Abstract

Wave-optics analysis is performed to show that selectively transparent and conducting photonic crystals (STCPCs) can be utilized as rear contacts to enhance the performance of building-integrated photovoltaics (BIPV). For instance, the current generated in an a-Si:H cell with an STCPC functioning as its rear contact is comparable to that of a similar cell with an optimized ZnO/Ag rear contact. However, the solar lumens (~3.5 klm/m2) and power (~430W/m2) transmitted through the cell with the STCPC rear contact can potentially provide indoor heating and lighting, respectively. Moreover, experimental results show that STCPC rear contacts could be used to control the color temperature of light transmitted through BIPV panels.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Ginley, M. A. Green, and R. Collins, “Solar energy conversion toward 1 terawatt,” Mater. Res. Bull. 33(4), 355–364 (2008).
    [CrossRef]
  2. Electricity from Renewable Resources: Status, Prospects, and Impediments, American's Energy Future Panel on Electricity from Renewable Resources, National Academy of Sciences, National Academy of Engineering, National Research Council of the National Academies. (National Academies Press, 2010), Ch. 2.
  3. T. T. Chow, “A review on photovoltaic/thermal hybrid solar technology,” Appl. Energy 87(2), 365–379 (2010).
    [CrossRef]
  4. H. A. Zondag, “Flat-plate PV-thermal collectors and systems: a review,” Renew. Sustain. Energy Rev. 12(4), 891–959 (2008).
    [CrossRef]
  5. H. Maurus, M. Schmid, B. Blersch, P. Lechner, and H. Schade, “PV for buildings: benefits and experiences with amorphous silicon in BIPV applications,” Refocus 5(6), 22–27 (2004).
    [CrossRef]
  6. M. Pagliaro, R. Ciriminna, and G. Palmisano, “BIPV: merging the photovoltaic with the construction industry,” Prog. Photovolt. Res. Appl. 18(1), 61–72 (2010).
    [CrossRef]
  7. D. L. Staebler and C. R. Wronski, “Reversible conductivity changes in discharge-produced amorphous Si,” Appl. Phys. Lett. 31(4), 292–294 (1977).
    [CrossRef]
  8. A. V. Shah, R. Platz, and H. Keppner, “Thin-film silicon solar cells: a review and selected trends,” Sol. Energy Mater. Sol. Cells 38(1–4), 501–520 (1995).
    [CrossRef]
  9. J. Meier, S. Dubail, R. Flückiger, D. Fischer, H. Keppner, and A. Shah, “Intrinsic microcrystalline silicon (µc-Si:H)- a promising new thin film solar cell material,” in Proceedings of the 1st World Conference on Photovoltaic Energy Conversion (IEEE, New York, 1994), pp. 409–412.
  10. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University Press, 2008).
  11. P. G. O’Brien, A. Chutinan, K. Leong, N. P. Kherani, G. A. Ozin, and S. Zukotynski, “Photonic crystal intermediate reflectors for micromorph solar cells: a comparative study,” Opt. Express 18(5), 4478–4490 (2010).
    [CrossRef] [PubMed]
  12. S. Fahr, C. Rockstuhl, and F. Lederer, “The interplay of intermediate reflectors and randomly textured surfaces in tandem solar cells,” Appl. Phys. Lett. 97(17), 173510 (2010).
    [CrossRef]
  13. S. B. Mallick, N. P. Sergeant, M. Agrawal, J. Lee, and P. Peumans, “Coherent light trapping in thin-film photovoltaics,” Mater. Res. Bull. 36(6), 453–460 (2011).
    [CrossRef]
  14. F. Duerinckx, I. Kuzma-Filipek, K. Van Nieuwenhuysen, G. Beaucarne, and J. Poortmans, “Reorganized porous silicon Bragg reflectors for thin-film silicon solar cells,” IEEE Electron Device Lett. 27(10), 837–839 (2006).
    [CrossRef]
  15. X. Sheng, J. Liu, I. Kozinsky, A. M. Agarwal, J. Michel, and L. C. Kimerling, “Design and non-lithographic fabrication of light trapping structures for thin film silicon solar cells,” Adv. Mater. (Deerfield Beach Fla.) 23(7), 843–847 (2011).
    [CrossRef] [PubMed]
  16. P. G. O’Brien, D. P. Puzzo, A. Chutinan, L. D. Bonifacio, G. A. Ozin, and N. P. Kherani, “Selectively transparent and conducting photonic crystals,” Adv. Mater. (Deerfield Beach Fla.) 22(5), 611–616 (2010).
    [CrossRef] [PubMed]
  17. P. G. O’Brien, D. P. Puzzo, N. P. Kherani, G. A. Ozin, A. Chutinan, Z. Lu, and M. G. Helander, “Transparent conductive porous nanocomposites and methods of fabrication thereof,” Pat. No. WO/2011/044687, (April 21, 2011).
  18. C. Z. O. Transparent, Basics and Applications in Thin Film Solar Cells, ed. R. Hull, J. Parisi, R.M. Osgood, and H. Warlimont, (Springer, 2008).
  19. J. Springer, A. Poruba, L. Müllerova, M. Vanecek, O. Kluth, and B. Rech, “Absorption loss at nanorough silver back reflector of thin-film silicon solar cells,” J. Appl. Phys. 95(3), 1427–1429 (2004).
    [CrossRef]
  20. J. Springer, A. Poruba, and M. Vanecek, “Improved three-dimensional optical model for thin-film silicon solar cells,” J. Appl. Phys. 96(9), 5329–5337 (2004).
    [CrossRef]
  21. D. M. Whittaker and I. S. Culshaw, “Scattering-matrix treatment of patterned multilayer photonic structures,” Phys. Rev. B 60(4), 2610–2618 (1999).
    [CrossRef]
  22. M. Liscidini, D. Gerace, L. C. Andreani, and J. E. Sipe, “Scattering-matrix analysis of periodically patterned multilayers with asymmetric unit cells and birefringent media,” Phys. Rev. B 77(3), 035324 (2008).
    [CrossRef]
  23. ASTMG, 173–03, Standard Tables for Reference Solar Spectral Irradiances: Direct Normal and Hemispherical on 37 Degree Tilted Surface (ASTM International, 2005).
  24. S. Adachi, Optical Constants of Crystalline and Amorphous Semiconductors: Numerical and Graphical Information, 1st edition, (Kluwer Acaemic Publishers, 1999).
  25. F. David, Edwards, “Silicon (Si),” in Handbook of Optical Constants of Solids, E.D. Palik, ed. (Academic, 1985).
  26. R. B. Stephens and G. D. Cody, “Optical reflectance and transmission of a textured surface,” Thin Solid Films 45(1), 19–29 (1977).
    [CrossRef]
  27. F. E. Schubert, Light-Emitting Diodes, 2nd ed. (Cambridge University Press, 2006), Ch.16.
  28. A. Nabil and J. Mardaljevic, “Useful daylight illuminance: a new paradigm for assessing daylight in buildings,” Lighting Res. Tech. 37(1), 41–59 (2005).
    [CrossRef]
  29. S. Hegedus, “Thin film solar modules: the low cost, high throughput and versatile alternative to Si wafers,” Prog. Photovolt. Res. Appl. 14(5), 393–411 (2006).
    [CrossRef]
  30. Á. Ruiz, J. M. Salmerόn, F. Sánchez, R. González, and S. Álvarez, “A calculation model for trombe walls and its use as a passive cooling technique,” International Conference on Passive and Low Energy Cooling for the Built Environment, (Santorini, 2005), pp. 365–369.

2011

S. B. Mallick, N. P. Sergeant, M. Agrawal, J. Lee, and P. Peumans, “Coherent light trapping in thin-film photovoltaics,” Mater. Res. Bull. 36(6), 453–460 (2011).
[CrossRef]

X. Sheng, J. Liu, I. Kozinsky, A. M. Agarwal, J. Michel, and L. C. Kimerling, “Design and non-lithographic fabrication of light trapping structures for thin film silicon solar cells,” Adv. Mater. (Deerfield Beach Fla.) 23(7), 843–847 (2011).
[CrossRef] [PubMed]

2010

P. G. O’Brien, D. P. Puzzo, A. Chutinan, L. D. Bonifacio, G. A. Ozin, and N. P. Kherani, “Selectively transparent and conducting photonic crystals,” Adv. Mater. (Deerfield Beach Fla.) 22(5), 611–616 (2010).
[CrossRef] [PubMed]

S. Fahr, C. Rockstuhl, and F. Lederer, “The interplay of intermediate reflectors and randomly textured surfaces in tandem solar cells,” Appl. Phys. Lett. 97(17), 173510 (2010).
[CrossRef]

T. T. Chow, “A review on photovoltaic/thermal hybrid solar technology,” Appl. Energy 87(2), 365–379 (2010).
[CrossRef]

M. Pagliaro, R. Ciriminna, and G. Palmisano, “BIPV: merging the photovoltaic with the construction industry,” Prog. Photovolt. Res. Appl. 18(1), 61–72 (2010).
[CrossRef]

P. G. O’Brien, A. Chutinan, K. Leong, N. P. Kherani, G. A. Ozin, and S. Zukotynski, “Photonic crystal intermediate reflectors for micromorph solar cells: a comparative study,” Opt. Express 18(5), 4478–4490 (2010).
[CrossRef] [PubMed]

2008

H. A. Zondag, “Flat-plate PV-thermal collectors and systems: a review,” Renew. Sustain. Energy Rev. 12(4), 891–959 (2008).
[CrossRef]

D. Ginley, M. A. Green, and R. Collins, “Solar energy conversion toward 1 terawatt,” Mater. Res. Bull. 33(4), 355–364 (2008).
[CrossRef]

M. Liscidini, D. Gerace, L. C. Andreani, and J. E. Sipe, “Scattering-matrix analysis of periodically patterned multilayers with asymmetric unit cells and birefringent media,” Phys. Rev. B 77(3), 035324 (2008).
[CrossRef]

2006

F. Duerinckx, I. Kuzma-Filipek, K. Van Nieuwenhuysen, G. Beaucarne, and J. Poortmans, “Reorganized porous silicon Bragg reflectors for thin-film silicon solar cells,” IEEE Electron Device Lett. 27(10), 837–839 (2006).
[CrossRef]

S. Hegedus, “Thin film solar modules: the low cost, high throughput and versatile alternative to Si wafers,” Prog. Photovolt. Res. Appl. 14(5), 393–411 (2006).
[CrossRef]

2005

A. Nabil and J. Mardaljevic, “Useful daylight illuminance: a new paradigm for assessing daylight in buildings,” Lighting Res. Tech. 37(1), 41–59 (2005).
[CrossRef]

2004

J. Springer, A. Poruba, L. Müllerova, M. Vanecek, O. Kluth, and B. Rech, “Absorption loss at nanorough silver back reflector of thin-film silicon solar cells,” J. Appl. Phys. 95(3), 1427–1429 (2004).
[CrossRef]

J. Springer, A. Poruba, and M. Vanecek, “Improved three-dimensional optical model for thin-film silicon solar cells,” J. Appl. Phys. 96(9), 5329–5337 (2004).
[CrossRef]

H. Maurus, M. Schmid, B. Blersch, P. Lechner, and H. Schade, “PV for buildings: benefits and experiences with amorphous silicon in BIPV applications,” Refocus 5(6), 22–27 (2004).
[CrossRef]

1999

D. M. Whittaker and I. S. Culshaw, “Scattering-matrix treatment of patterned multilayer photonic structures,” Phys. Rev. B 60(4), 2610–2618 (1999).
[CrossRef]

1995

A. V. Shah, R. Platz, and H. Keppner, “Thin-film silicon solar cells: a review and selected trends,” Sol. Energy Mater. Sol. Cells 38(1–4), 501–520 (1995).
[CrossRef]

1977

D. L. Staebler and C. R. Wronski, “Reversible conductivity changes in discharge-produced amorphous Si,” Appl. Phys. Lett. 31(4), 292–294 (1977).
[CrossRef]

R. B. Stephens and G. D. Cody, “Optical reflectance and transmission of a textured surface,” Thin Solid Films 45(1), 19–29 (1977).
[CrossRef]

Agarwal, A. M.

X. Sheng, J. Liu, I. Kozinsky, A. M. Agarwal, J. Michel, and L. C. Kimerling, “Design and non-lithographic fabrication of light trapping structures for thin film silicon solar cells,” Adv. Mater. (Deerfield Beach Fla.) 23(7), 843–847 (2011).
[CrossRef] [PubMed]

Agrawal, M.

S. B. Mallick, N. P. Sergeant, M. Agrawal, J. Lee, and P. Peumans, “Coherent light trapping in thin-film photovoltaics,” Mater. Res. Bull. 36(6), 453–460 (2011).
[CrossRef]

Andreani, L. C.

M. Liscidini, D. Gerace, L. C. Andreani, and J. E. Sipe, “Scattering-matrix analysis of periodically patterned multilayers with asymmetric unit cells and birefringent media,” Phys. Rev. B 77(3), 035324 (2008).
[CrossRef]

Beaucarne, G.

F. Duerinckx, I. Kuzma-Filipek, K. Van Nieuwenhuysen, G. Beaucarne, and J. Poortmans, “Reorganized porous silicon Bragg reflectors for thin-film silicon solar cells,” IEEE Electron Device Lett. 27(10), 837–839 (2006).
[CrossRef]

Blersch, B.

H. Maurus, M. Schmid, B. Blersch, P. Lechner, and H. Schade, “PV for buildings: benefits and experiences with amorphous silicon in BIPV applications,” Refocus 5(6), 22–27 (2004).
[CrossRef]

Bonifacio, L. D.

P. G. O’Brien, D. P. Puzzo, A. Chutinan, L. D. Bonifacio, G. A. Ozin, and N. P. Kherani, “Selectively transparent and conducting photonic crystals,” Adv. Mater. (Deerfield Beach Fla.) 22(5), 611–616 (2010).
[CrossRef] [PubMed]

Chow, T. T.

T. T. Chow, “A review on photovoltaic/thermal hybrid solar technology,” Appl. Energy 87(2), 365–379 (2010).
[CrossRef]

Chutinan, A.

P. G. O’Brien, D. P. Puzzo, A. Chutinan, L. D. Bonifacio, G. A. Ozin, and N. P. Kherani, “Selectively transparent and conducting photonic crystals,” Adv. Mater. (Deerfield Beach Fla.) 22(5), 611–616 (2010).
[CrossRef] [PubMed]

P. G. O’Brien, A. Chutinan, K. Leong, N. P. Kherani, G. A. Ozin, and S. Zukotynski, “Photonic crystal intermediate reflectors for micromorph solar cells: a comparative study,” Opt. Express 18(5), 4478–4490 (2010).
[CrossRef] [PubMed]

Ciriminna, R.

M. Pagliaro, R. Ciriminna, and G. Palmisano, “BIPV: merging the photovoltaic with the construction industry,” Prog. Photovolt. Res. Appl. 18(1), 61–72 (2010).
[CrossRef]

Cody, G. D.

R. B. Stephens and G. D. Cody, “Optical reflectance and transmission of a textured surface,” Thin Solid Films 45(1), 19–29 (1977).
[CrossRef]

Collins, R.

D. Ginley, M. A. Green, and R. Collins, “Solar energy conversion toward 1 terawatt,” Mater. Res. Bull. 33(4), 355–364 (2008).
[CrossRef]

Culshaw, I. S.

D. M. Whittaker and I. S. Culshaw, “Scattering-matrix treatment of patterned multilayer photonic structures,” Phys. Rev. B 60(4), 2610–2618 (1999).
[CrossRef]

Duerinckx, F.

F. Duerinckx, I. Kuzma-Filipek, K. Van Nieuwenhuysen, G. Beaucarne, and J. Poortmans, “Reorganized porous silicon Bragg reflectors for thin-film silicon solar cells,” IEEE Electron Device Lett. 27(10), 837–839 (2006).
[CrossRef]

Fahr, S.

S. Fahr, C. Rockstuhl, and F. Lederer, “The interplay of intermediate reflectors and randomly textured surfaces in tandem solar cells,” Appl. Phys. Lett. 97(17), 173510 (2010).
[CrossRef]

Gerace, D.

M. Liscidini, D. Gerace, L. C. Andreani, and J. E. Sipe, “Scattering-matrix analysis of periodically patterned multilayers with asymmetric unit cells and birefringent media,” Phys. Rev. B 77(3), 035324 (2008).
[CrossRef]

Ginley, D.

D. Ginley, M. A. Green, and R. Collins, “Solar energy conversion toward 1 terawatt,” Mater. Res. Bull. 33(4), 355–364 (2008).
[CrossRef]

Green, M. A.

D. Ginley, M. A. Green, and R. Collins, “Solar energy conversion toward 1 terawatt,” Mater. Res. Bull. 33(4), 355–364 (2008).
[CrossRef]

Hegedus, S.

S. Hegedus, “Thin film solar modules: the low cost, high throughput and versatile alternative to Si wafers,” Prog. Photovolt. Res. Appl. 14(5), 393–411 (2006).
[CrossRef]

Keppner, H.

A. V. Shah, R. Platz, and H. Keppner, “Thin-film silicon solar cells: a review and selected trends,” Sol. Energy Mater. Sol. Cells 38(1–4), 501–520 (1995).
[CrossRef]

Kherani, N. P.

P. G. O’Brien, A. Chutinan, K. Leong, N. P. Kherani, G. A. Ozin, and S. Zukotynski, “Photonic crystal intermediate reflectors for micromorph solar cells: a comparative study,” Opt. Express 18(5), 4478–4490 (2010).
[CrossRef] [PubMed]

P. G. O’Brien, D. P. Puzzo, A. Chutinan, L. D. Bonifacio, G. A. Ozin, and N. P. Kherani, “Selectively transparent and conducting photonic crystals,” Adv. Mater. (Deerfield Beach Fla.) 22(5), 611–616 (2010).
[CrossRef] [PubMed]

Kimerling, L. C.

X. Sheng, J. Liu, I. Kozinsky, A. M. Agarwal, J. Michel, and L. C. Kimerling, “Design and non-lithographic fabrication of light trapping structures for thin film silicon solar cells,” Adv. Mater. (Deerfield Beach Fla.) 23(7), 843–847 (2011).
[CrossRef] [PubMed]

Kluth, O.

J. Springer, A. Poruba, L. Müllerova, M. Vanecek, O. Kluth, and B. Rech, “Absorption loss at nanorough silver back reflector of thin-film silicon solar cells,” J. Appl. Phys. 95(3), 1427–1429 (2004).
[CrossRef]

Kozinsky, I.

X. Sheng, J. Liu, I. Kozinsky, A. M. Agarwal, J. Michel, and L. C. Kimerling, “Design and non-lithographic fabrication of light trapping structures for thin film silicon solar cells,” Adv. Mater. (Deerfield Beach Fla.) 23(7), 843–847 (2011).
[CrossRef] [PubMed]

Kuzma-Filipek, I.

F. Duerinckx, I. Kuzma-Filipek, K. Van Nieuwenhuysen, G. Beaucarne, and J. Poortmans, “Reorganized porous silicon Bragg reflectors for thin-film silicon solar cells,” IEEE Electron Device Lett. 27(10), 837–839 (2006).
[CrossRef]

Lechner, P.

H. Maurus, M. Schmid, B. Blersch, P. Lechner, and H. Schade, “PV for buildings: benefits and experiences with amorphous silicon in BIPV applications,” Refocus 5(6), 22–27 (2004).
[CrossRef]

Lederer, F.

S. Fahr, C. Rockstuhl, and F. Lederer, “The interplay of intermediate reflectors and randomly textured surfaces in tandem solar cells,” Appl. Phys. Lett. 97(17), 173510 (2010).
[CrossRef]

Lee, J.

S. B. Mallick, N. P. Sergeant, M. Agrawal, J. Lee, and P. Peumans, “Coherent light trapping in thin-film photovoltaics,” Mater. Res. Bull. 36(6), 453–460 (2011).
[CrossRef]

Leong, K.

Liscidini, M.

M. Liscidini, D. Gerace, L. C. Andreani, and J. E. Sipe, “Scattering-matrix analysis of periodically patterned multilayers with asymmetric unit cells and birefringent media,” Phys. Rev. B 77(3), 035324 (2008).
[CrossRef]

Liu, J.

X. Sheng, J. Liu, I. Kozinsky, A. M. Agarwal, J. Michel, and L. C. Kimerling, “Design and non-lithographic fabrication of light trapping structures for thin film silicon solar cells,” Adv. Mater. (Deerfield Beach Fla.) 23(7), 843–847 (2011).
[CrossRef] [PubMed]

Mallick, S. B.

S. B. Mallick, N. P. Sergeant, M. Agrawal, J. Lee, and P. Peumans, “Coherent light trapping in thin-film photovoltaics,” Mater. Res. Bull. 36(6), 453–460 (2011).
[CrossRef]

Mardaljevic, J.

A. Nabil and J. Mardaljevic, “Useful daylight illuminance: a new paradigm for assessing daylight in buildings,” Lighting Res. Tech. 37(1), 41–59 (2005).
[CrossRef]

Maurus, H.

H. Maurus, M. Schmid, B. Blersch, P. Lechner, and H. Schade, “PV for buildings: benefits and experiences with amorphous silicon in BIPV applications,” Refocus 5(6), 22–27 (2004).
[CrossRef]

Michel, J.

X. Sheng, J. Liu, I. Kozinsky, A. M. Agarwal, J. Michel, and L. C. Kimerling, “Design and non-lithographic fabrication of light trapping structures for thin film silicon solar cells,” Adv. Mater. (Deerfield Beach Fla.) 23(7), 843–847 (2011).
[CrossRef] [PubMed]

Müllerova, L.

J. Springer, A. Poruba, L. Müllerova, M. Vanecek, O. Kluth, and B. Rech, “Absorption loss at nanorough silver back reflector of thin-film silicon solar cells,” J. Appl. Phys. 95(3), 1427–1429 (2004).
[CrossRef]

Nabil, A.

A. Nabil and J. Mardaljevic, “Useful daylight illuminance: a new paradigm for assessing daylight in buildings,” Lighting Res. Tech. 37(1), 41–59 (2005).
[CrossRef]

O’Brien, P. G.

P. G. O’Brien, A. Chutinan, K. Leong, N. P. Kherani, G. A. Ozin, and S. Zukotynski, “Photonic crystal intermediate reflectors for micromorph solar cells: a comparative study,” Opt. Express 18(5), 4478–4490 (2010).
[CrossRef] [PubMed]

P. G. O’Brien, D. P. Puzzo, A. Chutinan, L. D. Bonifacio, G. A. Ozin, and N. P. Kherani, “Selectively transparent and conducting photonic crystals,” Adv. Mater. (Deerfield Beach Fla.) 22(5), 611–616 (2010).
[CrossRef] [PubMed]

Ozin, G. A.

P. G. O’Brien, D. P. Puzzo, A. Chutinan, L. D. Bonifacio, G. A. Ozin, and N. P. Kherani, “Selectively transparent and conducting photonic crystals,” Adv. Mater. (Deerfield Beach Fla.) 22(5), 611–616 (2010).
[CrossRef] [PubMed]

P. G. O’Brien, A. Chutinan, K. Leong, N. P. Kherani, G. A. Ozin, and S. Zukotynski, “Photonic crystal intermediate reflectors for micromorph solar cells: a comparative study,” Opt. Express 18(5), 4478–4490 (2010).
[CrossRef] [PubMed]

Pagliaro, M.

M. Pagliaro, R. Ciriminna, and G. Palmisano, “BIPV: merging the photovoltaic with the construction industry,” Prog. Photovolt. Res. Appl. 18(1), 61–72 (2010).
[CrossRef]

Palmisano, G.

M. Pagliaro, R. Ciriminna, and G. Palmisano, “BIPV: merging the photovoltaic with the construction industry,” Prog. Photovolt. Res. Appl. 18(1), 61–72 (2010).
[CrossRef]

Peumans, P.

S. B. Mallick, N. P. Sergeant, M. Agrawal, J. Lee, and P. Peumans, “Coherent light trapping in thin-film photovoltaics,” Mater. Res. Bull. 36(6), 453–460 (2011).
[CrossRef]

Platz, R.

A. V. Shah, R. Platz, and H. Keppner, “Thin-film silicon solar cells: a review and selected trends,” Sol. Energy Mater. Sol. Cells 38(1–4), 501–520 (1995).
[CrossRef]

Poortmans, J.

F. Duerinckx, I. Kuzma-Filipek, K. Van Nieuwenhuysen, G. Beaucarne, and J. Poortmans, “Reorganized porous silicon Bragg reflectors for thin-film silicon solar cells,” IEEE Electron Device Lett. 27(10), 837–839 (2006).
[CrossRef]

Poruba, A.

J. Springer, A. Poruba, and M. Vanecek, “Improved three-dimensional optical model for thin-film silicon solar cells,” J. Appl. Phys. 96(9), 5329–5337 (2004).
[CrossRef]

J. Springer, A. Poruba, L. Müllerova, M. Vanecek, O. Kluth, and B. Rech, “Absorption loss at nanorough silver back reflector of thin-film silicon solar cells,” J. Appl. Phys. 95(3), 1427–1429 (2004).
[CrossRef]

Puzzo, D. P.

P. G. O’Brien, D. P. Puzzo, A. Chutinan, L. D. Bonifacio, G. A. Ozin, and N. P. Kherani, “Selectively transparent and conducting photonic crystals,” Adv. Mater. (Deerfield Beach Fla.) 22(5), 611–616 (2010).
[CrossRef] [PubMed]

Rech, B.

J. Springer, A. Poruba, L. Müllerova, M. Vanecek, O. Kluth, and B. Rech, “Absorption loss at nanorough silver back reflector of thin-film silicon solar cells,” J. Appl. Phys. 95(3), 1427–1429 (2004).
[CrossRef]

Rockstuhl, C.

S. Fahr, C. Rockstuhl, and F. Lederer, “The interplay of intermediate reflectors and randomly textured surfaces in tandem solar cells,” Appl. Phys. Lett. 97(17), 173510 (2010).
[CrossRef]

Schade, H.

H. Maurus, M. Schmid, B. Blersch, P. Lechner, and H. Schade, “PV for buildings: benefits and experiences with amorphous silicon in BIPV applications,” Refocus 5(6), 22–27 (2004).
[CrossRef]

Schmid, M.

H. Maurus, M. Schmid, B. Blersch, P. Lechner, and H. Schade, “PV for buildings: benefits and experiences with amorphous silicon in BIPV applications,” Refocus 5(6), 22–27 (2004).
[CrossRef]

Sergeant, N. P.

S. B. Mallick, N. P. Sergeant, M. Agrawal, J. Lee, and P. Peumans, “Coherent light trapping in thin-film photovoltaics,” Mater. Res. Bull. 36(6), 453–460 (2011).
[CrossRef]

Shah, A. V.

A. V. Shah, R. Platz, and H. Keppner, “Thin-film silicon solar cells: a review and selected trends,” Sol. Energy Mater. Sol. Cells 38(1–4), 501–520 (1995).
[CrossRef]

Sheng, X.

X. Sheng, J. Liu, I. Kozinsky, A. M. Agarwal, J. Michel, and L. C. Kimerling, “Design and non-lithographic fabrication of light trapping structures for thin film silicon solar cells,” Adv. Mater. (Deerfield Beach Fla.) 23(7), 843–847 (2011).
[CrossRef] [PubMed]

Sipe, J. E.

M. Liscidini, D. Gerace, L. C. Andreani, and J. E. Sipe, “Scattering-matrix analysis of periodically patterned multilayers with asymmetric unit cells and birefringent media,” Phys. Rev. B 77(3), 035324 (2008).
[CrossRef]

Springer, J.

J. Springer, A. Poruba, L. Müllerova, M. Vanecek, O. Kluth, and B. Rech, “Absorption loss at nanorough silver back reflector of thin-film silicon solar cells,” J. Appl. Phys. 95(3), 1427–1429 (2004).
[CrossRef]

J. Springer, A. Poruba, and M. Vanecek, “Improved three-dimensional optical model for thin-film silicon solar cells,” J. Appl. Phys. 96(9), 5329–5337 (2004).
[CrossRef]

Staebler, D. L.

D. L. Staebler and C. R. Wronski, “Reversible conductivity changes in discharge-produced amorphous Si,” Appl. Phys. Lett. 31(4), 292–294 (1977).
[CrossRef]

Stephens, R. B.

R. B. Stephens and G. D. Cody, “Optical reflectance and transmission of a textured surface,” Thin Solid Films 45(1), 19–29 (1977).
[CrossRef]

Van Nieuwenhuysen, K.

F. Duerinckx, I. Kuzma-Filipek, K. Van Nieuwenhuysen, G. Beaucarne, and J. Poortmans, “Reorganized porous silicon Bragg reflectors for thin-film silicon solar cells,” IEEE Electron Device Lett. 27(10), 837–839 (2006).
[CrossRef]

Vanecek, M.

J. Springer, A. Poruba, and M. Vanecek, “Improved three-dimensional optical model for thin-film silicon solar cells,” J. Appl. Phys. 96(9), 5329–5337 (2004).
[CrossRef]

J. Springer, A. Poruba, L. Müllerova, M. Vanecek, O. Kluth, and B. Rech, “Absorption loss at nanorough silver back reflector of thin-film silicon solar cells,” J. Appl. Phys. 95(3), 1427–1429 (2004).
[CrossRef]

Whittaker, D. M.

D. M. Whittaker and I. S. Culshaw, “Scattering-matrix treatment of patterned multilayer photonic structures,” Phys. Rev. B 60(4), 2610–2618 (1999).
[CrossRef]

Wronski, C. R.

D. L. Staebler and C. R. Wronski, “Reversible conductivity changes in discharge-produced amorphous Si,” Appl. Phys. Lett. 31(4), 292–294 (1977).
[CrossRef]

Zondag, H. A.

H. A. Zondag, “Flat-plate PV-thermal collectors and systems: a review,” Renew. Sustain. Energy Rev. 12(4), 891–959 (2008).
[CrossRef]

Zukotynski, S.

Adv. Mater. (Deerfield Beach Fla.)

X. Sheng, J. Liu, I. Kozinsky, A. M. Agarwal, J. Michel, and L. C. Kimerling, “Design and non-lithographic fabrication of light trapping structures for thin film silicon solar cells,” Adv. Mater. (Deerfield Beach Fla.) 23(7), 843–847 (2011).
[CrossRef] [PubMed]

P. G. O’Brien, D. P. Puzzo, A. Chutinan, L. D. Bonifacio, G. A. Ozin, and N. P. Kherani, “Selectively transparent and conducting photonic crystals,” Adv. Mater. (Deerfield Beach Fla.) 22(5), 611–616 (2010).
[CrossRef] [PubMed]

Appl. Energy

T. T. Chow, “A review on photovoltaic/thermal hybrid solar technology,” Appl. Energy 87(2), 365–379 (2010).
[CrossRef]

Appl. Phys. Lett.

D. L. Staebler and C. R. Wronski, “Reversible conductivity changes in discharge-produced amorphous Si,” Appl. Phys. Lett. 31(4), 292–294 (1977).
[CrossRef]

S. Fahr, C. Rockstuhl, and F. Lederer, “The interplay of intermediate reflectors and randomly textured surfaces in tandem solar cells,” Appl. Phys. Lett. 97(17), 173510 (2010).
[CrossRef]

IEEE Electron Device Lett.

F. Duerinckx, I. Kuzma-Filipek, K. Van Nieuwenhuysen, G. Beaucarne, and J. Poortmans, “Reorganized porous silicon Bragg reflectors for thin-film silicon solar cells,” IEEE Electron Device Lett. 27(10), 837–839 (2006).
[CrossRef]

J. Appl. Phys.

J. Springer, A. Poruba, L. Müllerova, M. Vanecek, O. Kluth, and B. Rech, “Absorption loss at nanorough silver back reflector of thin-film silicon solar cells,” J. Appl. Phys. 95(3), 1427–1429 (2004).
[CrossRef]

J. Springer, A. Poruba, and M. Vanecek, “Improved three-dimensional optical model for thin-film silicon solar cells,” J. Appl. Phys. 96(9), 5329–5337 (2004).
[CrossRef]

Lighting Res. Tech.

A. Nabil and J. Mardaljevic, “Useful daylight illuminance: a new paradigm for assessing daylight in buildings,” Lighting Res. Tech. 37(1), 41–59 (2005).
[CrossRef]

Mater. Res. Bull.

D. Ginley, M. A. Green, and R. Collins, “Solar energy conversion toward 1 terawatt,” Mater. Res. Bull. 33(4), 355–364 (2008).
[CrossRef]

S. B. Mallick, N. P. Sergeant, M. Agrawal, J. Lee, and P. Peumans, “Coherent light trapping in thin-film photovoltaics,” Mater. Res. Bull. 36(6), 453–460 (2011).
[CrossRef]

Opt. Express

Phys. Rev. B

D. M. Whittaker and I. S. Culshaw, “Scattering-matrix treatment of patterned multilayer photonic structures,” Phys. Rev. B 60(4), 2610–2618 (1999).
[CrossRef]

M. Liscidini, D. Gerace, L. C. Andreani, and J. E. Sipe, “Scattering-matrix analysis of periodically patterned multilayers with asymmetric unit cells and birefringent media,” Phys. Rev. B 77(3), 035324 (2008).
[CrossRef]

Prog. Photovolt. Res. Appl.

S. Hegedus, “Thin film solar modules: the low cost, high throughput and versatile alternative to Si wafers,” Prog. Photovolt. Res. Appl. 14(5), 393–411 (2006).
[CrossRef]

M. Pagliaro, R. Ciriminna, and G. Palmisano, “BIPV: merging the photovoltaic with the construction industry,” Prog. Photovolt. Res. Appl. 18(1), 61–72 (2010).
[CrossRef]

Refocus

H. Maurus, M. Schmid, B. Blersch, P. Lechner, and H. Schade, “PV for buildings: benefits and experiences with amorphous silicon in BIPV applications,” Refocus 5(6), 22–27 (2004).
[CrossRef]

Renew. Sustain. Energy Rev.

H. A. Zondag, “Flat-plate PV-thermal collectors and systems: a review,” Renew. Sustain. Energy Rev. 12(4), 891–959 (2008).
[CrossRef]

Sol. Energy Mater. Sol. Cells

A. V. Shah, R. Platz, and H. Keppner, “Thin-film silicon solar cells: a review and selected trends,” Sol. Energy Mater. Sol. Cells 38(1–4), 501–520 (1995).
[CrossRef]

Thin Solid Films

R. B. Stephens and G. D. Cody, “Optical reflectance and transmission of a textured surface,” Thin Solid Films 45(1), 19–29 (1977).
[CrossRef]

Other

F. E. Schubert, Light-Emitting Diodes, 2nd ed. (Cambridge University Press, 2006), Ch.16.

Á. Ruiz, J. M. Salmerόn, F. Sánchez, R. González, and S. Álvarez, “A calculation model for trombe walls and its use as a passive cooling technique,” International Conference on Passive and Low Energy Cooling for the Built Environment, (Santorini, 2005), pp. 365–369.

Electricity from Renewable Resources: Status, Prospects, and Impediments, American's Energy Future Panel on Electricity from Renewable Resources, National Academy of Sciences, National Academy of Engineering, National Research Council of the National Academies. (National Academies Press, 2010), Ch. 2.

ASTMG, 173–03, Standard Tables for Reference Solar Spectral Irradiances: Direct Normal and Hemispherical on 37 Degree Tilted Surface (ASTM International, 2005).

S. Adachi, Optical Constants of Crystalline and Amorphous Semiconductors: Numerical and Graphical Information, 1st edition, (Kluwer Acaemic Publishers, 1999).

F. David, Edwards, “Silicon (Si),” in Handbook of Optical Constants of Solids, E.D. Palik, ed. (Academic, 1985).

P. G. O’Brien, D. P. Puzzo, N. P. Kherani, G. A. Ozin, A. Chutinan, Z. Lu, and M. G. Helander, “Transparent conductive porous nanocomposites and methods of fabrication thereof,” Pat. No. WO/2011/044687, (April 21, 2011).

C. Z. O. Transparent, Basics and Applications in Thin Film Solar Cells, ed. R. Hull, J. Parisi, R.M. Osgood, and H. Warlimont, (Springer, 2008).

J. Meier, S. Dubail, R. Flückiger, D. Fischer, H. Keppner, and A. Shah, “Intrinsic microcrystalline silicon (µc-Si:H)- a promising new thin film solar cell material,” in Proceedings of the 1st World Conference on Photovoltaic Energy Conversion (IEEE, New York, 1994), pp. 409–412.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University Press, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

The a-Si:H superstrate cell modeled in this work. Three different cases are considered for the choice of the rear contact; a homogeneous ZnO film, a STCPC, and a ZnO/Ag composite film. A cross-sectional SEM image of an STCPC comprised of sputtered ITO and silica nanoparticle films is shown as the inset.

Fig. 8
Fig. 8

Index of refraction and extinction coefficient for the a-Si:H films investigated in Section 5. The ellipsometric parameters α and β were measured for an a-Si:H reference film on Corning glass at an incident angle of 56°. A regression analysis was performed on the data attained from these ellipsometry measurements in order to fit the dispersion relations to a Tauc-Lorentz model, thus determining their effective indices of refraction (n) and extinction coefficients (k). The Bruggeman mixing theory was also used to model a graded surface roughness layer (50% a-Si:H + 50% Void). The regression analysis employed a Levenberg-Marquardt algorithm and was carried out using Winelli II software. The modeled thickness of the a-Si:H film and its surface roughness layer was 102.5nm and 1nm, respectively. The statistical measure of the quality of fit attained for the ellipsometric measurements was R2 = 0.995.

Fig. 9
Fig. 9

A coin photographed through a 100nm thick a-Si:H film that was deposited onto an STCPC with a Bragg-peak position of (a) ~500nm, (b) ~570nm and (c) ~660nm. Each STCPC is comprised of 5 bilayers of spin-coalted SiO2 nanoparticle films and sputtered ITO films. In each case a 65nm thick ITO film was deposited onto the a-Si:H film to function as an ARC. The dime was placed on a table about a foot beneath a fluorescent lighting source. For each picture, the a-Si:H film/STCPC sample was held ~10cm away from the dime at a ~45° angle as it was brought into focus.

Fig. 2
Fig. 2

The photo-induced current generated (right axis) as a function of texture height for the a-Si:H cell with the homogeneous ZnO contact shown as case 1 in Fig. 1 (dashed line) and the a-Si:H cell with the ZnO/Ag rear contact shown as case 3 in Fig. 1 (solid black line). The transmitted solar power (left axis) is also plotted for the cell with the homogeneous ZnO contact (red line).

Fig. 3
Fig. 3

(a) Contour plot of the photo-induced current density for case 2 (see Fig. 1) as a function of the texture height (ordinate) and the Bragg-peak position of the STCPC (abscissa) (b) Contour plot of the transmitted solar irradiance. (c) Contour plot of the transmitted lumens.

Fig. 4
Fig. 4

The absorption spectra for the a-Si:H cell shown in Fig. 1 for the reference case wherein the cell is not textured (solid grey line), for case 1 with a homogeneous ZnO contact (dotted black line), for case 2 wherein the rear contact is an STCPC with a Bragg-peak centered at 600nm (dashed black line), and for case 3 where the rear contact is a ZnO film backed by a thin Ag film. For all cases, other than the reference case, the texture height is 200nm. The reflection from a free-standing STCPC surrounded by air with a Bragg-peak centered at 600nm is shown as the dotted grey line.

Fig. 5
Fig. 5

(a) The AM1.5 solar irradiance is plotted as the yellow region. The solar photon flux transmitted through the a-Si:H cell, shown in Fig. 1, for the reference case wherein the cell is not textured and the rear contact is a homogeneous ZnO film is shown as the brown region. The transmitted solar irradiance for case 1 is shown as the light blue region overlaying the brown region. The orange region, overlaying the blue region, shows the solar irradiance transmitted through the cell for case 2. (b) The lumens available from the AM1.5 solar irradiance are plotted as the yellow shaded area. The brown region represents the lumens transmitted through the reference cell, the light blue region overlaying brown region represents the lumens transmitted for the cell shown as case 1. The orange region overlaying the light blue region, shows the lumens transmitted for case 2. It is noted that the transmitted photon flux for the case 3 wherein the rear ZnO contact is coated with an Ag film the transmission through the cell is negligible.

Fig. 6
Fig. 6

(a) A schematic diagram of the samples prepared for experimental investigation. (b) The transmittance spectra of STCPCs (without a-Si:H films deposited onto them) with differing Bragg-peak positions as indicated in the legend. (c) The solar irradiance and (d) the solar lumens transmitted through 100nm thick a-Si:H films with STCPC rear contacts that have different Bragg-peak positions.

Fig. 7
Fig. 7

The effective index of refraction and extinction coefficient for the silica nanoparticle films within the STCPC. In order to attain these optical parameters the ellipsometric parameters a and b were measured for the SiO2 nanoparticle film at an incident angle of 56°. A regression analysis employing a Levenberg-Marquardt algorithm was carried out using Winelli II software in order to fit the dispersion relations of these reference films, and thus determining their indices of refraction (n) and extinction coefficients (κ). The optical constants of the SiO2 nanoparticle films were fit to a Cauchy model and the statistical measure of the quality of fit attained for the ellipsometric measurements was fairly high (R2 > 0.97).

Tables (2)

Tables Icon

Table 1 Summary of Results for the Optimal Cases of the Various Cell Configurations Considered as Well as the Design Case

Tables Icon

Table 2 Experimentally Measured Transmitted Power and Lumens through 100nm Thick a-Si:H Films with Different Rear Contacts

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

J a S i : H = q A ( ω ) S ( ω ) d ω

Metrics