R. J. Maier, D. T. Reid, and E. D. McNaghten, “Mid-infrared absorption spectroscopy of methane using a broadband femtosecond optical parametric oscillator based on aperiodically poled lithium niobate,” J. Opt. A, Pure Appl. Opt. 7(6), S408–S414 (2005).
[CrossRef]

McGowan, C.

McNaghten, E. D.

K. A. Tillman, R. R. J. Maier, D. T. Reid, and E. D. McNaghten, “Mid-infrared absorption spectroscopy of methane using a broadband femtosecond optical parametric oscillator based on aperiodically poled lithium niobate,” J. Opt. A, Pure Appl. Opt. 7(6), S408–S414 (2005).
[CrossRef]

Nittmann, M.

O. Paul, A. Quosig, T. Bauer, M. Nittmann, J. Bartschke, G. Anstett, and J. A. L’Huillier, “Temperature-dependent Sellmeier equation in the MIR for the extraordinary refractive index of 5% MgO doped congruent LiNbO3,” Appl. Phys. B 86(1), 111–115 (2006).
[CrossRef]

Padgett, M.

Paul, O.

O. Paul, A. Quosig, T. Bauer, M. Nittmann, J. Bartschke, G. Anstett, and J. A. L’Huillier, “Temperature-dependent Sellmeier equation in the MIR for the extraordinary refractive index of 5% MgO doped congruent LiNbO3,” Appl. Phys. B 86(1), 111–115 (2006).
[CrossRef]

Prawiharjo, J.

Quosig, A.

O. Paul, A. Quosig, T. Bauer, M. Nittmann, J. Bartschke, G. Anstett, and J. A. L’Huillier, “Temperature-dependent Sellmeier equation in the MIR for the extraordinary refractive index of 5% MgO doped congruent LiNbO3,” Appl. Phys. B 86(1), 111–115 (2006).
[CrossRef]

Radunsky, A. S.

Reid, D. T.

Shepherd, D. P.

Sibbett, W.

Sleat, W. E.

Smith, A. V.

Stone, J. M.

Thomsen, B.

Tillman, K. A.

K. A. Tillman, R. R. J. Maier, D. T. Reid, and E. D. McNaghten, “Mid-infrared absorption spectroscopy of methane using a broadband femtosecond optical parametric oscillator based on aperiodically poled lithium niobate,” J. Opt. A, Pure Appl. Opt. 7(6), S408–S414 (2005).
[CrossRef]

U’Ren, A. B.

Walmsley, I. A.

Wasilewski, W.

Wasylczyk, P.

Appl. Opt. (2)

Appl. Phys. B (1)

O. Paul, A. Quosig, T. Bauer, M. Nittmann, J. Bartschke, G. Anstett, and J. A. L’Huillier, “Temperature-dependent Sellmeier equation in the MIR for the extraordinary refractive index of 5% MgO doped congruent LiNbO3,” Appl. Phys. B 86(1), 111–115 (2006).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

A. Galvanauskas, “Mode-scalable fiber-based chirped pulse amplification systems,” IEEE J. Sel. Top. Quantum Electron. 7(4), 504–517 (2001).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (1)

K. A. Tillman, R. R. J. Maier, D. T. Reid, and E. D. McNaghten, “Mid-infrared absorption spectroscopy of methane using a broadband femtosecond optical parametric oscillator based on aperiodically poled lithium niobate,” J. Opt. A, Pure Appl. Opt. 7(6), S408–S414 (2005).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Lett. (4)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Phase-matching map for a 25-mm MgO:PPLN crystal at 40°C with a 30-µm grating period. The color scale is linear with sinc2kL/2) and the map was calculated using the Sellmeier data of [7]. The solid white lines are sections along the dashed lines. (b) Group delay variation with wavelength in a 25-mm long MgO:PPLN crystal. Experimental pump, signal and idler wavelengths are indicated, showing near-perfect group-velocity matching of the pump and idler pulses, with a transit-time difference of < 500 fs after 25 mm propagation.

Fig. 2
Fig. 2

Schematic of the OPO pump source. HWP, half-waveplate; L, lens; ISO, isolator.

Fig. 3
Fig. 3

(a) Spectrum. and (b) IAC of the pump pulses.

Fig. 4
Fig. 4

OPO layout: HWP, half-wave plate: ISO, isolator; L, lens. See text for other definitions.

Fig. 5
Fig. 5

(a) The output signal/idler power; (b) residual pump power exiting from the OPO; (c) spectra of the undepleted and depleted (dashed line) pump pulses at maximum pump power.

Fig. 6
Fig. 6

(a) Measured signal spectrum, and (b) corresponding interferometric autocorrelation. (c) Measured idler spectrum, and (d) corresponding interferometric autocorrelation.

Fig. 7
Fig. 7

Left axis: RIN of the pump laser (green) and OPO signal output (black). Right axis: the cumulative power fluctuations of the pump laser (green) and OPO signal output (black).

Metrics