Abstract

A simple but highly efficient method for particles or bacteria trapping and removal from water is of great importance for local water purification, particularly, for sanitation. Here, we report a massive photothermal trapping and migration of dielectric particles (SiO2, 2.08-µm diameter) in water by using a tapered optical fiber (3.1-µm diameter for taper). With a laser beam of 1.55 µm (170 mW) injected into the fiber, particles moved towards the position, which is about 380 µm away from the tip of the fiber, and assembled at a 290 µm × 100 µm spindle-shaped region. The highest assembly speed of particles is 22.1 ind./s and the highest moving velocity is 20.5 µm/s, which were induced by both negative photophoresis and temperature gradient. The number of assembled particles can reach 10,150 in 15 minutes. With a move of the fiber, the assembled particles will also migrate. We found that, when the fiber was moved 172 µm away from its original location, almost all of the assembled 10,150 particles were migrated to a new location in 140 s with a distance of 172 µm from their original location.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
    [CrossRef]
  2. A. Ashkin, “Optical trapping and manipulation of neutral particles using lasers,” Proc. Natl. Acad. Sci. U.S.A. 94(10), 4853–4860 (1997).
    [CrossRef] [PubMed]
  3. D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
    [CrossRef] [PubMed]
  4. K. Dholakia and P. Reece, “Optical micromanipulation takes hold,” Nano Today 1(1), 18–27 (2006).
    [CrossRef]
  5. A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61(2), 569–582 (1992).
    [CrossRef] [PubMed]
  6. L. Bosanac, T. Aabo, P. M. Bendix, and L. B. Oddershede, “Efficient optical trapping and visualization of silver nanoparticles,” Nano Lett. 8(5), 1486–1491 (2008).
    [CrossRef] [PubMed]
  7. H. Liu, G. J. Newton, R. Nakamura, K. Hashimoto, and S. Nakanishi, “Electrochemical characterization of a single electricity-producing bacterial cell of Shewanella by using optical tweezers,” Angew. Chem. Int. Ed. Engl. 49(37), 6596–6599 (2010).
    [CrossRef] [PubMed]
  8. C. Bustamante, Z. Bryant, and S. B. Smith, “Ten years of tension: single-molecule DNA mechanics,” Nature 421(6921), 423–427 (2003).
    [CrossRef] [PubMed]
  9. C. D'Helon, E. W. Dearden, H. Rubinsztein-Dunlop, and N. R. Heckenberg, “Measurement of the optical force and trapping range of a single-beam gradient optical trap for micron-sized latex spheres,” J. Mod. Opt. 41(3), 595–601 (1994).
    [CrossRef]
  10. O. Jovanovic, “Photophoresis−light induced motion of particles suspended in gas,” J. Quant. Spectrosc. Radiat. Transf. 110(11), 889–901 (2009).
    [CrossRef]
  11. C. Y. Soong, W. K. Li, C. H. Liu, and P. Y. Tzeng, “Theoretical analysis for photophoresis of a microscale hydrophobic particle in liquids,” Opt. Express 18(3), 2168–2182 (2010).
    [CrossRef] [PubMed]
  12. A. S. Desyatnikov, V. G. Shvedov, A. V. Rode, W. Krolikowski, and Y. S. Kivshar, “Photophoretic manipulation of absorbing aerosol particles with vortex beams: theory versus experiment,” Opt. Express 17(10), 8201–8211 (2009).
    [CrossRef] [PubMed]
  13. V. G. Shvedov, A. V. Rode, Y. V. Izdebskaya, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, “Giant optical manipulation,” Phys. Rev. Lett. 105(11), 118103 (2010).
    [CrossRef] [PubMed]
  14. M. Tanaka, H. Monjushiro, and H. Watarai, “Laser photophoretic migration with periodic expansion-contraction motion of photo-absorbing microemulsion droplets in water,” Langmuir 20(25), 10791–10797 (2004).
    [CrossRef] [PubMed]
  15. H. X. Lei, Y. Zhang, X. M. Li, and B. J. Li, “Photophoretic assembly and migration of dielectric particles and Escherichia coli in liquids using a subwavelength diameter optical fiber,” Lab Chip 11(13), 2241–2246 (2011).
    [CrossRef] [PubMed]
  16. V. G. Shvedov, A. V. Rode, Y. V. Izdebskaya, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, “Selective trapping of multiple particles by volume speckle field,” Opt. Express 18(3), 3137–3142 (2010).
    [CrossRef] [PubMed]
  17. S. Duhr and D. Braun, “Why molecules move along a temperature gradient,” Proc. Natl. Acad. Sci. U.S.A. 103(52), 19678–19682 (2006).
    [CrossRef] [PubMed]
  18. H. R. Jiang, H. Wada, N. Yoshinaga, and M. Sano, “Manipulation of colloids by a nonequilibrium depletion force in a temperature gradient,” Phys. Rev. Lett. 102(20), 208301 (2009).
    [CrossRef] [PubMed]
  19. M. Ichikawa, H. Ichikawa, K. Yoshikawa, and Y. Kimura, “Extension of a DNA molecule by local heating with a laser,” Phys. Rev. Lett. 99(14), 148104 (2007).
    [CrossRef] [PubMed]
  20. P. Baaske, C. J. Wienken, P. Reineck, S. Duhr, and D. Braun, “Optical thermophoresis for quantifying the buffer dependence of aptamer binding,” Angew. Chem. Int. Ed. Engl. 49(12), 2238–2241 (2010).
    [CrossRef] [PubMed]
  21. H. B. Xin and B. J. Li, “Targeted delivery and controllable release of nanoparticles using a defect-decorated optical nanofiber,” Opt. Express 19(14), 13285–13290 (2011).
    [CrossRef] [PubMed]
  22. H. B. Xin, H. X. Lei, Y. Zhang, X. M. Li, and B. J. Li, “Photothermal trapping of dielectric particles by optical fiber-ring,” Opt. Express 19(3), 2711–2719 (2011).
    [CrossRef] [PubMed]
  23. K. F. Palmer and D. Williams, “Optical properties of water in the near infrared,” J. Opt. Soc. Am. 64(8), 1107–1110 (1974).
    [CrossRef]

2011

2010

C. Y. Soong, W. K. Li, C. H. Liu, and P. Y. Tzeng, “Theoretical analysis for photophoresis of a microscale hydrophobic particle in liquids,” Opt. Express 18(3), 2168–2182 (2010).
[CrossRef] [PubMed]

V. G. Shvedov, A. V. Rode, Y. V. Izdebskaya, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, “Selective trapping of multiple particles by volume speckle field,” Opt. Express 18(3), 3137–3142 (2010).
[CrossRef] [PubMed]

V. G. Shvedov, A. V. Rode, Y. V. Izdebskaya, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, “Giant optical manipulation,” Phys. Rev. Lett. 105(11), 118103 (2010).
[CrossRef] [PubMed]

P. Baaske, C. J. Wienken, P. Reineck, S. Duhr, and D. Braun, “Optical thermophoresis for quantifying the buffer dependence of aptamer binding,” Angew. Chem. Int. Ed. Engl. 49(12), 2238–2241 (2010).
[CrossRef] [PubMed]

H. Liu, G. J. Newton, R. Nakamura, K. Hashimoto, and S. Nakanishi, “Electrochemical characterization of a single electricity-producing bacterial cell of Shewanella by using optical tweezers,” Angew. Chem. Int. Ed. Engl. 49(37), 6596–6599 (2010).
[CrossRef] [PubMed]

2009

H. R. Jiang, H. Wada, N. Yoshinaga, and M. Sano, “Manipulation of colloids by a nonequilibrium depletion force in a temperature gradient,” Phys. Rev. Lett. 102(20), 208301 (2009).
[CrossRef] [PubMed]

O. Jovanovic, “Photophoresis−light induced motion of particles suspended in gas,” J. Quant. Spectrosc. Radiat. Transf. 110(11), 889–901 (2009).
[CrossRef]

A. S. Desyatnikov, V. G. Shvedov, A. V. Rode, W. Krolikowski, and Y. S. Kivshar, “Photophoretic manipulation of absorbing aerosol particles with vortex beams: theory versus experiment,” Opt. Express 17(10), 8201–8211 (2009).
[CrossRef] [PubMed]

2008

L. Bosanac, T. Aabo, P. M. Bendix, and L. B. Oddershede, “Efficient optical trapping and visualization of silver nanoparticles,” Nano Lett. 8(5), 1486–1491 (2008).
[CrossRef] [PubMed]

2007

M. Ichikawa, H. Ichikawa, K. Yoshikawa, and Y. Kimura, “Extension of a DNA molecule by local heating with a laser,” Phys. Rev. Lett. 99(14), 148104 (2007).
[CrossRef] [PubMed]

2006

S. Duhr and D. Braun, “Why molecules move along a temperature gradient,” Proc. Natl. Acad. Sci. U.S.A. 103(52), 19678–19682 (2006).
[CrossRef] [PubMed]

K. Dholakia and P. Reece, “Optical micromanipulation takes hold,” Nano Today 1(1), 18–27 (2006).
[CrossRef]

2004

M. Tanaka, H. Monjushiro, and H. Watarai, “Laser photophoretic migration with periodic expansion-contraction motion of photo-absorbing microemulsion droplets in water,” Langmuir 20(25), 10791–10797 (2004).
[CrossRef] [PubMed]

2003

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[CrossRef] [PubMed]

C. Bustamante, Z. Bryant, and S. B. Smith, “Ten years of tension: single-molecule DNA mechanics,” Nature 421(6921), 423–427 (2003).
[CrossRef] [PubMed]

1997

A. Ashkin, “Optical trapping and manipulation of neutral particles using lasers,” Proc. Natl. Acad. Sci. U.S.A. 94(10), 4853–4860 (1997).
[CrossRef] [PubMed]

1994

C. D'Helon, E. W. Dearden, H. Rubinsztein-Dunlop, and N. R. Heckenberg, “Measurement of the optical force and trapping range of a single-beam gradient optical trap for micron-sized latex spheres,” J. Mod. Opt. 41(3), 595–601 (1994).
[CrossRef]

1992

A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61(2), 569–582 (1992).
[CrossRef] [PubMed]

1974

1970

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
[CrossRef]

Aabo, T.

L. Bosanac, T. Aabo, P. M. Bendix, and L. B. Oddershede, “Efficient optical trapping and visualization of silver nanoparticles,” Nano Lett. 8(5), 1486–1491 (2008).
[CrossRef] [PubMed]

Ashkin, A.

A. Ashkin, “Optical trapping and manipulation of neutral particles using lasers,” Proc. Natl. Acad. Sci. U.S.A. 94(10), 4853–4860 (1997).
[CrossRef] [PubMed]

A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61(2), 569–582 (1992).
[CrossRef] [PubMed]

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
[CrossRef]

Baaske, P.

P. Baaske, C. J. Wienken, P. Reineck, S. Duhr, and D. Braun, “Optical thermophoresis for quantifying the buffer dependence of aptamer binding,” Angew. Chem. Int. Ed. Engl. 49(12), 2238–2241 (2010).
[CrossRef] [PubMed]

Bendix, P. M.

L. Bosanac, T. Aabo, P. M. Bendix, and L. B. Oddershede, “Efficient optical trapping and visualization of silver nanoparticles,” Nano Lett. 8(5), 1486–1491 (2008).
[CrossRef] [PubMed]

Bosanac, L.

L. Bosanac, T. Aabo, P. M. Bendix, and L. B. Oddershede, “Efficient optical trapping and visualization of silver nanoparticles,” Nano Lett. 8(5), 1486–1491 (2008).
[CrossRef] [PubMed]

Braun, D.

P. Baaske, C. J. Wienken, P. Reineck, S. Duhr, and D. Braun, “Optical thermophoresis for quantifying the buffer dependence of aptamer binding,” Angew. Chem. Int. Ed. Engl. 49(12), 2238–2241 (2010).
[CrossRef] [PubMed]

S. Duhr and D. Braun, “Why molecules move along a temperature gradient,” Proc. Natl. Acad. Sci. U.S.A. 103(52), 19678–19682 (2006).
[CrossRef] [PubMed]

Bryant, Z.

C. Bustamante, Z. Bryant, and S. B. Smith, “Ten years of tension: single-molecule DNA mechanics,” Nature 421(6921), 423–427 (2003).
[CrossRef] [PubMed]

Bustamante, C.

C. Bustamante, Z. Bryant, and S. B. Smith, “Ten years of tension: single-molecule DNA mechanics,” Nature 421(6921), 423–427 (2003).
[CrossRef] [PubMed]

Dearden, E. W.

C. D'Helon, E. W. Dearden, H. Rubinsztein-Dunlop, and N. R. Heckenberg, “Measurement of the optical force and trapping range of a single-beam gradient optical trap for micron-sized latex spheres,” J. Mod. Opt. 41(3), 595–601 (1994).
[CrossRef]

Desyatnikov, A. S.

D'Helon, C.

C. D'Helon, E. W. Dearden, H. Rubinsztein-Dunlop, and N. R. Heckenberg, “Measurement of the optical force and trapping range of a single-beam gradient optical trap for micron-sized latex spheres,” J. Mod. Opt. 41(3), 595–601 (1994).
[CrossRef]

Dholakia, K.

K. Dholakia and P. Reece, “Optical micromanipulation takes hold,” Nano Today 1(1), 18–27 (2006).
[CrossRef]

Duhr, S.

P. Baaske, C. J. Wienken, P. Reineck, S. Duhr, and D. Braun, “Optical thermophoresis for quantifying the buffer dependence of aptamer binding,” Angew. Chem. Int. Ed. Engl. 49(12), 2238–2241 (2010).
[CrossRef] [PubMed]

S. Duhr and D. Braun, “Why molecules move along a temperature gradient,” Proc. Natl. Acad. Sci. U.S.A. 103(52), 19678–19682 (2006).
[CrossRef] [PubMed]

Grier, D. G.

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[CrossRef] [PubMed]

Hashimoto, K.

H. Liu, G. J. Newton, R. Nakamura, K. Hashimoto, and S. Nakanishi, “Electrochemical characterization of a single electricity-producing bacterial cell of Shewanella by using optical tweezers,” Angew. Chem. Int. Ed. Engl. 49(37), 6596–6599 (2010).
[CrossRef] [PubMed]

Heckenberg, N. R.

C. D'Helon, E. W. Dearden, H. Rubinsztein-Dunlop, and N. R. Heckenberg, “Measurement of the optical force and trapping range of a single-beam gradient optical trap for micron-sized latex spheres,” J. Mod. Opt. 41(3), 595–601 (1994).
[CrossRef]

Ichikawa, H.

M. Ichikawa, H. Ichikawa, K. Yoshikawa, and Y. Kimura, “Extension of a DNA molecule by local heating with a laser,” Phys. Rev. Lett. 99(14), 148104 (2007).
[CrossRef] [PubMed]

Ichikawa, M.

M. Ichikawa, H. Ichikawa, K. Yoshikawa, and Y. Kimura, “Extension of a DNA molecule by local heating with a laser,” Phys. Rev. Lett. 99(14), 148104 (2007).
[CrossRef] [PubMed]

Izdebskaya, Y. V.

V. G. Shvedov, A. V. Rode, Y. V. Izdebskaya, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, “Selective trapping of multiple particles by volume speckle field,” Opt. Express 18(3), 3137–3142 (2010).
[CrossRef] [PubMed]

V. G. Shvedov, A. V. Rode, Y. V. Izdebskaya, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, “Giant optical manipulation,” Phys. Rev. Lett. 105(11), 118103 (2010).
[CrossRef] [PubMed]

Jiang, H. R.

H. R. Jiang, H. Wada, N. Yoshinaga, and M. Sano, “Manipulation of colloids by a nonequilibrium depletion force in a temperature gradient,” Phys. Rev. Lett. 102(20), 208301 (2009).
[CrossRef] [PubMed]

Jovanovic, O.

O. Jovanovic, “Photophoresis−light induced motion of particles suspended in gas,” J. Quant. Spectrosc. Radiat. Transf. 110(11), 889–901 (2009).
[CrossRef]

Kimura, Y.

M. Ichikawa, H. Ichikawa, K. Yoshikawa, and Y. Kimura, “Extension of a DNA molecule by local heating with a laser,” Phys. Rev. Lett. 99(14), 148104 (2007).
[CrossRef] [PubMed]

Kivshar, Y. S.

Krolikowski, W.

Lei, H. X.

H. X. Lei, Y. Zhang, X. M. Li, and B. J. Li, “Photophoretic assembly and migration of dielectric particles and Escherichia coli in liquids using a subwavelength diameter optical fiber,” Lab Chip 11(13), 2241–2246 (2011).
[CrossRef] [PubMed]

H. B. Xin, H. X. Lei, Y. Zhang, X. M. Li, and B. J. Li, “Photothermal trapping of dielectric particles by optical fiber-ring,” Opt. Express 19(3), 2711–2719 (2011).
[CrossRef] [PubMed]

Li, B. J.

Li, W. K.

Li, X. M.

H. X. Lei, Y. Zhang, X. M. Li, and B. J. Li, “Photophoretic assembly and migration of dielectric particles and Escherichia coli in liquids using a subwavelength diameter optical fiber,” Lab Chip 11(13), 2241–2246 (2011).
[CrossRef] [PubMed]

H. B. Xin, H. X. Lei, Y. Zhang, X. M. Li, and B. J. Li, “Photothermal trapping of dielectric particles by optical fiber-ring,” Opt. Express 19(3), 2711–2719 (2011).
[CrossRef] [PubMed]

Liu, C. H.

Liu, H.

H. Liu, G. J. Newton, R. Nakamura, K. Hashimoto, and S. Nakanishi, “Electrochemical characterization of a single electricity-producing bacterial cell of Shewanella by using optical tweezers,” Angew. Chem. Int. Ed. Engl. 49(37), 6596–6599 (2010).
[CrossRef] [PubMed]

Monjushiro, H.

M. Tanaka, H. Monjushiro, and H. Watarai, “Laser photophoretic migration with periodic expansion-contraction motion of photo-absorbing microemulsion droplets in water,” Langmuir 20(25), 10791–10797 (2004).
[CrossRef] [PubMed]

Nakamura, R.

H. Liu, G. J. Newton, R. Nakamura, K. Hashimoto, and S. Nakanishi, “Electrochemical characterization of a single electricity-producing bacterial cell of Shewanella by using optical tweezers,” Angew. Chem. Int. Ed. Engl. 49(37), 6596–6599 (2010).
[CrossRef] [PubMed]

Nakanishi, S.

H. Liu, G. J. Newton, R. Nakamura, K. Hashimoto, and S. Nakanishi, “Electrochemical characterization of a single electricity-producing bacterial cell of Shewanella by using optical tweezers,” Angew. Chem. Int. Ed. Engl. 49(37), 6596–6599 (2010).
[CrossRef] [PubMed]

Newton, G. J.

H. Liu, G. J. Newton, R. Nakamura, K. Hashimoto, and S. Nakanishi, “Electrochemical characterization of a single electricity-producing bacterial cell of Shewanella by using optical tweezers,” Angew. Chem. Int. Ed. Engl. 49(37), 6596–6599 (2010).
[CrossRef] [PubMed]

Oddershede, L. B.

L. Bosanac, T. Aabo, P. M. Bendix, and L. B. Oddershede, “Efficient optical trapping and visualization of silver nanoparticles,” Nano Lett. 8(5), 1486–1491 (2008).
[CrossRef] [PubMed]

Palmer, K. F.

Reece, P.

K. Dholakia and P. Reece, “Optical micromanipulation takes hold,” Nano Today 1(1), 18–27 (2006).
[CrossRef]

Reineck, P.

P. Baaske, C. J. Wienken, P. Reineck, S. Duhr, and D. Braun, “Optical thermophoresis for quantifying the buffer dependence of aptamer binding,” Angew. Chem. Int. Ed. Engl. 49(12), 2238–2241 (2010).
[CrossRef] [PubMed]

Rode, A. V.

Rubinsztein-Dunlop, H.

C. D'Helon, E. W. Dearden, H. Rubinsztein-Dunlop, and N. R. Heckenberg, “Measurement of the optical force and trapping range of a single-beam gradient optical trap for micron-sized latex spheres,” J. Mod. Opt. 41(3), 595–601 (1994).
[CrossRef]

Sano, M.

H. R. Jiang, H. Wada, N. Yoshinaga, and M. Sano, “Manipulation of colloids by a nonequilibrium depletion force in a temperature gradient,” Phys. Rev. Lett. 102(20), 208301 (2009).
[CrossRef] [PubMed]

Shvedov, V. G.

Smith, S. B.

C. Bustamante, Z. Bryant, and S. B. Smith, “Ten years of tension: single-molecule DNA mechanics,” Nature 421(6921), 423–427 (2003).
[CrossRef] [PubMed]

Soong, C. Y.

Tanaka, M.

M. Tanaka, H. Monjushiro, and H. Watarai, “Laser photophoretic migration with periodic expansion-contraction motion of photo-absorbing microemulsion droplets in water,” Langmuir 20(25), 10791–10797 (2004).
[CrossRef] [PubMed]

Tzeng, P. Y.

Wada, H.

H. R. Jiang, H. Wada, N. Yoshinaga, and M. Sano, “Manipulation of colloids by a nonequilibrium depletion force in a temperature gradient,” Phys. Rev. Lett. 102(20), 208301 (2009).
[CrossRef] [PubMed]

Watarai, H.

M. Tanaka, H. Monjushiro, and H. Watarai, “Laser photophoretic migration with periodic expansion-contraction motion of photo-absorbing microemulsion droplets in water,” Langmuir 20(25), 10791–10797 (2004).
[CrossRef] [PubMed]

Wienken, C. J.

P. Baaske, C. J. Wienken, P. Reineck, S. Duhr, and D. Braun, “Optical thermophoresis for quantifying the buffer dependence of aptamer binding,” Angew. Chem. Int. Ed. Engl. 49(12), 2238–2241 (2010).
[CrossRef] [PubMed]

Williams, D.

Xin, H. B.

Yoshikawa, K.

M. Ichikawa, H. Ichikawa, K. Yoshikawa, and Y. Kimura, “Extension of a DNA molecule by local heating with a laser,” Phys. Rev. Lett. 99(14), 148104 (2007).
[CrossRef] [PubMed]

Yoshinaga, N.

H. R. Jiang, H. Wada, N. Yoshinaga, and M. Sano, “Manipulation of colloids by a nonequilibrium depletion force in a temperature gradient,” Phys. Rev. Lett. 102(20), 208301 (2009).
[CrossRef] [PubMed]

Zhang, Y.

H. B. Xin, H. X. Lei, Y. Zhang, X. M. Li, and B. J. Li, “Photothermal trapping of dielectric particles by optical fiber-ring,” Opt. Express 19(3), 2711–2719 (2011).
[CrossRef] [PubMed]

H. X. Lei, Y. Zhang, X. M. Li, and B. J. Li, “Photophoretic assembly and migration of dielectric particles and Escherichia coli in liquids using a subwavelength diameter optical fiber,” Lab Chip 11(13), 2241–2246 (2011).
[CrossRef] [PubMed]

Angew. Chem. Int. Ed. Engl.

H. Liu, G. J. Newton, R. Nakamura, K. Hashimoto, and S. Nakanishi, “Electrochemical characterization of a single electricity-producing bacterial cell of Shewanella by using optical tweezers,” Angew. Chem. Int. Ed. Engl. 49(37), 6596–6599 (2010).
[CrossRef] [PubMed]

P. Baaske, C. J. Wienken, P. Reineck, S. Duhr, and D. Braun, “Optical thermophoresis for quantifying the buffer dependence of aptamer binding,” Angew. Chem. Int. Ed. Engl. 49(12), 2238–2241 (2010).
[CrossRef] [PubMed]

Biophys. J.

A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61(2), 569–582 (1992).
[CrossRef] [PubMed]

J. Mod. Opt.

C. D'Helon, E. W. Dearden, H. Rubinsztein-Dunlop, and N. R. Heckenberg, “Measurement of the optical force and trapping range of a single-beam gradient optical trap for micron-sized latex spheres,” J. Mod. Opt. 41(3), 595–601 (1994).
[CrossRef]

J. Opt. Soc. Am.

J. Quant. Spectrosc. Radiat. Transf.

O. Jovanovic, “Photophoresis−light induced motion of particles suspended in gas,” J. Quant. Spectrosc. Radiat. Transf. 110(11), 889–901 (2009).
[CrossRef]

Lab Chip

H. X. Lei, Y. Zhang, X. M. Li, and B. J. Li, “Photophoretic assembly and migration of dielectric particles and Escherichia coli in liquids using a subwavelength diameter optical fiber,” Lab Chip 11(13), 2241–2246 (2011).
[CrossRef] [PubMed]

Langmuir

M. Tanaka, H. Monjushiro, and H. Watarai, “Laser photophoretic migration with periodic expansion-contraction motion of photo-absorbing microemulsion droplets in water,” Langmuir 20(25), 10791–10797 (2004).
[CrossRef] [PubMed]

Nano Lett.

L. Bosanac, T. Aabo, P. M. Bendix, and L. B. Oddershede, “Efficient optical trapping and visualization of silver nanoparticles,” Nano Lett. 8(5), 1486–1491 (2008).
[CrossRef] [PubMed]

Nano Today

K. Dholakia and P. Reece, “Optical micromanipulation takes hold,” Nano Today 1(1), 18–27 (2006).
[CrossRef]

Nature

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[CrossRef] [PubMed]

C. Bustamante, Z. Bryant, and S. B. Smith, “Ten years of tension: single-molecule DNA mechanics,” Nature 421(6921), 423–427 (2003).
[CrossRef] [PubMed]

Opt. Express

Phys. Rev. Lett.

V. G. Shvedov, A. V. Rode, Y. V. Izdebskaya, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, “Giant optical manipulation,” Phys. Rev. Lett. 105(11), 118103 (2010).
[CrossRef] [PubMed]

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
[CrossRef]

H. R. Jiang, H. Wada, N. Yoshinaga, and M. Sano, “Manipulation of colloids by a nonequilibrium depletion force in a temperature gradient,” Phys. Rev. Lett. 102(20), 208301 (2009).
[CrossRef] [PubMed]

M. Ichikawa, H. Ichikawa, K. Yoshikawa, and Y. Kimura, “Extension of a DNA molecule by local heating with a laser,” Phys. Rev. Lett. 99(14), 148104 (2007).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A.

A. Ashkin, “Optical trapping and manipulation of neutral particles using lasers,” Proc. Natl. Acad. Sci. U.S.A. 94(10), 4853–4860 (1997).
[CrossRef] [PubMed]

S. Duhr and D. Braun, “Why molecules move along a temperature gradient,” Proc. Natl. Acad. Sci. U.S.A. 103(52), 19678–19682 (2006).
[CrossRef] [PubMed]

Supplementary Material (3)

» Media 1: MOV (2627 KB)     
» Media 2: MOV (3473 KB)     
» Media 3: MOV (3502 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of the experimental setup and the optical microscope image of the tapered optical fiber. (a) Experimental setup. The fiber is fixed by a microstage with the taper immersed in a water suspension of silica particles and the other end connected to a 1.55-µm laser through an EDFA. The images and videos can be captured by the computer connected CCD. (b) The optical microscope image of the tapered optical fiber. The diameter of the tapered fiber is D = 3.1 µm.

Fig. 2
Fig. 2

Optical microscope images for different massive trapping process, detailed process is shown in Media 1 (from t = 4′20″ to 4′35″). (a) Image with laser (1.55 µm, 170 mW) launched into the fiber for t = 0′05″, particles begin to be trapped. The inset shows the image with laser for t = 0′00″ (the fiber included), no particles trapped. The red arrow in the inset indicates the propagation direction of 1.55-µm wavelength of light. (b) Image with laser for t = 2′00″, about 2,100 particles trapped, forming a spindle-shaped region. (c) Image with laser for t = 5′00″, about 5,150 particles trapped. (d) Image with laser for t = 15′00″, about 10,150 particles trapped. Trapping process is almost saturated. The dashed curve shows the spindle-shaped trapping region, and the white dashed arrows indicate the maximum diameter of the spindle-shaped region with a = 290 µm and the minimum one b = 100 µm. The inset shows the image for t = 15′05″ with a 50× objective, showing that the distance between the center of the trapping region and the end of the fiber is d = 380 µm. The red arrow in the inset indicates the propagation direction of 1.55-µm wavelength of light.

Fig. 3
Fig. 3

The average velocity of individual particles in the transverse direction (y direction) at different time of the laser injected with the distance d to the center of the trapping region. The inset shows the image for t = 4′00″, indicating the center of the trapping region, x and y direction.

Fig. 4
Fig. 4

(a) Histogram of trapped particles number versus the time of the laser injected with different optical power. (b) The assembling speed at different time of the laser injected with different optical power.

Fig. 5
Fig. 5

Optical microscope images for different massive migration process (input power kept at 170 mW). (a-e) Migration along –y direction, detailed process is shown in Media 2 (from t m = 0′02″ to 0′22″). (a) Image for migration time t m = 0′00″, trapped particle and the fiber are at their original locations. (b) For t m = 0′07″, the fiber was moved with a distance of 112 µm, the white dashed line indicates the original location of the fiber while the white arrow indicates migration direction. (c) For t m = 0′20″. (d) For t m = 0′40″. (e) For t m = 1′05″, particles migrated with a distance of 112 µm, dashed spindle-shaped region indicates the original location of the trapped particles. (f-j) Migration along the +y direction; the detailed process is shown in Media 3 (from t m = 1′05″ to 1′25″). (f) Image for t m = 1′10″, the fiber was moved with a distance of 172 µm, blue dashed line indicates the original location of the fiber while the blue arrow indicates migration direction. (g) For t m = 1′35″. (h) For t m = 2′05″. (i) For t m = 2′45″. (j) For t m = 3′25″, particles migrated to the new location (172 µm to the original location), the blue dashed spindle-shaped region indicates the location of the trapped particles at the beginning of the second migration.

Fig. 6
Fig. 6

Schematic illustration of the trapping process. The color bar represents the intensity of light from the tapered fiber, the blue arrows represent F P, and the black arrows represent F T, while the pink arrows represent the resultant force F exerted on particles. The white dashed curve represents the trajectory of some particles, and I−IV indicates different regions with particles.

Fig. 7
Fig. 7

Two-dimensional simulation results of light distribution and estimated temperature variation. (a) Electric field distribution of the 1.55-µm wavelength of light outputted from the 3.1-µm diameter tapered fiber. (b) Electric filed distribution of the 1.55-µm light radiated on a single silica particle (2.08 µm in diameter) suspended in water. (c) Power flow S and estimated temperature variation ΔT, the zero point of x axis is set at the focal spot (not fiber tip).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ T = η S τ / ( c ρ d ) ,

Metrics