Abstract

Indocyanine green-loaded mesoporous silica-coated gold nanorods (ICG-loaded Au@SiO2) were prepared for the dual capability of X-ray computed tomography (CT) and fluorescence imaging. X-ray CT scanning showed that ICG-loaded Au@SiO2 could provide significant contrast enhancement; Near-infrared fluorescence generated by the nanomaterial was present up to 12 h post intratumoral injection, thus enabling ICG-loaded Au@SiO2 to be used as a promising dual mode imaging contrast agent. Multiplexed images can be more easily obtained with this novel type of multimodal nanostructure compared with traditional contrast agents. The dual mode imaging probe has great potential for use in applications such as cancer targeting, molecular imaging in combination with radiotherapy, and photothermolysis.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. .I. Hizoh and C. Haller, “Radiocontrast-induced renal tubular cell apoptosis: hypertonic versus oxidative stress,” Invest. Radiol. 37(8), 428–434 (2002).
    [CrossRef] [PubMed]
  2. .C. Haller and I. Hizoh, “The cytotoxicity of iodinated radiocontrast agents on renal cells in vitro,” Invest. Radiol. 39(3), 149–154 (2004).
    [CrossRef] [PubMed]
  3. .H. B. Na, I. C. Song, and T. Hyeon, “Inorganic nanoparticles for MRI contrast agents,” Adv. Mater. (Deerfield Beach Fla.) 21(21), 2133–2148 (2009).
    [CrossRef]
  4. .A. H. Lu, E. L. Salabas, and F. Schüth, “Magnetic nanoparticles: synthesis, protection, functionalization, and application,” Angew. Chem. Int. Ed. Engl. 46(8), 1222–1244 (2007).
    [CrossRef] [PubMed]
  5. .J. M. Klostranec and W. C. W. Chan, “Quantum dots in biological and biomedical research: Recent progress and present challenges,” Adv. Mater. (Deerfield Beach Fla.) 18(15), 1953–1964 (2006).
    [CrossRef]
  6. .M. S. Han, A. K. R. Lytton-Jean, B. K. Oh, J. Heo, and C. A. Mirkin, “Colorimetric screening of DNA-binding molecules with gold nanoparticle probes,” Angew. Chem. Int. Ed. Engl. 45(11), 1807–1810 (2006).
    [CrossRef] [PubMed]
  7. .L. L. Ma, M. D. Feldman, J. M. Tam, A. S. Paranjape, K. K. Cheruku, T. A. Larson, J. O. Tam, D. R. Ingram, V. Paramita, J. W. Villard, J. T. Jenkins, T. Wang, G. D. Clarke, R. Asmis, K. Sokolov, B. Chandrasekar, T. E. Milner, and K. P. Johnston, “Small multifunctional nanoclusters (nanoroses) for targeted cellular imaging and therapy,” ACS Nano 3(9), 2686–2696 (2009).
    [CrossRef] [PubMed]
  8. .C. Xu, G. A. Tung, and S. Sun, “Size and concentration effect of gold nanoparticles on X-ray attenuation as measured on computed tomography,” Chem. Mater. 20(13), 4167–4169 (2008).
    [CrossRef] [PubMed]
  9. .P. A. Jackson, W. N. Rahman, C. J. Wong, T. Ackerly, and M. Geso, “Potential dependent superiority of gold nanoparticles in comparison to iodinated contrast agents,” Eur. J. Radiol. 75(1), 104–109 (2010).
    [CrossRef] [PubMed]
  10. .J. F. Hainfeld, D. N. Slatkin, T. M. Focella, and H. M. Smilowitz, “Gold nanoparticles: a new X-ray contrast agent,” Br. J. Radiol. 79(939), 248–253 (2006).
    [CrossRef] [PubMed]
  11. .D. Kim, S. Park, J. H. Lee, Y. Y. Jeong, and S. Jon, “Antibiofouling polymer-coated gold nanoparticles as a contrast agent for in vivo X-ray computed tomography imaging,” J. Am. Chem. Soc. 129(24), 7661–7665 (2007).
    [CrossRef] [PubMed]
  12. .Q. Y. Cai, S. H. Kim, K. S. Choi, S. Y. Kim, S. J. Byun, K. W. Kim, S. H. Park, S. K. Juhng, and K. H. Yoon, “Colloidal gold nanoparticles as a blood-pool contrast agent for X-ray computed tomography in mice,” Invest. Radiol. 42(12), 797–806 (2007).
    [CrossRef] [PubMed]
  13. .R. Guo, H. Wang, C. Peng, M. W. Shen, M. J. Pan, X. Y. Cao, G. X. Zhang, and X. Y. Shi, “X-ray attenuation property of dendrimer-entrapped gold nanoparticles,” J. Phys. Chem. C 114(1), 50–56 (2010).
    [CrossRef]
  14. .V. Kattumuri, K. Katti, S. Bhaskaran, E. J. Boote, S. W. Casteel, G. M. Fent, D. J. Robertson, M. Chandrasekhar, R. Kannan, and K. V. Katti, “Gum arabic as a phytochemical construct for the stabilization of gold nanoparticles: in vivo pharmacokinetics and X-ray-contrast-imaging studies,” Small 3(2), 333–341 (2007).
    [CrossRef] [PubMed]
  15. .H. Wang, L. Zheng, C. Peng, R. Guo, M. Shen, X. Shi, and G. Zhang, “Computed tomography imaging of cancer cells using acetylated dendrimer-entrapped gold nanoparticles,” Biomaterials 32(11), 2979–2988 (2011).
    [CrossRef] [PubMed]
  16. .C. J. Hall, E. Schültke, L. Rigon, K. Ataelmannan, S. Rigley, R. Menk, F. Arfelli, G. Tromba, S. Pearson, S. Wilkinson, A. Round, S. Crittell, R. Griebel, and B. H. J. Juurlink, “Synchrotron-based in vivo tracking of implanted mammalian cells,” Eur. J. Radiol. 68(3Suppl), S156–S159 (2008).
    [CrossRef] [PubMed]
  17. .R. Popovtzer, A. Agrawal, N. A. Kotov, A. Popovtzer, J. Balter, T. E. Carey, and R. Kopelman, “Targeted gold nanoparticles enable molecular CT imaging of cancer,” Nano Lett. 8(12), 4593–4596 (2008).
    [CrossRef] [PubMed]
  18. .W. Eck, A. I. Nicholson, H. Zentgraf, W. Semmler, and S. Bartling, “Anti-CD4-targeted gold nanoparticles induce specific contrast enhancement of peripheral lymph nodes in X-ray computed tomography of live mice,” Nano Lett. 10(7), 2318–2322 (2010).
    [CrossRef] [PubMed]
  19. .D. Kim, Y. Y. Jeong, and S. Jon, “A drug-loaded aptamer-gold nanoparticle bioconjugate for combined CT imaging and therapy of prostate cancer,” ACS Nano 4(7), 3689–3696 (2010).
    [CrossRef] [PubMed]
  20. .J. F. Hainfeld, D. N. Slatkin, and H. M. Smilowitz, “The use of gold nanoparticles to enhance radiotherapy in mice,” Phys. Med. Biol. 49(18), N309–N315 (2004).
    [CrossRef] [PubMed]
  21. .J. F. Hainfeld, F. A. Dilmanian, D. N. Slatkin, and H. M. Smilowitz, “Radiotherapy enhancement with gold nanoparticles,” J. Pharm. Pharmacol. 60(8), 977–985 (2008).
    [CrossRef] [PubMed]
  22. .Z. B. Li, W. Cai, and X. Chen, “Semiconductor quantum dots for in vivo imaging,” J. Nanosci. Nanotechnol. 7(8), 2567–2581 (2007).
    [CrossRef] [PubMed]
  23. .Y. Kong, J. Chen, F. Gao, W. Li, X. Xu, O. Pandoli, H. Yang, J. Ji, and D. Cui, “A multifunctional ribonuclease-A-conjugated CdTe quantum dot cluster nanosystem for synchronous cancer imaging and therapy,” Small 6(21), 2367–2373 (2010).
    [CrossRef] [PubMed]
  24. .C. H. Lee, S. H. Cheng, Y. J. Wang, Y. C. Chen, N. T. Chen, J. Souris, C. T. Chen, C. Y. Mou, C. S. Yang, and L. W. Lo, “Near-infrared mesoporous silica nanoparticles for optical imaging: characterization and in vivo biodistribution,” Adv. Funct. Mater. 19(2), 215–222 (2009).
    [CrossRef]
  25. .W. S. Kuo, C. N. Chang, Y. T. Chang, M. H. Yang, Y. H. Chien, S. J. Chen, and C. S. Yeh, “Gold nanorods in photodynamic therapy, as hyperthermia agents, and in near-infrared optical imaging,” Angew. Chem. Int. Ed. Engl. 49(15), 2711–2715 (2010).
    [PubMed]
  26. .J. S. Souris, C. H. Lee, S. H. Cheng, C. T. Chen, C. S. Yang, J. A. Ho, C. Y. Mou, and L. W. Lo, “Surface charge-mediated rapid hepatobiliary excretion of mesoporous silica nanoparticles,” Biomaterials 31(21), 5564–5574 (2010).
    [CrossRef] [PubMed]
  27. .M. Xiao, J. Nyagilo, V. Arora, P. Kulkarni, D. Xu, X. Sun, and D. P. Davé, “Gold nanotags for combined multi-colored Raman spectroscopy and x-ray computed tomography,” Nanotechnology 21(3), 035101 (2010).
    [CrossRef] [PubMed]
  28. .C. Alric, J. Taleb, G. Le Duc, C. Mandon, C. Billotey, A. Le Meur-Herland, T. Brochard, F. Vocanson, M. Janier, P. Perriat, S. Roux, and O. Tillement, “Gadolinium chelate coated gold nanoparticles as contrast agents for both X-ray computed tomography and magnetic resonance imaging,” J. Am. Chem. Soc. 130(18), 5908–5915 (2008).
    [CrossRef] [PubMed]
  29. .C. Alric, R. Serduc, C. Mandon, J. Taleb, G. Le Duc, A. Le Meur-Herland, C. Billotey, P. Perriat, S. Roux, and O. Tillement, “Gold nanoparticles designed for combining dual modality imaging and radiotherapy,” Gold Bull. 41(2), 90–97 (2008).
    [CrossRef]
  30. .P. Huang, Z. Li, J. Lin, D. Yang, G. Gao, C. Xu, L. Bao, C. Zhang, K. Wang, H. Song, H. Hu, and D. Cui, “Photosensitizer-conjugated magnetic nanoparticles for in vivo simultaneous magnetofluorescent imaging and targeting therapy,” Biomaterials 32(13), 3447–3458 (2011).
    [CrossRef] [PubMed]
  31. .M. M. van Schooneveld, D. P. Cormode, R. Koole, J. T. van Wijngaarden, C. Calcagno, T. Skajaa, J. Hilhorst, D. C. ’t Hart, Z. A. Fayad, W. J. M. Mulder, and A. Meijerink, “A fluorescent, paramagnetic and PEGylated gold/silica nanoparticle for MRI, CT and fluorescence imaging,” Contrast Media Mol. Imaging 5(4), 231–236 (2010).
    [CrossRef] [PubMed]
  32. .X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006).
    [CrossRef] [PubMed]
  33. .L. Tong, Y. Zhao, T. B. Huff, M. N. Hansen, A. Wei, and J. X. Cheng, “Gold nanorods mediate tumor cell death by compromising membrane integrity,” Adv. Mater. (Deerfield Beach Fla.) 19(20), 3136–3141 (2007).
    [CrossRef] [PubMed]
  34. .Z. Li, P. Huang, X. Zhang, J. Lin, S. Yang, B. Liu, F. Gao, P. Xi, Q. Ren, and D. Cui, “RGD-conjugated dendrimer-modified gold nanorods for in vivo tumor targeting and photothermal therapy,” Mol. Pharm. 7(1), 94–104 (2010).
    [CrossRef] [PubMed]
  35. .Y. S. Chen, W. Frey, S. Kim, K. Homan, P. Kruizinga, K. Sokolov, and S. Emelianov, “Enhanced thermal stability of silica-coated gold nanorods for photoacoustic imaging and image-guided therapy,” Opt. Express 18(9), 8867–8878 (2010).
    [CrossRef] [PubMed]
  36. .C. G. Wang, Y. Chen, T. T. Wang, Z. F. Ma, and Z. M. Su, “Monodispersed gold nanorod-embedded silica particles as novel Raman labels for biosensing,” Adv. Funct. Mater. 18(2), 355–361 (2008).
    [CrossRef]
  37. .G. von Maltzahn, A. Centrone, J. Park, R. Ramanathan, M. Sailor, T. Hatton, and S. Bhatia, “SERS-coded Gold nanorods as a multifunctional platform for densely multiplexed near-infrared imaging and photothermal heating,” Adv. Mater. (Deerfield Beach Fla.) 21(31), 3175–3180 (2009).
    [CrossRef]
  38. .C. C. Chen, Y. P. Lin, C. W. Wang, H. C. Tzeng, C. H. Wu, Y. C. Chen, C. P. Chen, L. C. Chen, and Y. C. Wu, “DNA-gold nanorod conjugates for remote control of localized gene expression by near infrared irradiation,” J. Am. Chem. Soc. 128(11), 3709–3715 (2006).
    [CrossRef] [PubMed]
  39. .B. Pan, L. Ao, F. Gao, H. Tian, R. He, and D. Cui, “End-to-end self-assembly and colorimetric characterization of gold nanorods and nanospheres via oligonucleotide hybridization,” Nanotechnology 16(9), 1776–1780 (2005).
    [CrossRef]
  40. .C. Murphy and N. Jana, “Controlling the aspect ratio of inorganic nanorods and nanowires,” Adv. Mater. (Deerfield Beach Fla.) 14(1), 80–82 (2002).
    [CrossRef]
  41. .X. Li, F. J. Kao, C. C. Chuang, and S. He, “Enhancing fluorescence of quantum dots by silica-coated gold nanorods under one- and two-photon excitation,” Opt. Express 18(11), 11335–11346 (2010).
    [CrossRef] [PubMed]
  42. .T. Zhao, H. Wu, S. Q. Yao, Q. H. Xu, and G. Q. Xu, “Nanocomposites containing gold nanorods and porphyrin-doped mesoporous silica with dual capability of two-photon imaging and photosensitization,” Langmuir 26(18), 14937–14942 (2010).
    [CrossRef] [PubMed]
  43. .W. Stöber, A. Fink, and E. Bohn, “Controlled growth of monodisperse silica spheres in the micron size range,” J. Colloid Interface Sci. 26(1), 62–69 (1968).
    [CrossRef]
  44. .B. Nikoobakht, Z. L. Wang, and M. A. El-Sayed, “Self-Assembly Of Gold Nanorods,” J. Phys. Chem. B 104(36), 8635–8640 (2000).
    [CrossRef]
  45. .E. Oh, M. Y. Hong, D. Lee, S. H. Nam, H. C. Yoon, and H. S. Kim, “Inhibition assay of biomolecules based on fluorescence resonance energy transfer (FRET) between quantum dots and gold nanoparticles,” J. Am. Chem. Soc. 127(10), 3270–3271 (2005).
    [CrossRef] [PubMed]
  46. .E. Khon, A. Mereshchenko, A. N. Tarnovsky, K. Acharya, A. Klinkova, N. N. Hewa-Kasakarage, I. Nemitz, and M. Zamkov, “Suppression of the plasmon resonance in Au/CdS colloidal nanocomposites,” Nano Lett. 11(4), 1792–1799 (2011).
    [CrossRef] [PubMed]
  47. .W. Krause, “Delivery of diagnostic agents in computed tomography,” Adv. Drug Deliv. Rev. 37(1-3), 159–173 (1999).
    [CrossRef] [PubMed]
  48. .M. Banna and P. S. Olutola, “Orbital histiocytosis on computed tomography,” J. Comput. Tomogr. 7(2), 167–170 (1983).
    [CrossRef] [PubMed]
  49. .F. Büther, L. Stegger, M. Dawood, F. Range, M. Schäfers, R. Fischbach, T. Wichter, O. Schober, and K. P. Schäfers, “Effective methods to correct contrast agent-induced errors in PET quantification in cardiac PET/CT,” J. Nucl. Med. 48(7), 1060–1068 (2007).
    [CrossRef] [PubMed]
  50. .F. A. Dilmanian, X. Y. Wu, E. C. Parsons, B. Ren, J. Kress, T. M. Button, L. D. Chapman, J. A. Coderre, F. Giron, D. Greenberg, D. J. Krus, Z. Liang, S. Marcovici, M. J. Petersen, C. T. Roque, M. Shleifer, D. N. Slatkin, W. C. Thomlinson, K. Yamamoto, and Z. Zhong, “Single-and dual-energy CT with monochromatic synchrotron x-rays,” Phys. Med. Biol. 42(2), 371–387 (1997).
    [CrossRef] [PubMed]
  51. .C. Xu, G. A. Tung, and S. Sun, “Size and concentration effect of gold nanoparticles on X-ray attenuation as measured on computed tomography,” Chem. Mater. 20(13), 4167–4169 (2008).
    [CrossRef] [PubMed]
  52. .M. Vallet-Regí, F. Balas, and D. Arcos, “Mesoporous materials for drug delivery,” Angew. Chem. Int. Ed. Engl. 46(40), 7548–7558 (2007).
    [CrossRef] [PubMed]
  53. .I. I. Slowing, B. G. Trewyn, and V. S. Y. Lin, “Mesoporous silica nanoparticles for intracellular delivery of membrane-impermeable proteins,” J. Am. Chem. Soc. 129(28), 8845–8849 (2007).
    [CrossRef] [PubMed]
  54. .R. Rajagopalan, P. Uetrecht, J. E. Bugaj, S. A. Achilefu, and R. B. Dorshow, “Stabilization of the optical tracer agent indocyanine green using noncovalent interactions,” Photochem. Photobiol. 71(3), 347–350 (2000).
    [CrossRef] [PubMed]

2011 (3)

.H. Wang, L. Zheng, C. Peng, R. Guo, M. Shen, X. Shi, and G. Zhang, “Computed tomography imaging of cancer cells using acetylated dendrimer-entrapped gold nanoparticles,” Biomaterials 32(11), 2979–2988 (2011).
[CrossRef] [PubMed]

.P. Huang, Z. Li, J. Lin, D. Yang, G. Gao, C. Xu, L. Bao, C. Zhang, K. Wang, H. Song, H. Hu, and D. Cui, “Photosensitizer-conjugated magnetic nanoparticles for in vivo simultaneous magnetofluorescent imaging and targeting therapy,” Biomaterials 32(13), 3447–3458 (2011).
[CrossRef] [PubMed]

.E. Khon, A. Mereshchenko, A. N. Tarnovsky, K. Acharya, A. Klinkova, N. N. Hewa-Kasakarage, I. Nemitz, and M. Zamkov, “Suppression of the plasmon resonance in Au/CdS colloidal nanocomposites,” Nano Lett. 11(4), 1792–1799 (2011).
[CrossRef] [PubMed]

2010 (13)

.Y. S. Chen, W. Frey, S. Kim, K. Homan, P. Kruizinga, K. Sokolov, and S. Emelianov, “Enhanced thermal stability of silica-coated gold nanorods for photoacoustic imaging and image-guided therapy,” Opt. Express 18(9), 8867–8878 (2010).
[CrossRef] [PubMed]

.X. Li, F. J. Kao, C. C. Chuang, and S. He, “Enhancing fluorescence of quantum dots by silica-coated gold nanorods under one- and two-photon excitation,” Opt. Express 18(11), 11335–11346 (2010).
[CrossRef] [PubMed]

.M. M. van Schooneveld, D. P. Cormode, R. Koole, J. T. van Wijngaarden, C. Calcagno, T. Skajaa, J. Hilhorst, D. C. ’t Hart, Z. A. Fayad, W. J. M. Mulder, and A. Meijerink, “A fluorescent, paramagnetic and PEGylated gold/silica nanoparticle for MRI, CT and fluorescence imaging,” Contrast Media Mol. Imaging 5(4), 231–236 (2010).
[CrossRef] [PubMed]

.Y. Kong, J. Chen, F. Gao, W. Li, X. Xu, O. Pandoli, H. Yang, J. Ji, and D. Cui, “A multifunctional ribonuclease-A-conjugated CdTe quantum dot cluster nanosystem for synchronous cancer imaging and therapy,” Small 6(21), 2367–2373 (2010).
[CrossRef] [PubMed]

.Z. Li, P. Huang, X. Zhang, J. Lin, S. Yang, B. Liu, F. Gao, P. Xi, Q. Ren, and D. Cui, “RGD-conjugated dendrimer-modified gold nanorods for in vivo tumor targeting and photothermal therapy,” Mol. Pharm. 7(1), 94–104 (2010).
[CrossRef] [PubMed]

.T. Zhao, H. Wu, S. Q. Yao, Q. H. Xu, and G. Q. Xu, “Nanocomposites containing gold nanorods and porphyrin-doped mesoporous silica with dual capability of two-photon imaging and photosensitization,” Langmuir 26(18), 14937–14942 (2010).
[CrossRef] [PubMed]

.W. Eck, A. I. Nicholson, H. Zentgraf, W. Semmler, and S. Bartling, “Anti-CD4-targeted gold nanoparticles induce specific contrast enhancement of peripheral lymph nodes in X-ray computed tomography of live mice,” Nano Lett. 10(7), 2318–2322 (2010).
[CrossRef] [PubMed]

.D. Kim, Y. Y. Jeong, and S. Jon, “A drug-loaded aptamer-gold nanoparticle bioconjugate for combined CT imaging and therapy of prostate cancer,” ACS Nano 4(7), 3689–3696 (2010).
[CrossRef] [PubMed]

.W. S. Kuo, C. N. Chang, Y. T. Chang, M. H. Yang, Y. H. Chien, S. J. Chen, and C. S. Yeh, “Gold nanorods in photodynamic therapy, as hyperthermia agents, and in near-infrared optical imaging,” Angew. Chem. Int. Ed. Engl. 49(15), 2711–2715 (2010).
[PubMed]

.J. S. Souris, C. H. Lee, S. H. Cheng, C. T. Chen, C. S. Yang, J. A. Ho, C. Y. Mou, and L. W. Lo, “Surface charge-mediated rapid hepatobiliary excretion of mesoporous silica nanoparticles,” Biomaterials 31(21), 5564–5574 (2010).
[CrossRef] [PubMed]

.M. Xiao, J. Nyagilo, V. Arora, P. Kulkarni, D. Xu, X. Sun, and D. P. Davé, “Gold nanotags for combined multi-colored Raman spectroscopy and x-ray computed tomography,” Nanotechnology 21(3), 035101 (2010).
[CrossRef] [PubMed]

.R. Guo, H. Wang, C. Peng, M. W. Shen, M. J. Pan, X. Y. Cao, G. X. Zhang, and X. Y. Shi, “X-ray attenuation property of dendrimer-entrapped gold nanoparticles,” J. Phys. Chem. C 114(1), 50–56 (2010).
[CrossRef]

.P. A. Jackson, W. N. Rahman, C. J. Wong, T. Ackerly, and M. Geso, “Potential dependent superiority of gold nanoparticles in comparison to iodinated contrast agents,” Eur. J. Radiol. 75(1), 104–109 (2010).
[CrossRef] [PubMed]

2009 (4)

.H. B. Na, I. C. Song, and T. Hyeon, “Inorganic nanoparticles for MRI contrast agents,” Adv. Mater. (Deerfield Beach Fla.) 21(21), 2133–2148 (2009).
[CrossRef]

.L. L. Ma, M. D. Feldman, J. M. Tam, A. S. Paranjape, K. K. Cheruku, T. A. Larson, J. O. Tam, D. R. Ingram, V. Paramita, J. W. Villard, J. T. Jenkins, T. Wang, G. D. Clarke, R. Asmis, K. Sokolov, B. Chandrasekar, T. E. Milner, and K. P. Johnston, “Small multifunctional nanoclusters (nanoroses) for targeted cellular imaging and therapy,” ACS Nano 3(9), 2686–2696 (2009).
[CrossRef] [PubMed]

.C. H. Lee, S. H. Cheng, Y. J. Wang, Y. C. Chen, N. T. Chen, J. Souris, C. T. Chen, C. Y. Mou, C. S. Yang, and L. W. Lo, “Near-infrared mesoporous silica nanoparticles for optical imaging: characterization and in vivo biodistribution,” Adv. Funct. Mater. 19(2), 215–222 (2009).
[CrossRef]

.G. von Maltzahn, A. Centrone, J. Park, R. Ramanathan, M. Sailor, T. Hatton, and S. Bhatia, “SERS-coded Gold nanorods as a multifunctional platform for densely multiplexed near-infrared imaging and photothermal heating,” Adv. Mater. (Deerfield Beach Fla.) 21(31), 3175–3180 (2009).
[CrossRef]

2008 (8)

.C. G. Wang, Y. Chen, T. T. Wang, Z. F. Ma, and Z. M. Su, “Monodispersed gold nanorod-embedded silica particles as novel Raman labels for biosensing,” Adv. Funct. Mater. 18(2), 355–361 (2008).
[CrossRef]

.C. Xu, G. A. Tung, and S. Sun, “Size and concentration effect of gold nanoparticles on X-ray attenuation as measured on computed tomography,” Chem. Mater. 20(13), 4167–4169 (2008).
[CrossRef] [PubMed]

.C. Alric, J. Taleb, G. Le Duc, C. Mandon, C. Billotey, A. Le Meur-Herland, T. Brochard, F. Vocanson, M. Janier, P. Perriat, S. Roux, and O. Tillement, “Gadolinium chelate coated gold nanoparticles as contrast agents for both X-ray computed tomography and magnetic resonance imaging,” J. Am. Chem. Soc. 130(18), 5908–5915 (2008).
[CrossRef] [PubMed]

.C. Alric, R. Serduc, C. Mandon, J. Taleb, G. Le Duc, A. Le Meur-Herland, C. Billotey, P. Perriat, S. Roux, and O. Tillement, “Gold nanoparticles designed for combining dual modality imaging and radiotherapy,” Gold Bull. 41(2), 90–97 (2008).
[CrossRef]

.J. F. Hainfeld, F. A. Dilmanian, D. N. Slatkin, and H. M. Smilowitz, “Radiotherapy enhancement with gold nanoparticles,” J. Pharm. Pharmacol. 60(8), 977–985 (2008).
[CrossRef] [PubMed]

.C. Xu, G. A. Tung, and S. Sun, “Size and concentration effect of gold nanoparticles on X-ray attenuation as measured on computed tomography,” Chem. Mater. 20(13), 4167–4169 (2008).
[CrossRef] [PubMed]

.C. J. Hall, E. Schültke, L. Rigon, K. Ataelmannan, S. Rigley, R. Menk, F. Arfelli, G. Tromba, S. Pearson, S. Wilkinson, A. Round, S. Crittell, R. Griebel, and B. H. J. Juurlink, “Synchrotron-based in vivo tracking of implanted mammalian cells,” Eur. J. Radiol. 68(3Suppl), S156–S159 (2008).
[CrossRef] [PubMed]

.R. Popovtzer, A. Agrawal, N. A. Kotov, A. Popovtzer, J. Balter, T. E. Carey, and R. Kopelman, “Targeted gold nanoparticles enable molecular CT imaging of cancer,” Nano Lett. 8(12), 4593–4596 (2008).
[CrossRef] [PubMed]

2007 (9)

.V. Kattumuri, K. Katti, S. Bhaskaran, E. J. Boote, S. W. Casteel, G. M. Fent, D. J. Robertson, M. Chandrasekhar, R. Kannan, and K. V. Katti, “Gum arabic as a phytochemical construct for the stabilization of gold nanoparticles: in vivo pharmacokinetics and X-ray-contrast-imaging studies,” Small 3(2), 333–341 (2007).
[CrossRef] [PubMed]

.D. Kim, S. Park, J. H. Lee, Y. Y. Jeong, and S. Jon, “Antibiofouling polymer-coated gold nanoparticles as a contrast agent for in vivo X-ray computed tomography imaging,” J. Am. Chem. Soc. 129(24), 7661–7665 (2007).
[CrossRef] [PubMed]

.Q. Y. Cai, S. H. Kim, K. S. Choi, S. Y. Kim, S. J. Byun, K. W. Kim, S. H. Park, S. K. Juhng, and K. H. Yoon, “Colloidal gold nanoparticles as a blood-pool contrast agent for X-ray computed tomography in mice,” Invest. Radiol. 42(12), 797–806 (2007).
[CrossRef] [PubMed]

.A. H. Lu, E. L. Salabas, and F. Schüth, “Magnetic nanoparticles: synthesis, protection, functionalization, and application,” Angew. Chem. Int. Ed. Engl. 46(8), 1222–1244 (2007).
[CrossRef] [PubMed]

.Z. B. Li, W. Cai, and X. Chen, “Semiconductor quantum dots for in vivo imaging,” J. Nanosci. Nanotechnol. 7(8), 2567–2581 (2007).
[CrossRef] [PubMed]

.L. Tong, Y. Zhao, T. B. Huff, M. N. Hansen, A. Wei, and J. X. Cheng, “Gold nanorods mediate tumor cell death by compromising membrane integrity,” Adv. Mater. (Deerfield Beach Fla.) 19(20), 3136–3141 (2007).
[CrossRef] [PubMed]

.M. Vallet-Regí, F. Balas, and D. Arcos, “Mesoporous materials for drug delivery,” Angew. Chem. Int. Ed. Engl. 46(40), 7548–7558 (2007).
[CrossRef] [PubMed]

.I. I. Slowing, B. G. Trewyn, and V. S. Y. Lin, “Mesoporous silica nanoparticles for intracellular delivery of membrane-impermeable proteins,” J. Am. Chem. Soc. 129(28), 8845–8849 (2007).
[CrossRef] [PubMed]

.F. Büther, L. Stegger, M. Dawood, F. Range, M. Schäfers, R. Fischbach, T. Wichter, O. Schober, and K. P. Schäfers, “Effective methods to correct contrast agent-induced errors in PET quantification in cardiac PET/CT,” J. Nucl. Med. 48(7), 1060–1068 (2007).
[CrossRef] [PubMed]

2006 (5)

.C. C. Chen, Y. P. Lin, C. W. Wang, H. C. Tzeng, C. H. Wu, Y. C. Chen, C. P. Chen, L. C. Chen, and Y. C. Wu, “DNA-gold nanorod conjugates for remote control of localized gene expression by near infrared irradiation,” J. Am. Chem. Soc. 128(11), 3709–3715 (2006).
[CrossRef] [PubMed]

.X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006).
[CrossRef] [PubMed]

.J. M. Klostranec and W. C. W. Chan, “Quantum dots in biological and biomedical research: Recent progress and present challenges,” Adv. Mater. (Deerfield Beach Fla.) 18(15), 1953–1964 (2006).
[CrossRef]

.M. S. Han, A. K. R. Lytton-Jean, B. K. Oh, J. Heo, and C. A. Mirkin, “Colorimetric screening of DNA-binding molecules with gold nanoparticle probes,” Angew. Chem. Int. Ed. Engl. 45(11), 1807–1810 (2006).
[CrossRef] [PubMed]

.J. F. Hainfeld, D. N. Slatkin, T. M. Focella, and H. M. Smilowitz, “Gold nanoparticles: a new X-ray contrast agent,” Br. J. Radiol. 79(939), 248–253 (2006).
[CrossRef] [PubMed]

2005 (2)

.B. Pan, L. Ao, F. Gao, H. Tian, R. He, and D. Cui, “End-to-end self-assembly and colorimetric characterization of gold nanorods and nanospheres via oligonucleotide hybridization,” Nanotechnology 16(9), 1776–1780 (2005).
[CrossRef]

.E. Oh, M. Y. Hong, D. Lee, S. H. Nam, H. C. Yoon, and H. S. Kim, “Inhibition assay of biomolecules based on fluorescence resonance energy transfer (FRET) between quantum dots and gold nanoparticles,” J. Am. Chem. Soc. 127(10), 3270–3271 (2005).
[CrossRef] [PubMed]

2004 (2)

.C. Haller and I. Hizoh, “The cytotoxicity of iodinated radiocontrast agents on renal cells in vitro,” Invest. Radiol. 39(3), 149–154 (2004).
[CrossRef] [PubMed]

.J. F. Hainfeld, D. N. Slatkin, and H. M. Smilowitz, “The use of gold nanoparticles to enhance radiotherapy in mice,” Phys. Med. Biol. 49(18), N309–N315 (2004).
[CrossRef] [PubMed]

2002 (2)

.I. Hizoh and C. Haller, “Radiocontrast-induced renal tubular cell apoptosis: hypertonic versus oxidative stress,” Invest. Radiol. 37(8), 428–434 (2002).
[CrossRef] [PubMed]

.C. Murphy and N. Jana, “Controlling the aspect ratio of inorganic nanorods and nanowires,” Adv. Mater. (Deerfield Beach Fla.) 14(1), 80–82 (2002).
[CrossRef]

2000 (2)

.R. Rajagopalan, P. Uetrecht, J. E. Bugaj, S. A. Achilefu, and R. B. Dorshow, “Stabilization of the optical tracer agent indocyanine green using noncovalent interactions,” Photochem. Photobiol. 71(3), 347–350 (2000).
[CrossRef] [PubMed]

.B. Nikoobakht, Z. L. Wang, and M. A. El-Sayed, “Self-Assembly Of Gold Nanorods,” J. Phys. Chem. B 104(36), 8635–8640 (2000).
[CrossRef]

1999 (1)

.W. Krause, “Delivery of diagnostic agents in computed tomography,” Adv. Drug Deliv. Rev. 37(1-3), 159–173 (1999).
[CrossRef] [PubMed]

1997 (1)

.F. A. Dilmanian, X. Y. Wu, E. C. Parsons, B. Ren, J. Kress, T. M. Button, L. D. Chapman, J. A. Coderre, F. Giron, D. Greenberg, D. J. Krus, Z. Liang, S. Marcovici, M. J. Petersen, C. T. Roque, M. Shleifer, D. N. Slatkin, W. C. Thomlinson, K. Yamamoto, and Z. Zhong, “Single-and dual-energy CT with monochromatic synchrotron x-rays,” Phys. Med. Biol. 42(2), 371–387 (1997).
[CrossRef] [PubMed]

1983 (1)

.M. Banna and P. S. Olutola, “Orbital histiocytosis on computed tomography,” J. Comput. Tomogr. 7(2), 167–170 (1983).
[CrossRef] [PubMed]

1968 (1)

.W. Stöber, A. Fink, and E. Bohn, “Controlled growth of monodisperse silica spheres in the micron size range,” J. Colloid Interface Sci. 26(1), 62–69 (1968).
[CrossRef]

’t Hart, D. C.

.M. M. van Schooneveld, D. P. Cormode, R. Koole, J. T. van Wijngaarden, C. Calcagno, T. Skajaa, J. Hilhorst, D. C. ’t Hart, Z. A. Fayad, W. J. M. Mulder, and A. Meijerink, “A fluorescent, paramagnetic and PEGylated gold/silica nanoparticle for MRI, CT and fluorescence imaging,” Contrast Media Mol. Imaging 5(4), 231–236 (2010).
[CrossRef] [PubMed]

Acharya, K.

.E. Khon, A. Mereshchenko, A. N. Tarnovsky, K. Acharya, A. Klinkova, N. N. Hewa-Kasakarage, I. Nemitz, and M. Zamkov, “Suppression of the plasmon resonance in Au/CdS colloidal nanocomposites,” Nano Lett. 11(4), 1792–1799 (2011).
[CrossRef] [PubMed]

Achilefu, S. A.

.R. Rajagopalan, P. Uetrecht, J. E. Bugaj, S. A. Achilefu, and R. B. Dorshow, “Stabilization of the optical tracer agent indocyanine green using noncovalent interactions,” Photochem. Photobiol. 71(3), 347–350 (2000).
[CrossRef] [PubMed]

Ackerly, T.

.P. A. Jackson, W. N. Rahman, C. J. Wong, T. Ackerly, and M. Geso, “Potential dependent superiority of gold nanoparticles in comparison to iodinated contrast agents,” Eur. J. Radiol. 75(1), 104–109 (2010).
[CrossRef] [PubMed]

Agrawal, A.

.R. Popovtzer, A. Agrawal, N. A. Kotov, A. Popovtzer, J. Balter, T. E. Carey, and R. Kopelman, “Targeted gold nanoparticles enable molecular CT imaging of cancer,” Nano Lett. 8(12), 4593–4596 (2008).
[CrossRef] [PubMed]

Alric, C.

.C. Alric, J. Taleb, G. Le Duc, C. Mandon, C. Billotey, A. Le Meur-Herland, T. Brochard, F. Vocanson, M. Janier, P. Perriat, S. Roux, and O. Tillement, “Gadolinium chelate coated gold nanoparticles as contrast agents for both X-ray computed tomography and magnetic resonance imaging,” J. Am. Chem. Soc. 130(18), 5908–5915 (2008).
[CrossRef] [PubMed]

.C. Alric, R. Serduc, C. Mandon, J. Taleb, G. Le Duc, A. Le Meur-Herland, C. Billotey, P. Perriat, S. Roux, and O. Tillement, “Gold nanoparticles designed for combining dual modality imaging and radiotherapy,” Gold Bull. 41(2), 90–97 (2008).
[CrossRef]

Ao, L.

.B. Pan, L. Ao, F. Gao, H. Tian, R. He, and D. Cui, “End-to-end self-assembly and colorimetric characterization of gold nanorods and nanospheres via oligonucleotide hybridization,” Nanotechnology 16(9), 1776–1780 (2005).
[CrossRef]

Arcos, D.

.M. Vallet-Regí, F. Balas, and D. Arcos, “Mesoporous materials for drug delivery,” Angew. Chem. Int. Ed. Engl. 46(40), 7548–7558 (2007).
[CrossRef] [PubMed]

Arfelli, F.

.C. J. Hall, E. Schültke, L. Rigon, K. Ataelmannan, S. Rigley, R. Menk, F. Arfelli, G. Tromba, S. Pearson, S. Wilkinson, A. Round, S. Crittell, R. Griebel, and B. H. J. Juurlink, “Synchrotron-based in vivo tracking of implanted mammalian cells,” Eur. J. Radiol. 68(3Suppl), S156–S159 (2008).
[CrossRef] [PubMed]

Arora, V.

.M. Xiao, J. Nyagilo, V. Arora, P. Kulkarni, D. Xu, X. Sun, and D. P. Davé, “Gold nanotags for combined multi-colored Raman spectroscopy and x-ray computed tomography,” Nanotechnology 21(3), 035101 (2010).
[CrossRef] [PubMed]

Asmis, R.

.L. L. Ma, M. D. Feldman, J. M. Tam, A. S. Paranjape, K. K. Cheruku, T. A. Larson, J. O. Tam, D. R. Ingram, V. Paramita, J. W. Villard, J. T. Jenkins, T. Wang, G. D. Clarke, R. Asmis, K. Sokolov, B. Chandrasekar, T. E. Milner, and K. P. Johnston, “Small multifunctional nanoclusters (nanoroses) for targeted cellular imaging and therapy,” ACS Nano 3(9), 2686–2696 (2009).
[CrossRef] [PubMed]

Ataelmannan, K.

.C. J. Hall, E. Schültke, L. Rigon, K. Ataelmannan, S. Rigley, R. Menk, F. Arfelli, G. Tromba, S. Pearson, S. Wilkinson, A. Round, S. Crittell, R. Griebel, and B. H. J. Juurlink, “Synchrotron-based in vivo tracking of implanted mammalian cells,” Eur. J. Radiol. 68(3Suppl), S156–S159 (2008).
[CrossRef] [PubMed]

Balas, F.

.M. Vallet-Regí, F. Balas, and D. Arcos, “Mesoporous materials for drug delivery,” Angew. Chem. Int. Ed. Engl. 46(40), 7548–7558 (2007).
[CrossRef] [PubMed]

Balter, J.

.R. Popovtzer, A. Agrawal, N. A. Kotov, A. Popovtzer, J. Balter, T. E. Carey, and R. Kopelman, “Targeted gold nanoparticles enable molecular CT imaging of cancer,” Nano Lett. 8(12), 4593–4596 (2008).
[CrossRef] [PubMed]

Banna, M.

.M. Banna and P. S. Olutola, “Orbital histiocytosis on computed tomography,” J. Comput. Tomogr. 7(2), 167–170 (1983).
[CrossRef] [PubMed]

Bao, L.

.P. Huang, Z. Li, J. Lin, D. Yang, G. Gao, C. Xu, L. Bao, C. Zhang, K. Wang, H. Song, H. Hu, and D. Cui, “Photosensitizer-conjugated magnetic nanoparticles for in vivo simultaneous magnetofluorescent imaging and targeting therapy,” Biomaterials 32(13), 3447–3458 (2011).
[CrossRef] [PubMed]

Bartling, S.

.W. Eck, A. I. Nicholson, H. Zentgraf, W. Semmler, and S. Bartling, “Anti-CD4-targeted gold nanoparticles induce specific contrast enhancement of peripheral lymph nodes in X-ray computed tomography of live mice,” Nano Lett. 10(7), 2318–2322 (2010).
[CrossRef] [PubMed]

Bhaskaran, S.

.V. Kattumuri, K. Katti, S. Bhaskaran, E. J. Boote, S. W. Casteel, G. M. Fent, D. J. Robertson, M. Chandrasekhar, R. Kannan, and K. V. Katti, “Gum arabic as a phytochemical construct for the stabilization of gold nanoparticles: in vivo pharmacokinetics and X-ray-contrast-imaging studies,” Small 3(2), 333–341 (2007).
[CrossRef] [PubMed]

Bhatia, S.

.G. von Maltzahn, A. Centrone, J. Park, R. Ramanathan, M. Sailor, T. Hatton, and S. Bhatia, “SERS-coded Gold nanorods as a multifunctional platform for densely multiplexed near-infrared imaging and photothermal heating,” Adv. Mater. (Deerfield Beach Fla.) 21(31), 3175–3180 (2009).
[CrossRef]

Billotey, C.

.C. Alric, R. Serduc, C. Mandon, J. Taleb, G. Le Duc, A. Le Meur-Herland, C. Billotey, P. Perriat, S. Roux, and O. Tillement, “Gold nanoparticles designed for combining dual modality imaging and radiotherapy,” Gold Bull. 41(2), 90–97 (2008).
[CrossRef]

.C. Alric, J. Taleb, G. Le Duc, C. Mandon, C. Billotey, A. Le Meur-Herland, T. Brochard, F. Vocanson, M. Janier, P. Perriat, S. Roux, and O. Tillement, “Gadolinium chelate coated gold nanoparticles as contrast agents for both X-ray computed tomography and magnetic resonance imaging,” J. Am. Chem. Soc. 130(18), 5908–5915 (2008).
[CrossRef] [PubMed]

Bohn, E.

.W. Stöber, A. Fink, and E. Bohn, “Controlled growth of monodisperse silica spheres in the micron size range,” J. Colloid Interface Sci. 26(1), 62–69 (1968).
[CrossRef]

Boote, E. J.

.V. Kattumuri, K. Katti, S. Bhaskaran, E. J. Boote, S. W. Casteel, G. M. Fent, D. J. Robertson, M. Chandrasekhar, R. Kannan, and K. V. Katti, “Gum arabic as a phytochemical construct for the stabilization of gold nanoparticles: in vivo pharmacokinetics and X-ray-contrast-imaging studies,” Small 3(2), 333–341 (2007).
[CrossRef] [PubMed]

Brochard, T.

.C. Alric, J. Taleb, G. Le Duc, C. Mandon, C. Billotey, A. Le Meur-Herland, T. Brochard, F. Vocanson, M. Janier, P. Perriat, S. Roux, and O. Tillement, “Gadolinium chelate coated gold nanoparticles as contrast agents for both X-ray computed tomography and magnetic resonance imaging,” J. Am. Chem. Soc. 130(18), 5908–5915 (2008).
[CrossRef] [PubMed]

Bugaj, J. E.

.R. Rajagopalan, P. Uetrecht, J. E. Bugaj, S. A. Achilefu, and R. B. Dorshow, “Stabilization of the optical tracer agent indocyanine green using noncovalent interactions,” Photochem. Photobiol. 71(3), 347–350 (2000).
[CrossRef] [PubMed]

Büther, F.

.F. Büther, L. Stegger, M. Dawood, F. Range, M. Schäfers, R. Fischbach, T. Wichter, O. Schober, and K. P. Schäfers, “Effective methods to correct contrast agent-induced errors in PET quantification in cardiac PET/CT,” J. Nucl. Med. 48(7), 1060–1068 (2007).
[CrossRef] [PubMed]

Button, T. M.

.F. A. Dilmanian, X. Y. Wu, E. C. Parsons, B. Ren, J. Kress, T. M. Button, L. D. Chapman, J. A. Coderre, F. Giron, D. Greenberg, D. J. Krus, Z. Liang, S. Marcovici, M. J. Petersen, C. T. Roque, M. Shleifer, D. N. Slatkin, W. C. Thomlinson, K. Yamamoto, and Z. Zhong, “Single-and dual-energy CT with monochromatic synchrotron x-rays,” Phys. Med. Biol. 42(2), 371–387 (1997).
[CrossRef] [PubMed]

Byun, S. J.

.Q. Y. Cai, S. H. Kim, K. S. Choi, S. Y. Kim, S. J. Byun, K. W. Kim, S. H. Park, S. K. Juhng, and K. H. Yoon, “Colloidal gold nanoparticles as a blood-pool contrast agent for X-ray computed tomography in mice,” Invest. Radiol. 42(12), 797–806 (2007).
[CrossRef] [PubMed]

Cai, Q. Y.

.Q. Y. Cai, S. H. Kim, K. S. Choi, S. Y. Kim, S. J. Byun, K. W. Kim, S. H. Park, S. K. Juhng, and K. H. Yoon, “Colloidal gold nanoparticles as a blood-pool contrast agent for X-ray computed tomography in mice,” Invest. Radiol. 42(12), 797–806 (2007).
[CrossRef] [PubMed]

Cai, W.

.Z. B. Li, W. Cai, and X. Chen, “Semiconductor quantum dots for in vivo imaging,” J. Nanosci. Nanotechnol. 7(8), 2567–2581 (2007).
[CrossRef] [PubMed]

Calcagno, C.

.M. M. van Schooneveld, D. P. Cormode, R. Koole, J. T. van Wijngaarden, C. Calcagno, T. Skajaa, J. Hilhorst, D. C. ’t Hart, Z. A. Fayad, W. J. M. Mulder, and A. Meijerink, “A fluorescent, paramagnetic and PEGylated gold/silica nanoparticle for MRI, CT and fluorescence imaging,” Contrast Media Mol. Imaging 5(4), 231–236 (2010).
[CrossRef] [PubMed]

Cao, X. Y.

.R. Guo, H. Wang, C. Peng, M. W. Shen, M. J. Pan, X. Y. Cao, G. X. Zhang, and X. Y. Shi, “X-ray attenuation property of dendrimer-entrapped gold nanoparticles,” J. Phys. Chem. C 114(1), 50–56 (2010).
[CrossRef]

Carey, T. E.

.R. Popovtzer, A. Agrawal, N. A. Kotov, A. Popovtzer, J. Balter, T. E. Carey, and R. Kopelman, “Targeted gold nanoparticles enable molecular CT imaging of cancer,” Nano Lett. 8(12), 4593–4596 (2008).
[CrossRef] [PubMed]

Casteel, S. W.

.V. Kattumuri, K. Katti, S. Bhaskaran, E. J. Boote, S. W. Casteel, G. M. Fent, D. J. Robertson, M. Chandrasekhar, R. Kannan, and K. V. Katti, “Gum arabic as a phytochemical construct for the stabilization of gold nanoparticles: in vivo pharmacokinetics and X-ray-contrast-imaging studies,” Small 3(2), 333–341 (2007).
[CrossRef] [PubMed]

Centrone, A.

.G. von Maltzahn, A. Centrone, J. Park, R. Ramanathan, M. Sailor, T. Hatton, and S. Bhatia, “SERS-coded Gold nanorods as a multifunctional platform for densely multiplexed near-infrared imaging and photothermal heating,” Adv. Mater. (Deerfield Beach Fla.) 21(31), 3175–3180 (2009).
[CrossRef]

Chan, W. C. W.

.J. M. Klostranec and W. C. W. Chan, “Quantum dots in biological and biomedical research: Recent progress and present challenges,” Adv. Mater. (Deerfield Beach Fla.) 18(15), 1953–1964 (2006).
[CrossRef]

Chandrasekar, B.

.L. L. Ma, M. D. Feldman, J. M. Tam, A. S. Paranjape, K. K. Cheruku, T. A. Larson, J. O. Tam, D. R. Ingram, V. Paramita, J. W. Villard, J. T. Jenkins, T. Wang, G. D. Clarke, R. Asmis, K. Sokolov, B. Chandrasekar, T. E. Milner, and K. P. Johnston, “Small multifunctional nanoclusters (nanoroses) for targeted cellular imaging and therapy,” ACS Nano 3(9), 2686–2696 (2009).
[CrossRef] [PubMed]

Chandrasekhar, M.

.V. Kattumuri, K. Katti, S. Bhaskaran, E. J. Boote, S. W. Casteel, G. M. Fent, D. J. Robertson, M. Chandrasekhar, R. Kannan, and K. V. Katti, “Gum arabic as a phytochemical construct for the stabilization of gold nanoparticles: in vivo pharmacokinetics and X-ray-contrast-imaging studies,” Small 3(2), 333–341 (2007).
[CrossRef] [PubMed]

Chang, C. N.

.W. S. Kuo, C. N. Chang, Y. T. Chang, M. H. Yang, Y. H. Chien, S. J. Chen, and C. S. Yeh, “Gold nanorods in photodynamic therapy, as hyperthermia agents, and in near-infrared optical imaging,” Angew. Chem. Int. Ed. Engl. 49(15), 2711–2715 (2010).
[PubMed]

Chang, Y. T.

.W. S. Kuo, C. N. Chang, Y. T. Chang, M. H. Yang, Y. H. Chien, S. J. Chen, and C. S. Yeh, “Gold nanorods in photodynamic therapy, as hyperthermia agents, and in near-infrared optical imaging,” Angew. Chem. Int. Ed. Engl. 49(15), 2711–2715 (2010).
[PubMed]

Chapman, L. D.

.F. A. Dilmanian, X. Y. Wu, E. C. Parsons, B. Ren, J. Kress, T. M. Button, L. D. Chapman, J. A. Coderre, F. Giron, D. Greenberg, D. J. Krus, Z. Liang, S. Marcovici, M. J. Petersen, C. T. Roque, M. Shleifer, D. N. Slatkin, W. C. Thomlinson, K. Yamamoto, and Z. Zhong, “Single-and dual-energy CT with monochromatic synchrotron x-rays,” Phys. Med. Biol. 42(2), 371–387 (1997).
[CrossRef] [PubMed]

Chen, C. C.

.C. C. Chen, Y. P. Lin, C. W. Wang, H. C. Tzeng, C. H. Wu, Y. C. Chen, C. P. Chen, L. C. Chen, and Y. C. Wu, “DNA-gold nanorod conjugates for remote control of localized gene expression by near infrared irradiation,” J. Am. Chem. Soc. 128(11), 3709–3715 (2006).
[CrossRef] [PubMed]

Chen, C. P.

.C. C. Chen, Y. P. Lin, C. W. Wang, H. C. Tzeng, C. H. Wu, Y. C. Chen, C. P. Chen, L. C. Chen, and Y. C. Wu, “DNA-gold nanorod conjugates for remote control of localized gene expression by near infrared irradiation,” J. Am. Chem. Soc. 128(11), 3709–3715 (2006).
[CrossRef] [PubMed]

Chen, C. T.

.J. S. Souris, C. H. Lee, S. H. Cheng, C. T. Chen, C. S. Yang, J. A. Ho, C. Y. Mou, and L. W. Lo, “Surface charge-mediated rapid hepatobiliary excretion of mesoporous silica nanoparticles,” Biomaterials 31(21), 5564–5574 (2010).
[CrossRef] [PubMed]

.C. H. Lee, S. H. Cheng, Y. J. Wang, Y. C. Chen, N. T. Chen, J. Souris, C. T. Chen, C. Y. Mou, C. S. Yang, and L. W. Lo, “Near-infrared mesoporous silica nanoparticles for optical imaging: characterization and in vivo biodistribution,” Adv. Funct. Mater. 19(2), 215–222 (2009).
[CrossRef]

Chen, J.

.Y. Kong, J. Chen, F. Gao, W. Li, X. Xu, O. Pandoli, H. Yang, J. Ji, and D. Cui, “A multifunctional ribonuclease-A-conjugated CdTe quantum dot cluster nanosystem for synchronous cancer imaging and therapy,” Small 6(21), 2367–2373 (2010).
[CrossRef] [PubMed]

Chen, L. C.

.C. C. Chen, Y. P. Lin, C. W. Wang, H. C. Tzeng, C. H. Wu, Y. C. Chen, C. P. Chen, L. C. Chen, and Y. C. Wu, “DNA-gold nanorod conjugates for remote control of localized gene expression by near infrared irradiation,” J. Am. Chem. Soc. 128(11), 3709–3715 (2006).
[CrossRef] [PubMed]

Chen, N. T.

.C. H. Lee, S. H. Cheng, Y. J. Wang, Y. C. Chen, N. T. Chen, J. Souris, C. T. Chen, C. Y. Mou, C. S. Yang, and L. W. Lo, “Near-infrared mesoporous silica nanoparticles for optical imaging: characterization and in vivo biodistribution,” Adv. Funct. Mater. 19(2), 215–222 (2009).
[CrossRef]

Chen, S. J.

.W. S. Kuo, C. N. Chang, Y. T. Chang, M. H. Yang, Y. H. Chien, S. J. Chen, and C. S. Yeh, “Gold nanorods in photodynamic therapy, as hyperthermia agents, and in near-infrared optical imaging,” Angew. Chem. Int. Ed. Engl. 49(15), 2711–2715 (2010).
[PubMed]

Chen, X.

.Z. B. Li, W. Cai, and X. Chen, “Semiconductor quantum dots for in vivo imaging,” J. Nanosci. Nanotechnol. 7(8), 2567–2581 (2007).
[CrossRef] [PubMed]

Chen, Y.

.C. G. Wang, Y. Chen, T. T. Wang, Z. F. Ma, and Z. M. Su, “Monodispersed gold nanorod-embedded silica particles as novel Raman labels for biosensing,” Adv. Funct. Mater. 18(2), 355–361 (2008).
[CrossRef]

Chen, Y. C.

.C. H. Lee, S. H. Cheng, Y. J. Wang, Y. C. Chen, N. T. Chen, J. Souris, C. T. Chen, C. Y. Mou, C. S. Yang, and L. W. Lo, “Near-infrared mesoporous silica nanoparticles for optical imaging: characterization and in vivo biodistribution,” Adv. Funct. Mater. 19(2), 215–222 (2009).
[CrossRef]

.C. C. Chen, Y. P. Lin, C. W. Wang, H. C. Tzeng, C. H. Wu, Y. C. Chen, C. P. Chen, L. C. Chen, and Y. C. Wu, “DNA-gold nanorod conjugates for remote control of localized gene expression by near infrared irradiation,” J. Am. Chem. Soc. 128(11), 3709–3715 (2006).
[CrossRef] [PubMed]

Chen, Y. S.

Cheng, J. X.

.L. Tong, Y. Zhao, T. B. Huff, M. N. Hansen, A. Wei, and J. X. Cheng, “Gold nanorods mediate tumor cell death by compromising membrane integrity,” Adv. Mater. (Deerfield Beach Fla.) 19(20), 3136–3141 (2007).
[CrossRef] [PubMed]

Cheng, S. H.

.J. S. Souris, C. H. Lee, S. H. Cheng, C. T. Chen, C. S. Yang, J. A. Ho, C. Y. Mou, and L. W. Lo, “Surface charge-mediated rapid hepatobiliary excretion of mesoporous silica nanoparticles,” Biomaterials 31(21), 5564–5574 (2010).
[CrossRef] [PubMed]

.C. H. Lee, S. H. Cheng, Y. J. Wang, Y. C. Chen, N. T. Chen, J. Souris, C. T. Chen, C. Y. Mou, C. S. Yang, and L. W. Lo, “Near-infrared mesoporous silica nanoparticles for optical imaging: characterization and in vivo biodistribution,” Adv. Funct. Mater. 19(2), 215–222 (2009).
[CrossRef]

Cheruku, K. K.

.L. L. Ma, M. D. Feldman, J. M. Tam, A. S. Paranjape, K. K. Cheruku, T. A. Larson, J. O. Tam, D. R. Ingram, V. Paramita, J. W. Villard, J. T. Jenkins, T. Wang, G. D. Clarke, R. Asmis, K. Sokolov, B. Chandrasekar, T. E. Milner, and K. P. Johnston, “Small multifunctional nanoclusters (nanoroses) for targeted cellular imaging and therapy,” ACS Nano 3(9), 2686–2696 (2009).
[CrossRef] [PubMed]

Chien, Y. H.

.W. S. Kuo, C. N. Chang, Y. T. Chang, M. H. Yang, Y. H. Chien, S. J. Chen, and C. S. Yeh, “Gold nanorods in photodynamic therapy, as hyperthermia agents, and in near-infrared optical imaging,” Angew. Chem. Int. Ed. Engl. 49(15), 2711–2715 (2010).
[PubMed]

Choi, K. S.

.Q. Y. Cai, S. H. Kim, K. S. Choi, S. Y. Kim, S. J. Byun, K. W. Kim, S. H. Park, S. K. Juhng, and K. H. Yoon, “Colloidal gold nanoparticles as a blood-pool contrast agent for X-ray computed tomography in mice,” Invest. Radiol. 42(12), 797–806 (2007).
[CrossRef] [PubMed]

Chuang, C. C.

Clarke, G. D.

.L. L. Ma, M. D. Feldman, J. M. Tam, A. S. Paranjape, K. K. Cheruku, T. A. Larson, J. O. Tam, D. R. Ingram, V. Paramita, J. W. Villard, J. T. Jenkins, T. Wang, G. D. Clarke, R. Asmis, K. Sokolov, B. Chandrasekar, T. E. Milner, and K. P. Johnston, “Small multifunctional nanoclusters (nanoroses) for targeted cellular imaging and therapy,” ACS Nano 3(9), 2686–2696 (2009).
[CrossRef] [PubMed]

Coderre, J. A.

.F. A. Dilmanian, X. Y. Wu, E. C. Parsons, B. Ren, J. Kress, T. M. Button, L. D. Chapman, J. A. Coderre, F. Giron, D. Greenberg, D. J. Krus, Z. Liang, S. Marcovici, M. J. Petersen, C. T. Roque, M. Shleifer, D. N. Slatkin, W. C. Thomlinson, K. Yamamoto, and Z. Zhong, “Single-and dual-energy CT with monochromatic synchrotron x-rays,” Phys. Med. Biol. 42(2), 371–387 (1997).
[CrossRef] [PubMed]

Cormode, D. P.

.M. M. van Schooneveld, D. P. Cormode, R. Koole, J. T. van Wijngaarden, C. Calcagno, T. Skajaa, J. Hilhorst, D. C. ’t Hart, Z. A. Fayad, W. J. M. Mulder, and A. Meijerink, “A fluorescent, paramagnetic and PEGylated gold/silica nanoparticle for MRI, CT and fluorescence imaging,” Contrast Media Mol. Imaging 5(4), 231–236 (2010).
[CrossRef] [PubMed]

Crittell, S.

.C. J. Hall, E. Schültke, L. Rigon, K. Ataelmannan, S. Rigley, R. Menk, F. Arfelli, G. Tromba, S. Pearson, S. Wilkinson, A. Round, S. Crittell, R. Griebel, and B. H. J. Juurlink, “Synchrotron-based in vivo tracking of implanted mammalian cells,” Eur. J. Radiol. 68(3Suppl), S156–S159 (2008).
[CrossRef] [PubMed]

Cui, D.

.P. Huang, Z. Li, J. Lin, D. Yang, G. Gao, C. Xu, L. Bao, C. Zhang, K. Wang, H. Song, H. Hu, and D. Cui, “Photosensitizer-conjugated magnetic nanoparticles for in vivo simultaneous magnetofluorescent imaging and targeting therapy,” Biomaterials 32(13), 3447–3458 (2011).
[CrossRef] [PubMed]

.Z. Li, P. Huang, X. Zhang, J. Lin, S. Yang, B. Liu, F. Gao, P. Xi, Q. Ren, and D. Cui, “RGD-conjugated dendrimer-modified gold nanorods for in vivo tumor targeting and photothermal therapy,” Mol. Pharm. 7(1), 94–104 (2010).
[CrossRef] [PubMed]

.Y. Kong, J. Chen, F. Gao, W. Li, X. Xu, O. Pandoli, H. Yang, J. Ji, and D. Cui, “A multifunctional ribonuclease-A-conjugated CdTe quantum dot cluster nanosystem for synchronous cancer imaging and therapy,” Small 6(21), 2367–2373 (2010).
[CrossRef] [PubMed]

.B. Pan, L. Ao, F. Gao, H. Tian, R. He, and D. Cui, “End-to-end self-assembly and colorimetric characterization of gold nanorods and nanospheres via oligonucleotide hybridization,” Nanotechnology 16(9), 1776–1780 (2005).
[CrossRef]

Davé, D. P.

.M. Xiao, J. Nyagilo, V. Arora, P. Kulkarni, D. Xu, X. Sun, and D. P. Davé, “Gold nanotags for combined multi-colored Raman spectroscopy and x-ray computed tomography,” Nanotechnology 21(3), 035101 (2010).
[CrossRef] [PubMed]

Dawood, M.

.F. Büther, L. Stegger, M. Dawood, F. Range, M. Schäfers, R. Fischbach, T. Wichter, O. Schober, and K. P. Schäfers, “Effective methods to correct contrast agent-induced errors in PET quantification in cardiac PET/CT,” J. Nucl. Med. 48(7), 1060–1068 (2007).
[CrossRef] [PubMed]

Dilmanian, F. A.

.J. F. Hainfeld, F. A. Dilmanian, D. N. Slatkin, and H. M. Smilowitz, “Radiotherapy enhancement with gold nanoparticles,” J. Pharm. Pharmacol. 60(8), 977–985 (2008).
[CrossRef] [PubMed]

.F. A. Dilmanian, X. Y. Wu, E. C. Parsons, B. Ren, J. Kress, T. M. Button, L. D. Chapman, J. A. Coderre, F. Giron, D. Greenberg, D. J. Krus, Z. Liang, S. Marcovici, M. J. Petersen, C. T. Roque, M. Shleifer, D. N. Slatkin, W. C. Thomlinson, K. Yamamoto, and Z. Zhong, “Single-and dual-energy CT with monochromatic synchrotron x-rays,” Phys. Med. Biol. 42(2), 371–387 (1997).
[CrossRef] [PubMed]

Dorshow, R. B.

.R. Rajagopalan, P. Uetrecht, J. E. Bugaj, S. A. Achilefu, and R. B. Dorshow, “Stabilization of the optical tracer agent indocyanine green using noncovalent interactions,” Photochem. Photobiol. 71(3), 347–350 (2000).
[CrossRef] [PubMed]

Eck, W.

.W. Eck, A. I. Nicholson, H. Zentgraf, W. Semmler, and S. Bartling, “Anti-CD4-targeted gold nanoparticles induce specific contrast enhancement of peripheral lymph nodes in X-ray computed tomography of live mice,” Nano Lett. 10(7), 2318–2322 (2010).
[CrossRef] [PubMed]

El-Sayed, I. H.

.X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006).
[CrossRef] [PubMed]

El-Sayed, M. A.

.X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006).
[CrossRef] [PubMed]

.B. Nikoobakht, Z. L. Wang, and M. A. El-Sayed, “Self-Assembly Of Gold Nanorods,” J. Phys. Chem. B 104(36), 8635–8640 (2000).
[CrossRef]

Emelianov, S.

Fayad, Z. A.

.M. M. van Schooneveld, D. P. Cormode, R. Koole, J. T. van Wijngaarden, C. Calcagno, T. Skajaa, J. Hilhorst, D. C. ’t Hart, Z. A. Fayad, W. J. M. Mulder, and A. Meijerink, “A fluorescent, paramagnetic and PEGylated gold/silica nanoparticle for MRI, CT and fluorescence imaging,” Contrast Media Mol. Imaging 5(4), 231–236 (2010).
[CrossRef] [PubMed]

Feldman, M. D.

.L. L. Ma, M. D. Feldman, J. M. Tam, A. S. Paranjape, K. K. Cheruku, T. A. Larson, J. O. Tam, D. R. Ingram, V. Paramita, J. W. Villard, J. T. Jenkins, T. Wang, G. D. Clarke, R. Asmis, K. Sokolov, B. Chandrasekar, T. E. Milner, and K. P. Johnston, “Small multifunctional nanoclusters (nanoroses) for targeted cellular imaging and therapy,” ACS Nano 3(9), 2686–2696 (2009).
[CrossRef] [PubMed]

Fent, G. M.

.V. Kattumuri, K. Katti, S. Bhaskaran, E. J. Boote, S. W. Casteel, G. M. Fent, D. J. Robertson, M. Chandrasekhar, R. Kannan, and K. V. Katti, “Gum arabic as a phytochemical construct for the stabilization of gold nanoparticles: in vivo pharmacokinetics and X-ray-contrast-imaging studies,” Small 3(2), 333–341 (2007).
[CrossRef] [PubMed]

Fink, A.

.W. Stöber, A. Fink, and E. Bohn, “Controlled growth of monodisperse silica spheres in the micron size range,” J. Colloid Interface Sci. 26(1), 62–69 (1968).
[CrossRef]

Fischbach, R.

.F. Büther, L. Stegger, M. Dawood, F. Range, M. Schäfers, R. Fischbach, T. Wichter, O. Schober, and K. P. Schäfers, “Effective methods to correct contrast agent-induced errors in PET quantification in cardiac PET/CT,” J. Nucl. Med. 48(7), 1060–1068 (2007).
[CrossRef] [PubMed]

Focella, T. M.

.J. F. Hainfeld, D. N. Slatkin, T. M. Focella, and H. M. Smilowitz, “Gold nanoparticles: a new X-ray contrast agent,” Br. J. Radiol. 79(939), 248–253 (2006).
[CrossRef] [PubMed]

Frey, W.

Gao, F.

.Y. Kong, J. Chen, F. Gao, W. Li, X. Xu, O. Pandoli, H. Yang, J. Ji, and D. Cui, “A multifunctional ribonuclease-A-conjugated CdTe quantum dot cluster nanosystem for synchronous cancer imaging and therapy,” Small 6(21), 2367–2373 (2010).
[CrossRef] [PubMed]

.Z. Li, P. Huang, X. Zhang, J. Lin, S. Yang, B. Liu, F. Gao, P. Xi, Q. Ren, and D. Cui, “RGD-conjugated dendrimer-modified gold nanorods for in vivo tumor targeting and photothermal therapy,” Mol. Pharm. 7(1), 94–104 (2010).
[CrossRef] [PubMed]

.B. Pan, L. Ao, F. Gao, H. Tian, R. He, and D. Cui, “End-to-end self-assembly and colorimetric characterization of gold nanorods and nanospheres via oligonucleotide hybridization,” Nanotechnology 16(9), 1776–1780 (2005).
[CrossRef]

Gao, G.

.P. Huang, Z. Li, J. Lin, D. Yang, G. Gao, C. Xu, L. Bao, C. Zhang, K. Wang, H. Song, H. Hu, and D. Cui, “Photosensitizer-conjugated magnetic nanoparticles for in vivo simultaneous magnetofluorescent imaging and targeting therapy,” Biomaterials 32(13), 3447–3458 (2011).
[CrossRef] [PubMed]

Geso, M.

.P. A. Jackson, W. N. Rahman, C. J. Wong, T. Ackerly, and M. Geso, “Potential dependent superiority of gold nanoparticles in comparison to iodinated contrast agents,” Eur. J. Radiol. 75(1), 104–109 (2010).
[CrossRef] [PubMed]

Giron, F.

.F. A. Dilmanian, X. Y. Wu, E. C. Parsons, B. Ren, J. Kress, T. M. Button, L. D. Chapman, J. A. Coderre, F. Giron, D. Greenberg, D. J. Krus, Z. Liang, S. Marcovici, M. J. Petersen, C. T. Roque, M. Shleifer, D. N. Slatkin, W. C. Thomlinson, K. Yamamoto, and Z. Zhong, “Single-and dual-energy CT with monochromatic synchrotron x-rays,” Phys. Med. Biol. 42(2), 371–387 (1997).
[CrossRef] [PubMed]

Greenberg, D.

.F. A. Dilmanian, X. Y. Wu, E. C. Parsons, B. Ren, J. Kress, T. M. Button, L. D. Chapman, J. A. Coderre, F. Giron, D. Greenberg, D. J. Krus, Z. Liang, S. Marcovici, M. J. Petersen, C. T. Roque, M. Shleifer, D. N. Slatkin, W. C. Thomlinson, K. Yamamoto, and Z. Zhong, “Single-and dual-energy CT with monochromatic synchrotron x-rays,” Phys. Med. Biol. 42(2), 371–387 (1997).
[CrossRef] [PubMed]

Griebel, R.

.C. J. Hall, E. Schültke, L. Rigon, K. Ataelmannan, S. Rigley, R. Menk, F. Arfelli, G. Tromba, S. Pearson, S. Wilkinson, A. Round, S. Crittell, R. Griebel, and B. H. J. Juurlink, “Synchrotron-based in vivo tracking of implanted mammalian cells,” Eur. J. Radiol. 68(3Suppl), S156–S159 (2008).
[CrossRef] [PubMed]

Guo, R.

.H. Wang, L. Zheng, C. Peng, R. Guo, M. Shen, X. Shi, and G. Zhang, “Computed tomography imaging of cancer cells using acetylated dendrimer-entrapped gold nanoparticles,” Biomaterials 32(11), 2979–2988 (2011).
[CrossRef] [PubMed]

.R. Guo, H. Wang, C. Peng, M. W. Shen, M. J. Pan, X. Y. Cao, G. X. Zhang, and X. Y. Shi, “X-ray attenuation property of dendrimer-entrapped gold nanoparticles,” J. Phys. Chem. C 114(1), 50–56 (2010).
[CrossRef]

Hainfeld, J. F.

.J. F. Hainfeld, F. A. Dilmanian, D. N. Slatkin, and H. M. Smilowitz, “Radiotherapy enhancement with gold nanoparticles,” J. Pharm. Pharmacol. 60(8), 977–985 (2008).
[CrossRef] [PubMed]

.J. F. Hainfeld, D. N. Slatkin, T. M. Focella, and H. M. Smilowitz, “Gold nanoparticles: a new X-ray contrast agent,” Br. J. Radiol. 79(939), 248–253 (2006).
[CrossRef] [PubMed]

.J. F. Hainfeld, D. N. Slatkin, and H. M. Smilowitz, “The use of gold nanoparticles to enhance radiotherapy in mice,” Phys. Med. Biol. 49(18), N309–N315 (2004).
[CrossRef] [PubMed]

Hall, C. J.

.C. J. Hall, E. Schültke, L. Rigon, K. Ataelmannan, S. Rigley, R. Menk, F. Arfelli, G. Tromba, S. Pearson, S. Wilkinson, A. Round, S. Crittell, R. Griebel, and B. H. J. Juurlink, “Synchrotron-based in vivo tracking of implanted mammalian cells,” Eur. J. Radiol. 68(3Suppl), S156–S159 (2008).
[CrossRef] [PubMed]

Haller, C.

.C. Haller and I. Hizoh, “The cytotoxicity of iodinated radiocontrast agents on renal cells in vitro,” Invest. Radiol. 39(3), 149–154 (2004).
[CrossRef] [PubMed]

.I. Hizoh and C. Haller, “Radiocontrast-induced renal tubular cell apoptosis: hypertonic versus oxidative stress,” Invest. Radiol. 37(8), 428–434 (2002).
[CrossRef] [PubMed]

Han, M. S.

.M. S. Han, A. K. R. Lytton-Jean, B. K. Oh, J. Heo, and C. A. Mirkin, “Colorimetric screening of DNA-binding molecules with gold nanoparticle probes,” Angew. Chem. Int. Ed. Engl. 45(11), 1807–1810 (2006).
[CrossRef] [PubMed]

Hansen, M. N.

.L. Tong, Y. Zhao, T. B. Huff, M. N. Hansen, A. Wei, and J. X. Cheng, “Gold nanorods mediate tumor cell death by compromising membrane integrity,” Adv. Mater. (Deerfield Beach Fla.) 19(20), 3136–3141 (2007).
[CrossRef] [PubMed]

Hatton, T.

.G. von Maltzahn, A. Centrone, J. Park, R. Ramanathan, M. Sailor, T. Hatton, and S. Bhatia, “SERS-coded Gold nanorods as a multifunctional platform for densely multiplexed near-infrared imaging and photothermal heating,” Adv. Mater. (Deerfield Beach Fla.) 21(31), 3175–3180 (2009).
[CrossRef]

He, R.

.B. Pan, L. Ao, F. Gao, H. Tian, R. He, and D. Cui, “End-to-end self-assembly and colorimetric characterization of gold nanorods and nanospheres via oligonucleotide hybridization,” Nanotechnology 16(9), 1776–1780 (2005).
[CrossRef]

He, S.

Heo, J.

.M. S. Han, A. K. R. Lytton-Jean, B. K. Oh, J. Heo, and C. A. Mirkin, “Colorimetric screening of DNA-binding molecules with gold nanoparticle probes,” Angew. Chem. Int. Ed. Engl. 45(11), 1807–1810 (2006).
[CrossRef] [PubMed]

Hewa-Kasakarage, N. N.

.E. Khon, A. Mereshchenko, A. N. Tarnovsky, K. Acharya, A. Klinkova, N. N. Hewa-Kasakarage, I. Nemitz, and M. Zamkov, “Suppression of the plasmon resonance in Au/CdS colloidal nanocomposites,” Nano Lett. 11(4), 1792–1799 (2011).
[CrossRef] [PubMed]

Hilhorst, J.

.M. M. van Schooneveld, D. P. Cormode, R. Koole, J. T. van Wijngaarden, C. Calcagno, T. Skajaa, J. Hilhorst, D. C. ’t Hart, Z. A. Fayad, W. J. M. Mulder, and A. Meijerink, “A fluorescent, paramagnetic and PEGylated gold/silica nanoparticle for MRI, CT and fluorescence imaging,” Contrast Media Mol. Imaging 5(4), 231–236 (2010).
[CrossRef] [PubMed]

Hizoh, I.

.C. Haller and I. Hizoh, “The cytotoxicity of iodinated radiocontrast agents on renal cells in vitro,” Invest. Radiol. 39(3), 149–154 (2004).
[CrossRef] [PubMed]

.I. Hizoh and C. Haller, “Radiocontrast-induced renal tubular cell apoptosis: hypertonic versus oxidative stress,” Invest. Radiol. 37(8), 428–434 (2002).
[CrossRef] [PubMed]

Ho, J. A.

.J. S. Souris, C. H. Lee, S. H. Cheng, C. T. Chen, C. S. Yang, J. A. Ho, C. Y. Mou, and L. W. Lo, “Surface charge-mediated rapid hepatobiliary excretion of mesoporous silica nanoparticles,” Biomaterials 31(21), 5564–5574 (2010).
[CrossRef] [PubMed]

Homan, K.

Hong, M. Y.

.E. Oh, M. Y. Hong, D. Lee, S. H. Nam, H. C. Yoon, and H. S. Kim, “Inhibition assay of biomolecules based on fluorescence resonance energy transfer (FRET) between quantum dots and gold nanoparticles,” J. Am. Chem. Soc. 127(10), 3270–3271 (2005).
[CrossRef] [PubMed]

Hu, H.

.P. Huang, Z. Li, J. Lin, D. Yang, G. Gao, C. Xu, L. Bao, C. Zhang, K. Wang, H. Song, H. Hu, and D. Cui, “Photosensitizer-conjugated magnetic nanoparticles for in vivo simultaneous magnetofluorescent imaging and targeting therapy,” Biomaterials 32(13), 3447–3458 (2011).
[CrossRef] [PubMed]

Huang, P.

.P. Huang, Z. Li, J. Lin, D. Yang, G. Gao, C. Xu, L. Bao, C. Zhang, K. Wang, H. Song, H. Hu, and D. Cui, “Photosensitizer-conjugated magnetic nanoparticles for in vivo simultaneous magnetofluorescent imaging and targeting therapy,” Biomaterials 32(13), 3447–3458 (2011).
[CrossRef] [PubMed]

.Z. Li, P. Huang, X. Zhang, J. Lin, S. Yang, B. Liu, F. Gao, P. Xi, Q. Ren, and D. Cui, “RGD-conjugated dendrimer-modified gold nanorods for in vivo tumor targeting and photothermal therapy,” Mol. Pharm. 7(1), 94–104 (2010).
[CrossRef] [PubMed]

Huang, X.

.X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006).
[CrossRef] [PubMed]

Huff, T. B.

.L. Tong, Y. Zhao, T. B. Huff, M. N. Hansen, A. Wei, and J. X. Cheng, “Gold nanorods mediate tumor cell death by compromising membrane integrity,” Adv. Mater. (Deerfield Beach Fla.) 19(20), 3136–3141 (2007).
[CrossRef] [PubMed]

Hyeon, T.

.H. B. Na, I. C. Song, and T. Hyeon, “Inorganic nanoparticles for MRI contrast agents,” Adv. Mater. (Deerfield Beach Fla.) 21(21), 2133–2148 (2009).
[CrossRef]

Ingram, D. R.

.L. L. Ma, M. D. Feldman, J. M. Tam, A. S. Paranjape, K. K. Cheruku, T. A. Larson, J. O. Tam, D. R. Ingram, V. Paramita, J. W. Villard, J. T. Jenkins, T. Wang, G. D. Clarke, R. Asmis, K. Sokolov, B. Chandrasekar, T. E. Milner, and K. P. Johnston, “Small multifunctional nanoclusters (nanoroses) for targeted cellular imaging and therapy,” ACS Nano 3(9), 2686–2696 (2009).
[CrossRef] [PubMed]

Jackson, P. A.

.P. A. Jackson, W. N. Rahman, C. J. Wong, T. Ackerly, and M. Geso, “Potential dependent superiority of gold nanoparticles in comparison to iodinated contrast agents,” Eur. J. Radiol. 75(1), 104–109 (2010).
[CrossRef] [PubMed]

Jana, N.

.C. Murphy and N. Jana, “Controlling the aspect ratio of inorganic nanorods and nanowires,” Adv. Mater. (Deerfield Beach Fla.) 14(1), 80–82 (2002).
[CrossRef]

Janier, M.

.C. Alric, J. Taleb, G. Le Duc, C. Mandon, C. Billotey, A. Le Meur-Herland, T. Brochard, F. Vocanson, M. Janier, P. Perriat, S. Roux, and O. Tillement, “Gadolinium chelate coated gold nanoparticles as contrast agents for both X-ray computed tomography and magnetic resonance imaging,” J. Am. Chem. Soc. 130(18), 5908–5915 (2008).
[CrossRef] [PubMed]

Jenkins, J. T.

.L. L. Ma, M. D. Feldman, J. M. Tam, A. S. Paranjape, K. K. Cheruku, T. A. Larson, J. O. Tam, D. R. Ingram, V. Paramita, J. W. Villard, J. T. Jenkins, T. Wang, G. D. Clarke, R. Asmis, K. Sokolov, B. Chandrasekar, T. E. Milner, and K. P. Johnston, “Small multifunctional nanoclusters (nanoroses) for targeted cellular imaging and therapy,” ACS Nano 3(9), 2686–2696 (2009).
[CrossRef] [PubMed]

Jeong, Y. Y.

.D. Kim, Y. Y. Jeong, and S. Jon, “A drug-loaded aptamer-gold nanoparticle bioconjugate for combined CT imaging and therapy of prostate cancer,” ACS Nano 4(7), 3689–3696 (2010).
[CrossRef] [PubMed]

.D. Kim, S. Park, J. H. Lee, Y. Y. Jeong, and S. Jon, “Antibiofouling polymer-coated gold nanoparticles as a contrast agent for in vivo X-ray computed tomography imaging,” J. Am. Chem. Soc. 129(24), 7661–7665 (2007).
[CrossRef] [PubMed]

Ji, J.

.Y. Kong, J. Chen, F. Gao, W. Li, X. Xu, O. Pandoli, H. Yang, J. Ji, and D. Cui, “A multifunctional ribonuclease-A-conjugated CdTe quantum dot cluster nanosystem for synchronous cancer imaging and therapy,” Small 6(21), 2367–2373 (2010).
[CrossRef] [PubMed]

Johnston, K. P.

.L. L. Ma, M. D. Feldman, J. M. Tam, A. S. Paranjape, K. K. Cheruku, T. A. Larson, J. O. Tam, D. R. Ingram, V. Paramita, J. W. Villard, J. T. Jenkins, T. Wang, G. D. Clarke, R. Asmis, K. Sokolov, B. Chandrasekar, T. E. Milner, and K. P. Johnston, “Small multifunctional nanoclusters (nanoroses) for targeted cellular imaging and therapy,” ACS Nano 3(9), 2686–2696 (2009).
[CrossRef] [PubMed]

Jon, S.

.D. Kim, Y. Y. Jeong, and S. Jon, “A drug-loaded aptamer-gold nanoparticle bioconjugate for combined CT imaging and therapy of prostate cancer,” ACS Nano 4(7), 3689–3696 (2010).
[CrossRef] [PubMed]

.D. Kim, S. Park, J. H. Lee, Y. Y. Jeong, and S. Jon, “Antibiofouling polymer-coated gold nanoparticles as a contrast agent for in vivo X-ray computed tomography imaging,” J. Am. Chem. Soc. 129(24), 7661–7665 (2007).
[CrossRef] [PubMed]

Juhng, S. K.

.Q. Y. Cai, S. H. Kim, K. S. Choi, S. Y. Kim, S. J. Byun, K. W. Kim, S. H. Park, S. K. Juhng, and K. H. Yoon, “Colloidal gold nanoparticles as a blood-pool contrast agent for X-ray computed tomography in mice,” Invest. Radiol. 42(12), 797–806 (2007).
[CrossRef] [PubMed]

Juurlink, B. H. J.

.C. J. Hall, E. Schültke, L. Rigon, K. Ataelmannan, S. Rigley, R. Menk, F. Arfelli, G. Tromba, S. Pearson, S. Wilkinson, A. Round, S. Crittell, R. Griebel, and B. H. J. Juurlink, “Synchrotron-based in vivo tracking of implanted mammalian cells,” Eur. J. Radiol. 68(3Suppl), S156–S159 (2008).
[CrossRef] [PubMed]

Kannan, R.

.V. Kattumuri, K. Katti, S. Bhaskaran, E. J. Boote, S. W. Casteel, G. M. Fent, D. J. Robertson, M. Chandrasekhar, R. Kannan, and K. V. Katti, “Gum arabic as a phytochemical construct for the stabilization of gold nanoparticles: in vivo pharmacokinetics and X-ray-contrast-imaging studies,” Small 3(2), 333–341 (2007).
[CrossRef] [PubMed]

Kao, F. J.

Katti, K.

.V. Kattumuri, K. Katti, S. Bhaskaran, E. J. Boote, S. W. Casteel, G. M. Fent, D. J. Robertson, M. Chandrasekhar, R. Kannan, and K. V. Katti, “Gum arabic as a phytochemical construct for the stabilization of gold nanoparticles: in vivo pharmacokinetics and X-ray-contrast-imaging studies,” Small 3(2), 333–341 (2007).
[CrossRef] [PubMed]

Katti, K. V.

.V. Kattumuri, K. Katti, S. Bhaskaran, E. J. Boote, S. W. Casteel, G. M. Fent, D. J. Robertson, M. Chandrasekhar, R. Kannan, and K. V. Katti, “Gum arabic as a phytochemical construct for the stabilization of gold nanoparticles: in vivo pharmacokinetics and X-ray-contrast-imaging studies,” Small 3(2), 333–341 (2007).
[CrossRef] [PubMed]

Kattumuri, V.

.V. Kattumuri, K. Katti, S. Bhaskaran, E. J. Boote, S. W. Casteel, G. M. Fent, D. J. Robertson, M. Chandrasekhar, R. Kannan, and K. V. Katti, “Gum arabic as a phytochemical construct for the stabilization of gold nanoparticles: in vivo pharmacokinetics and X-ray-contrast-imaging studies,” Small 3(2), 333–341 (2007).
[CrossRef] [PubMed]

Khon, E.

.E. Khon, A. Mereshchenko, A. N. Tarnovsky, K. Acharya, A. Klinkova, N. N. Hewa-Kasakarage, I. Nemitz, and M. Zamkov, “Suppression of the plasmon resonance in Au/CdS colloidal nanocomposites,” Nano Lett. 11(4), 1792–1799 (2011).
[CrossRef] [PubMed]

Kim, D.

.D. Kim, Y. Y. Jeong, and S. Jon, “A drug-loaded aptamer-gold nanoparticle bioconjugate for combined CT imaging and therapy of prostate cancer,” ACS Nano 4(7), 3689–3696 (2010).
[CrossRef] [PubMed]

.D. Kim, S. Park, J. H. Lee, Y. Y. Jeong, and S. Jon, “Antibiofouling polymer-coated gold nanoparticles as a contrast agent for in vivo X-ray computed tomography imaging,” J. Am. Chem. Soc. 129(24), 7661–7665 (2007).
[CrossRef] [PubMed]

Kim, H. S.

.E. Oh, M. Y. Hong, D. Lee, S. H. Nam, H. C. Yoon, and H. S. Kim, “Inhibition assay of biomolecules based on fluorescence resonance energy transfer (FRET) between quantum dots and gold nanoparticles,” J. Am. Chem. Soc. 127(10), 3270–3271 (2005).
[CrossRef] [PubMed]

Kim, K. W.

.Q. Y. Cai, S. H. Kim, K. S. Choi, S. Y. Kim, S. J. Byun, K. W. Kim, S. H. Park, S. K. Juhng, and K. H. Yoon, “Colloidal gold nanoparticles as a blood-pool contrast agent for X-ray computed tomography in mice,” Invest. Radiol. 42(12), 797–806 (2007).
[CrossRef] [PubMed]

Kim, S.

Kim, S. H.

.Q. Y. Cai, S. H. Kim, K. S. Choi, S. Y. Kim, S. J. Byun, K. W. Kim, S. H. Park, S. K. Juhng, and K. H. Yoon, “Colloidal gold nanoparticles as a blood-pool contrast agent for X-ray computed tomography in mice,” Invest. Radiol. 42(12), 797–806 (2007).
[CrossRef] [PubMed]

Kim, S. Y.

.Q. Y. Cai, S. H. Kim, K. S. Choi, S. Y. Kim, S. J. Byun, K. W. Kim, S. H. Park, S. K. Juhng, and K. H. Yoon, “Colloidal gold nanoparticles as a blood-pool contrast agent for X-ray computed tomography in mice,” Invest. Radiol. 42(12), 797–806 (2007).
[CrossRef] [PubMed]

Klinkova, A.

.E. Khon, A. Mereshchenko, A. N. Tarnovsky, K. Acharya, A. Klinkova, N. N. Hewa-Kasakarage, I. Nemitz, and M. Zamkov, “Suppression of the plasmon resonance in Au/CdS colloidal nanocomposites,” Nano Lett. 11(4), 1792–1799 (2011).
[CrossRef] [PubMed]

Klostranec, J. M.

.J. M. Klostranec and W. C. W. Chan, “Quantum dots in biological and biomedical research: Recent progress and present challenges,” Adv. Mater. (Deerfield Beach Fla.) 18(15), 1953–1964 (2006).
[CrossRef]

Kong, Y.

.Y. Kong, J. Chen, F. Gao, W. Li, X. Xu, O. Pandoli, H. Yang, J. Ji, and D. Cui, “A multifunctional ribonuclease-A-conjugated CdTe quantum dot cluster nanosystem for synchronous cancer imaging and therapy,” Small 6(21), 2367–2373 (2010).
[CrossRef] [PubMed]

Koole, R.

.M. M. van Schooneveld, D. P. Cormode, R. Koole, J. T. van Wijngaarden, C. Calcagno, T. Skajaa, J. Hilhorst, D. C. ’t Hart, Z. A. Fayad, W. J. M. Mulder, and A. Meijerink, “A fluorescent, paramagnetic and PEGylated gold/silica nanoparticle for MRI, CT and fluorescence imaging,” Contrast Media Mol. Imaging 5(4), 231–236 (2010).
[CrossRef] [PubMed]

Kopelman, R.

.R. Popovtzer, A. Agrawal, N. A. Kotov, A. Popovtzer, J. Balter, T. E. Carey, and R. Kopelman, “Targeted gold nanoparticles enable molecular CT imaging of cancer,” Nano Lett. 8(12), 4593–4596 (2008).
[CrossRef] [PubMed]

Kotov, N. A.

.R. Popovtzer, A. Agrawal, N. A. Kotov, A. Popovtzer, J. Balter, T. E. Carey, and R. Kopelman, “Targeted gold nanoparticles enable molecular CT imaging of cancer,” Nano Lett. 8(12), 4593–4596 (2008).
[CrossRef] [PubMed]

Krause, W.

.W. Krause, “Delivery of diagnostic agents in computed tomography,” Adv. Drug Deliv. Rev. 37(1-3), 159–173 (1999).
[CrossRef] [PubMed]

Kress, J.

.F. A. Dilmanian, X. Y. Wu, E. C. Parsons, B. Ren, J. Kress, T. M. Button, L. D. Chapman, J. A. Coderre, F. Giron, D. Greenberg, D. J. Krus, Z. Liang, S. Marcovici, M. J. Petersen, C. T. Roque, M. Shleifer, D. N. Slatkin, W. C. Thomlinson, K. Yamamoto, and Z. Zhong, “Single-and dual-energy CT with monochromatic synchrotron x-rays,” Phys. Med. Biol. 42(2), 371–387 (1997).
[CrossRef] [PubMed]

Kruizinga, P.

Krus, D. J.

.F. A. Dilmanian, X. Y. Wu, E. C. Parsons, B. Ren, J. Kress, T. M. Button, L. D. Chapman, J. A. Coderre, F. Giron, D. Greenberg, D. J. Krus, Z. Liang, S. Marcovici, M. J. Petersen, C. T. Roque, M. Shleifer, D. N. Slatkin, W. C. Thomlinson, K. Yamamoto, and Z. Zhong, “Single-and dual-energy CT with monochromatic synchrotron x-rays,” Phys. Med. Biol. 42(2), 371–387 (1997).
[CrossRef] [PubMed]

Kulkarni, P.

.M. Xiao, J. Nyagilo, V. Arora, P. Kulkarni, D. Xu, X. Sun, and D. P. Davé, “Gold nanotags for combined multi-colored Raman spectroscopy and x-ray computed tomography,” Nanotechnology 21(3), 035101 (2010).
[CrossRef] [PubMed]

Kuo, W. S.

.W. S. Kuo, C. N. Chang, Y. T. Chang, M. H. Yang, Y. H. Chien, S. J. Chen, and C. S. Yeh, “Gold nanorods in photodynamic therapy, as hyperthermia agents, and in near-infrared optical imaging,” Angew. Chem. Int. Ed. Engl. 49(15), 2711–2715 (2010).
[PubMed]

Larson, T. A.

.L. L. Ma, M. D. Feldman, J. M. Tam, A. S. Paranjape, K. K. Cheruku, T. A. Larson, J. O. Tam, D. R. Ingram, V. Paramita, J. W. Villard, J. T. Jenkins, T. Wang, G. D. Clarke, R. Asmis, K. Sokolov, B. Chandrasekar, T. E. Milner, and K. P. Johnston, “Small multifunctional nanoclusters (nanoroses) for targeted cellular imaging and therapy,” ACS Nano 3(9), 2686–2696 (2009).
[CrossRef] [PubMed]

Le Duc, G.

.C. Alric, R. Serduc, C. Mandon, J. Taleb, G. Le Duc, A. Le Meur-Herland, C. Billotey, P. Perriat, S. Roux, and O. Tillement, “Gold nanoparticles designed for combining dual modality imaging and radiotherapy,” Gold Bull. 41(2), 90–97 (2008).
[CrossRef]

.C. Alric, J. Taleb, G. Le Duc, C. Mandon, C. Billotey, A. Le Meur-Herland, T. Brochard, F. Vocanson, M. Janier, P. Perriat, S. Roux, and O. Tillement, “Gadolinium chelate coated gold nanoparticles as contrast agents for both X-ray computed tomography and magnetic resonance imaging,” J. Am. Chem. Soc. 130(18), 5908–5915 (2008).
[CrossRef] [PubMed]

Le Meur-Herland, A.

.C. Alric, J. Taleb, G. Le Duc, C. Mandon, C. Billotey, A. Le Meur-Herland, T. Brochard, F. Vocanson, M. Janier, P. Perriat, S. Roux, and O. Tillement, “Gadolinium chelate coated gold nanoparticles as contrast agents for both X-ray computed tomography and magnetic resonance imaging,” J. Am. Chem. Soc. 130(18), 5908–5915 (2008).
[CrossRef] [PubMed]

.C. Alric, R. Serduc, C. Mandon, J. Taleb, G. Le Duc, A. Le Meur-Herland, C. Billotey, P. Perriat, S. Roux, and O. Tillement, “Gold nanoparticles designed for combining dual modality imaging and radiotherapy,” Gold Bull. 41(2), 90–97 (2008).
[CrossRef]

Lee, C. H.

.J. S. Souris, C. H. Lee, S. H. Cheng, C. T. Chen, C. S. Yang, J. A. Ho, C. Y. Mou, and L. W. Lo, “Surface charge-mediated rapid hepatobiliary excretion of mesoporous silica nanoparticles,” Biomaterials 31(21), 5564–5574 (2010).
[CrossRef] [PubMed]

.C. H. Lee, S. H. Cheng, Y. J. Wang, Y. C. Chen, N. T. Chen, J. Souris, C. T. Chen, C. Y. Mou, C. S. Yang, and L. W. Lo, “Near-infrared mesoporous silica nanoparticles for optical imaging: characterization and in vivo biodistribution,” Adv. Funct. Mater. 19(2), 215–222 (2009).
[CrossRef]

Lee, D.

.E. Oh, M. Y. Hong, D. Lee, S. H. Nam, H. C. Yoon, and H. S. Kim, “Inhibition assay of biomolecules based on fluorescence resonance energy transfer (FRET) between quantum dots and gold nanoparticles,” J. Am. Chem. Soc. 127(10), 3270–3271 (2005).
[CrossRef] [PubMed]

Lee, J. H.

.D. Kim, S. Park, J. H. Lee, Y. Y. Jeong, and S. Jon, “Antibiofouling polymer-coated gold nanoparticles as a contrast agent for in vivo X-ray computed tomography imaging,” J. Am. Chem. Soc. 129(24), 7661–7665 (2007).
[CrossRef] [PubMed]

Li, W.

.Y. Kong, J. Chen, F. Gao, W. Li, X. Xu, O. Pandoli, H. Yang, J. Ji, and D. Cui, “A multifunctional ribonuclease-A-conjugated CdTe quantum dot cluster nanosystem for synchronous cancer imaging and therapy,” Small 6(21), 2367–2373 (2010).
[CrossRef] [PubMed]

Li, X.

Li, Z.

.P. Huang, Z. Li, J. Lin, D. Yang, G. Gao, C. Xu, L. Bao, C. Zhang, K. Wang, H. Song, H. Hu, and D. Cui, “Photosensitizer-conjugated magnetic nanoparticles for in vivo simultaneous magnetofluorescent imaging and targeting therapy,” Biomaterials 32(13), 3447–3458 (2011).
[CrossRef] [PubMed]

.Z. Li, P. Huang, X. Zhang, J. Lin, S. Yang, B. Liu, F. Gao, P. Xi, Q. Ren, and D. Cui, “RGD-conjugated dendrimer-modified gold nanorods for in vivo tumor targeting and photothermal therapy,” Mol. Pharm. 7(1), 94–104 (2010).
[CrossRef] [PubMed]

Li, Z. B.

.Z. B. Li, W. Cai, and X. Chen, “Semiconductor quantum dots for in vivo imaging,” J. Nanosci. Nanotechnol. 7(8), 2567–2581 (2007).
[CrossRef] [PubMed]

Liang, Z.

.F. A. Dilmanian, X. Y. Wu, E. C. Parsons, B. Ren, J. Kress, T. M. Button, L. D. Chapman, J. A. Coderre, F. Giron, D. Greenberg, D. J. Krus, Z. Liang, S. Marcovici, M. J. Petersen, C. T. Roque, M. Shleifer, D. N. Slatkin, W. C. Thomlinson, K. Yamamoto, and Z. Zhong, “Single-and dual-energy CT with monochromatic synchrotron x-rays,” Phys. Med. Biol. 42(2), 371–387 (1997).
[CrossRef] [PubMed]

Lin, J.

.P. Huang, Z. Li, J. Lin, D. Yang, G. Gao, C. Xu, L. Bao, C. Zhang, K. Wang, H. Song, H. Hu, and D. Cui, “Photosensitizer-conjugated magnetic nanoparticles for in vivo simultaneous magnetofluorescent imaging and targeting therapy,” Biomaterials 32(13), 3447–3458 (2011).
[CrossRef] [PubMed]

.Z. Li, P. Huang, X. Zhang, J. Lin, S. Yang, B. Liu, F. Gao, P. Xi, Q. Ren, and D. Cui, “RGD-conjugated dendrimer-modified gold nanorods for in vivo tumor targeting and photothermal therapy,” Mol. Pharm. 7(1), 94–104 (2010).
[CrossRef] [PubMed]

Lin, V. S. Y.

.I. I. Slowing, B. G. Trewyn, and V. S. Y. Lin, “Mesoporous silica nanoparticles for intracellular delivery of membrane-impermeable proteins,” J. Am. Chem. Soc. 129(28), 8845–8849 (2007).
[CrossRef] [PubMed]

Lin, Y. P.

.C. C. Chen, Y. P. Lin, C. W. Wang, H. C. Tzeng, C. H. Wu, Y. C. Chen, C. P. Chen, L. C. Chen, and Y. C. Wu, “DNA-gold nanorod conjugates for remote control of localized gene expression by near infrared irradiation,” J. Am. Chem. Soc. 128(11), 3709–3715 (2006).
[CrossRef] [PubMed]

Liu, B.

.Z. Li, P. Huang, X. Zhang, J. Lin, S. Yang, B. Liu, F. Gao, P. Xi, Q. Ren, and D. Cui, “RGD-conjugated dendrimer-modified gold nanorods for in vivo tumor targeting and photothermal therapy,” Mol. Pharm. 7(1), 94–104 (2010).
[CrossRef] [PubMed]

Lo, L. W.

.J. S. Souris, C. H. Lee, S. H. Cheng, C. T. Chen, C. S. Yang, J. A. Ho, C. Y. Mou, and L. W. Lo, “Surface charge-mediated rapid hepatobiliary excretion of mesoporous silica nanoparticles,” Biomaterials 31(21), 5564–5574 (2010).
[CrossRef] [PubMed]

.C. H. Lee, S. H. Cheng, Y. J. Wang, Y. C. Chen, N. T. Chen, J. Souris, C. T. Chen, C. Y. Mou, C. S. Yang, and L. W. Lo, “Near-infrared mesoporous silica nanoparticles for optical imaging: characterization and in vivo biodistribution,” Adv. Funct. Mater. 19(2), 215–222 (2009).
[CrossRef]

Lu, A. H.

.A. H. Lu, E. L. Salabas, and F. Schüth, “Magnetic nanoparticles: synthesis, protection, functionalization, and application,” Angew. Chem. Int. Ed. Engl. 46(8), 1222–1244 (2007).
[CrossRef] [PubMed]

Lytton-Jean, A. K. R.

.M. S. Han, A. K. R. Lytton-Jean, B. K. Oh, J. Heo, and C. A. Mirkin, “Colorimetric screening of DNA-binding molecules with gold nanoparticle probes,” Angew. Chem. Int. Ed. Engl. 45(11), 1807–1810 (2006).
[CrossRef] [PubMed]

Ma, L. L.

.L. L. Ma, M. D. Feldman, J. M. Tam, A. S. Paranjape, K. K. Cheruku, T. A. Larson, J. O. Tam, D. R. Ingram, V. Paramita, J. W. Villard, J. T. Jenkins, T. Wang, G. D. Clarke, R. Asmis, K. Sokolov, B. Chandrasekar, T. E. Milner, and K. P. Johnston, “Small multifunctional nanoclusters (nanoroses) for targeted cellular imaging and therapy,” ACS Nano 3(9), 2686–2696 (2009).
[CrossRef] [PubMed]

Ma, Z. F.

.C. G. Wang, Y. Chen, T. T. Wang, Z. F. Ma, and Z. M. Su, “Monodispersed gold nanorod-embedded silica particles as novel Raman labels for biosensing,” Adv. Funct. Mater. 18(2), 355–361 (2008).
[CrossRef]

Mandon, C.

.C. Alric, R. Serduc, C. Mandon, J. Taleb, G. Le Duc, A. Le Meur-Herland, C. Billotey, P. Perriat, S. Roux, and O. Tillement, “Gold nanoparticles designed for combining dual modality imaging and radiotherapy,” Gold Bull. 41(2), 90–97 (2008).
[CrossRef]

.C. Alric, J. Taleb, G. Le Duc, C. Mandon, C. Billotey, A. Le Meur-Herland, T. Brochard, F. Vocanson, M. Janier, P. Perriat, S. Roux, and O. Tillement, “Gadolinium chelate coated gold nanoparticles as contrast agents for both X-ray computed tomography and magnetic resonance imaging,” J. Am. Chem. Soc. 130(18), 5908–5915 (2008).
[CrossRef] [PubMed]

Marcovici, S.

.F. A. Dilmanian, X. Y. Wu, E. C. Parsons, B. Ren, J. Kress, T. M. Button, L. D. Chapman, J. A. Coderre, F. Giron, D. Greenberg, D. J. Krus, Z. Liang, S. Marcovici, M. J. Petersen, C. T. Roque, M. Shleifer, D. N. Slatkin, W. C. Thomlinson, K. Yamamoto, and Z. Zhong, “Single-and dual-energy CT with monochromatic synchrotron x-rays,” Phys. Med. Biol. 42(2), 371–387 (1997).
[CrossRef] [PubMed]

Meijerink, A.

.M. M. van Schooneveld, D. P. Cormode, R. Koole, J. T. van Wijngaarden, C. Calcagno, T. Skajaa, J. Hilhorst, D. C. ’t Hart, Z. A. Fayad, W. J. M. Mulder, and A. Meijerink, “A fluorescent, paramagnetic and PEGylated gold/silica nanoparticle for MRI, CT and fluorescence imaging,” Contrast Media Mol. Imaging 5(4), 231–236 (2010).
[CrossRef] [PubMed]

Menk, R.

.C. J. Hall, E. Schültke, L. Rigon, K. Ataelmannan, S. Rigley, R. Menk, F. Arfelli, G. Tromba, S. Pearson, S. Wilkinson, A. Round, S. Crittell, R. Griebel, and B. H. J. Juurlink, “Synchrotron-based in vivo tracking of implanted mammalian cells,” Eur. J. Radiol. 68(3Suppl), S156–S159 (2008).
[CrossRef] [PubMed]

Mereshchenko, A.

.E. Khon, A. Mereshchenko, A. N. Tarnovsky, K. Acharya, A. Klinkova, N. N. Hewa-Kasakarage, I. Nemitz, and M. Zamkov, “Suppression of the plasmon resonance in Au/CdS colloidal nanocomposites,” Nano Lett. 11(4), 1792–1799 (2011).
[CrossRef] [PubMed]

Milner, T. E.

.L. L. Ma, M. D. Feldman, J. M. Tam, A. S. Paranjape, K. K. Cheruku, T. A. Larson, J. O. Tam, D. R. Ingram, V. Paramita, J. W. Villard, J. T. Jenkins, T. Wang, G. D. Clarke, R. Asmis, K. Sokolov, B. Chandrasekar, T. E. Milner, and K. P. Johnston, “Small multifunctional nanoclusters (nanoroses) for targeted cellular imaging and therapy,” ACS Nano 3(9), 2686–2696 (2009).
[CrossRef] [PubMed]

Mirkin, C. A.

.M. S. Han, A. K. R. Lytton-Jean, B. K. Oh, J. Heo, and C. A. Mirkin, “Colorimetric screening of DNA-binding molecules with gold nanoparticle probes,” Angew. Chem. Int. Ed. Engl. 45(11), 1807–1810 (2006).
[CrossRef] [PubMed]

Mou, C. Y.

.J. S. Souris, C. H. Lee, S. H. Cheng, C. T. Chen, C. S. Yang, J. A. Ho, C. Y. Mou, and L. W. Lo, “Surface charge-mediated rapid hepatobiliary excretion of mesoporous silica nanoparticles,” Biomaterials 31(21), 5564–5574 (2010).
[CrossRef] [PubMed]

.C. H. Lee, S. H. Cheng, Y. J. Wang, Y. C. Chen, N. T. Chen, J. Souris, C. T. Chen, C. Y. Mou, C. S. Yang, and L. W. Lo, “Near-infrared mesoporous silica nanoparticles for optical imaging: characterization and in vivo biodistribution,” Adv. Funct. Mater. 19(2), 215–222 (2009).
[CrossRef]

Mulder, W. J. M.

.M. M. van Schooneveld, D. P. Cormode, R. Koole, J. T. van Wijngaarden, C. Calcagno, T. Skajaa, J. Hilhorst, D. C. ’t Hart, Z. A. Fayad, W. J. M. Mulder, and A. Meijerink, “A fluorescent, paramagnetic and PEGylated gold/silica nanoparticle for MRI, CT and fluorescence imaging,” Contrast Media Mol. Imaging 5(4), 231–236 (2010).
[CrossRef] [PubMed]

Murphy, C.

.C. Murphy and N. Jana, “Controlling the aspect ratio of inorganic nanorods and nanowires,” Adv. Mater. (Deerfield Beach Fla.) 14(1), 80–82 (2002).
[CrossRef]

Na, H. B.

.H. B. Na, I. C. Song, and T. Hyeon, “Inorganic nanoparticles for MRI contrast agents,” Adv. Mater. (Deerfield Beach Fla.) 21(21), 2133–2148 (2009).
[CrossRef]

Nam, S. H.

.E. Oh, M. Y. Hong, D. Lee, S. H. Nam, H. C. Yoon, and H. S. Kim, “Inhibition assay of biomolecules based on fluorescence resonance energy transfer (FRET) between quantum dots and gold nanoparticles,” J. Am. Chem. Soc. 127(10), 3270–3271 (2005).
[CrossRef] [PubMed]

Nemitz, I.

.E. Khon, A. Mereshchenko, A. N. Tarnovsky, K. Acharya, A. Klinkova, N. N. Hewa-Kasakarage, I. Nemitz, and M. Zamkov, “Suppression of the plasmon resonance in Au/CdS colloidal nanocomposites,” Nano Lett. 11(4), 1792–1799 (2011).
[CrossRef] [PubMed]

Nicholson, A. I.

.W. Eck, A. I. Nicholson, H. Zentgraf, W. Semmler, and S. Bartling, “Anti-CD4-targeted gold nanoparticles induce specific contrast enhancement of peripheral lymph nodes in X-ray computed tomography of live mice,” Nano Lett. 10(7), 2318–2322 (2010).
[CrossRef] [PubMed]

Nikoobakht, B.

.B. Nikoobakht, Z. L. Wang, and M. A. El-Sayed, “Self-Assembly Of Gold Nanorods,” J. Phys. Chem. B 104(36), 8635–8640 (2000).
[CrossRef]

Nyagilo, J.

.M. Xiao, J. Nyagilo, V. Arora, P. Kulkarni, D. Xu, X. Sun, and D. P. Davé, “Gold nanotags for combined multi-colored Raman spectroscopy and x-ray computed tomography,” Nanotechnology 21(3), 035101 (2010).
[CrossRef] [PubMed]

Oh, B. K.

.M. S. Han, A. K. R. Lytton-Jean, B. K. Oh, J. Heo, and C. A. Mirkin, “Colorimetric screening of DNA-binding molecules with gold nanoparticle probes,” Angew. Chem. Int. Ed. Engl. 45(11), 1807–1810 (2006).
[CrossRef] [PubMed]

Oh, E.

.E. Oh, M. Y. Hong, D. Lee, S. H. Nam, H. C. Yoon, and H. S. Kim, “Inhibition assay of biomolecules based on fluorescence resonance energy transfer (FRET) between quantum dots and gold nanoparticles,” J. Am. Chem. Soc. 127(10), 3270–3271 (2005).
[CrossRef] [PubMed]

Olutola, P. S.

.M. Banna and P. S. Olutola, “Orbital histiocytosis on computed tomography,” J. Comput. Tomogr. 7(2), 167–170 (1983).
[CrossRef] [PubMed]

Pan, B.

.B. Pan, L. Ao, F. Gao, H. Tian, R. He, and D. Cui, “End-to-end self-assembly and colorimetric characterization of gold nanorods and nanospheres via oligonucleotide hybridization,” Nanotechnology 16(9), 1776–1780 (2005).
[CrossRef]

Pan, M. J.

.R. Guo, H. Wang, C. Peng, M. W. Shen, M. J. Pan, X. Y. Cao, G. X. Zhang, and X. Y. Shi, “X-ray attenuation property of dendrimer-entrapped gold nanoparticles,” J. Phys. Chem. C 114(1), 50–56 (2010).
[CrossRef]

Pandoli, O.

.Y. Kong, J. Chen, F. Gao, W. Li, X. Xu, O. Pandoli, H. Yang, J. Ji, and D. Cui, “A multifunctional ribonuclease-A-conjugated CdTe quantum dot cluster nanosystem for synchronous cancer imaging and therapy,” Small 6(21), 2367–2373 (2010).
[CrossRef] [PubMed]

Paramita, V.

.L. L. Ma, M. D. Feldman, J. M. Tam, A. S. Paranjape, K. K. Cheruku, T. A. Larson, J. O. Tam, D. R. Ingram, V. Paramita, J. W. Villard, J. T. Jenkins, T. Wang, G. D. Clarke, R. Asmis, K. Sokolov, B. Chandrasekar, T. E. Milner, and K. P. Johnston, “Small multifunctional nanoclusters (nanoroses) for targeted cellular imaging and therapy,” ACS Nano 3(9), 2686–2696 (2009).
[CrossRef] [PubMed]

Paranjape, A. S.

.L. L. Ma, M. D. Feldman, J. M. Tam, A. S. Paranjape, K. K. Cheruku, T. A. Larson, J. O. Tam, D. R. Ingram, V. Paramita, J. W. Villard, J. T. Jenkins, T. Wang, G. D. Clarke, R. Asmis, K. Sokolov, B. Chandrasekar, T. E. Milner, and K. P. Johnston, “Small multifunctional nanoclusters (nanoroses) for targeted cellular imaging and therapy,” ACS Nano 3(9), 2686–2696 (2009).
[CrossRef] [PubMed]

Park, J.

.G. von Maltzahn, A. Centrone, J. Park, R. Ramanathan, M. Sailor, T. Hatton, and S. Bhatia, “SERS-coded Gold nanorods as a multifunctional platform for densely multiplexed near-infrared imaging and photothermal heating,” Adv. Mater. (Deerfield Beach Fla.) 21(31), 3175–3180 (2009).
[CrossRef]

Park, S.

.D. Kim, S. Park, J. H. Lee, Y. Y. Jeong, and S. Jon, “Antibiofouling polymer-coated gold nanoparticles as a contrast agent for in vivo X-ray computed tomography imaging,” J. Am. Chem. Soc. 129(24), 7661–7665 (2007).
[CrossRef] [PubMed]

Park, S. H.

.Q. Y. Cai, S. H. Kim, K. S. Choi, S. Y. Kim, S. J. Byun, K. W. Kim, S. H. Park, S. K. Juhng, and K. H. Yoon, “Colloidal gold nanoparticles as a blood-pool contrast agent for X-ray computed tomography in mice,” Invest. Radiol. 42(12), 797–806 (2007).
[CrossRef] [PubMed]

Parsons, E. C.

.F. A. Dilmanian, X. Y. Wu, E. C. Parsons, B. Ren, J. Kress, T. M. Button, L. D. Chapman, J. A. Coderre, F. Giron, D. Greenberg, D. J. Krus, Z. Liang, S. Marcovici, M. J. Petersen, C. T. Roque, M. Shleifer, D. N. Slatkin, W. C. Thomlinson, K. Yamamoto, and Z. Zhong, “Single-and dual-energy CT with monochromatic synchrotron x-rays,” Phys. Med. Biol. 42(2), 371–387 (1997).
[CrossRef] [PubMed]

Pearson, S.

.C. J. Hall, E. Schültke, L. Rigon, K. Ataelmannan, S. Rigley, R. Menk, F. Arfelli, G. Tromba, S. Pearson, S. Wilkinson, A. Round, S. Crittell, R. Griebel, and B. H. J. Juurlink, “Synchrotron-based in vivo tracking of implanted mammalian cells,” Eur. J. Radiol. 68(3Suppl), S156–S159 (2008).
[CrossRef] [PubMed]

Peng, C.

.H. Wang, L. Zheng, C. Peng, R. Guo, M. Shen, X. Shi, and G. Zhang, “Computed tomography imaging of cancer cells using acetylated dendrimer-entrapped gold nanoparticles,” Biomaterials 32(11), 2979–2988 (2011).
[CrossRef] [PubMed]

.R. Guo, H. Wang, C. Peng, M. W. Shen, M. J. Pan, X. Y. Cao, G. X. Zhang, and X. Y. Shi, “X-ray attenuation property of dendrimer-entrapped gold nanoparticles,” J. Phys. Chem. C 114(1), 50–56 (2010).
[CrossRef]

Perriat, P.

.C. Alric, J. Taleb, G. Le Duc, C. Mandon, C. Billotey, A. Le Meur-Herland, T. Brochard, F. Vocanson, M. Janier, P. Perriat, S. Roux, and O. Tillement, “Gadolinium chelate coated gold nanoparticles as contrast agents for both X-ray computed tomography and magnetic resonance imaging,” J. Am. Chem. Soc. 130(18), 5908–5915 (2008).
[CrossRef] [PubMed]

.C. Alric, R. Serduc, C. Mandon, J. Taleb, G. Le Duc, A. Le Meur-Herland, C. Billotey, P. Perriat, S. Roux, and O. Tillement, “Gold nanoparticles designed for combining dual modality imaging and radiotherapy,” Gold Bull. 41(2), 90–97 (2008).
[CrossRef]

Petersen, M. J.

.F. A. Dilmanian, X. Y. Wu, E. C. Parsons, B. Ren, J. Kress, T. M. Button, L. D. Chapman, J. A. Coderre, F. Giron, D. Greenberg, D. J. Krus, Z. Liang, S. Marcovici, M. J. Petersen, C. T. Roque, M. Shleifer, D. N. Slatkin, W. C. Thomlinson, K. Yamamoto, and Z. Zhong, “Single-and dual-energy CT with monochromatic synchrotron x-rays,” Phys. Med. Biol. 42(2), 371–387 (1997).
[CrossRef] [PubMed]

Popovtzer, A.

.R. Popovtzer, A. Agrawal, N. A. Kotov, A. Popovtzer, J. Balter, T. E. Carey, and R. Kopelman, “Targeted gold nanoparticles enable molecular CT imaging of cancer,” Nano Lett. 8(12), 4593–4596 (2008).
[CrossRef] [PubMed]

Popovtzer, R.

.R. Popovtzer, A. Agrawal, N. A. Kotov, A. Popovtzer, J. Balter, T. E. Carey, and R. Kopelman, “Targeted gold nanoparticles enable molecular CT imaging of cancer,” Nano Lett. 8(12), 4593–4596 (2008).
[CrossRef] [PubMed]

Qian, W.

.X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006).
[CrossRef] [PubMed]

Rahman, W. N.

.P. A. Jackson, W. N. Rahman, C. J. Wong, T. Ackerly, and M. Geso, “Potential dependent superiority of gold nanoparticles in comparison to iodinated contrast agents,” Eur. J. Radiol. 75(1), 104–109 (2010).
[CrossRef] [PubMed]

Rajagopalan, R.

.R. Rajagopalan, P. Uetrecht, J. E. Bugaj, S. A. Achilefu, and R. B. Dorshow, “Stabilization of the optical tracer agent indocyanine green using noncovalent interactions,” Photochem. Photobiol. 71(3), 347–350 (2000).
[CrossRef] [PubMed]

Ramanathan, R.

.G. von Maltzahn, A. Centrone, J. Park, R. Ramanathan, M. Sailor, T. Hatton, and S. Bhatia, “SERS-coded Gold nanorods as a multifunctional platform for densely multiplexed near-infrared imaging and photothermal heating,” Adv. Mater. (Deerfield Beach Fla.) 21(31), 3175–3180 (2009).
[CrossRef]

Range, F.

.F. Büther, L. Stegger, M. Dawood, F. Range, M. Schäfers, R. Fischbach, T. Wichter, O. Schober, and K. P. Schäfers, “Effective methods to correct contrast agent-induced errors in PET quantification in cardiac PET/CT,” J. Nucl. Med. 48(7), 1060–1068 (2007).
[CrossRef] [PubMed]

Ren, B.

.F. A. Dilmanian, X. Y. Wu, E. C. Parsons, B. Ren, J. Kress, T. M. Button, L. D. Chapman, J. A. Coderre, F. Giron, D. Greenberg, D. J. Krus, Z. Liang, S. Marcovici, M. J. Petersen, C. T. Roque, M. Shleifer, D. N. Slatkin, W. C. Thomlinson, K. Yamamoto, and Z. Zhong, “Single-and dual-energy CT with monochromatic synchrotron x-rays,” Phys. Med. Biol. 42(2), 371–387 (1997).
[CrossRef] [PubMed]

Ren, Q.

.Z. Li, P. Huang, X. Zhang, J. Lin, S. Yang, B. Liu, F. Gao, P. Xi, Q. Ren, and D. Cui, “RGD-conjugated dendrimer-modified gold nanorods for in vivo tumor targeting and photothermal therapy,” Mol. Pharm. 7(1), 94–104 (2010).
[CrossRef] [PubMed]

Rigley, S.

.C. J. Hall, E. Schültke, L. Rigon, K. Ataelmannan, S. Rigley, R. Menk, F. Arfelli, G. Tromba, S. Pearson, S. Wilkinson, A. Round, S. Crittell, R. Griebel, and B. H. J. Juurlink, “Synchrotron-based in vivo tracking of implanted mammalian cells,” Eur. J. Radiol. 68(3Suppl), S156–S159 (2008).
[CrossRef] [PubMed]

Rigon, L.

.C. J. Hall, E. Schültke, L. Rigon, K. Ataelmannan, S. Rigley, R. Menk, F. Arfelli, G. Tromba, S. Pearson, S. Wilkinson, A. Round, S. Crittell, R. Griebel, and B. H. J. Juurlink, “Synchrotron-based in vivo tracking of implanted mammalian cells,” Eur. J. Radiol. 68(3Suppl), S156–S159 (2008).
[CrossRef] [PubMed]

Robertson, D. J.

.V. Kattumuri, K. Katti, S. Bhaskaran, E. J. Boote, S. W. Casteel, G. M. Fent, D. J. Robertson, M. Chandrasekhar, R. Kannan, and K. V. Katti, “Gum arabic as a phytochemical construct for the stabilization of gold nanoparticles: in vivo pharmacokinetics and X-ray-contrast-imaging studies,” Small 3(2), 333–341 (2007).
[CrossRef] [PubMed]

Roque, C. T.

.F. A. Dilmanian, X. Y. Wu, E. C. Parsons, B. Ren, J. Kress, T. M. Button, L. D. Chapman, J. A. Coderre, F. Giron, D. Greenberg, D. J. Krus, Z. Liang, S. Marcovici, M. J. Petersen, C. T. Roque, M. Shleifer, D. N. Slatkin, W. C. Thomlinson, K. Yamamoto, and Z. Zhong, “Single-and dual-energy CT with monochromatic synchrotron x-rays,” Phys. Med. Biol. 42(2), 371–387 (1997).
[CrossRef] [PubMed]

Round, A.

.C. J. Hall, E. Schültke, L. Rigon, K. Ataelmannan, S. Rigley, R. Menk, F. Arfelli, G. Tromba, S. Pearson, S. Wilkinson, A. Round, S. Crittell, R. Griebel, and B. H. J. Juurlink, “Synchrotron-based in vivo tracking of implanted mammalian cells,” Eur. J. Radiol. 68(3Suppl), S156–S159 (2008).
[CrossRef] [PubMed]

Roux, S.

.C. Alric, J. Taleb, G. Le Duc, C. Mandon, C. Billotey, A. Le Meur-Herland, T. Brochard, F. Vocanson, M. Janier, P. Perriat, S. Roux, and O. Tillement, “Gadolinium chelate coated gold nanoparticles as contrast agents for both X-ray computed tomography and magnetic resonance imaging,” J. Am. Chem. Soc. 130(18), 5908–5915 (2008).
[CrossRef] [PubMed]

.C. Alric, R. Serduc, C. Mandon, J. Taleb, G. Le Duc, A. Le Meur-Herland, C. Billotey, P. Perriat, S. Roux, and O. Tillement, “Gold nanoparticles designed for combining dual modality imaging and radiotherapy,” Gold Bull. 41(2), 90–97 (2008).
[CrossRef]

Sailor, M.

.G. von Maltzahn, A. Centrone, J. Park, R. Ramanathan, M. Sailor, T. Hatton, and S. Bhatia, “SERS-coded Gold nanorods as a multifunctional platform for densely multiplexed near-infrared imaging and photothermal heating,” Adv. Mater. (Deerfield Beach Fla.) 21(31), 3175–3180 (2009).
[CrossRef]

Salabas, E. L.

.A. H. Lu, E. L. Salabas, and F. Schüth, “Magnetic nanoparticles: synthesis, protection, functionalization, and application,” Angew. Chem. Int. Ed. Engl. 46(8), 1222–1244 (2007).
[CrossRef] [PubMed]

Schäfers, K. P.

.F. Büther, L. Stegger, M. Dawood, F. Range, M. Schäfers, R. Fischbach, T. Wichter, O. Schober, and K. P. Schäfers, “Effective methods to correct contrast agent-induced errors in PET quantification in cardiac PET/CT,” J. Nucl. Med. 48(7), 1060–1068 (2007).
[CrossRef] [PubMed]

Schäfers, M.

.F. Büther, L. Stegger, M. Dawood, F. Range, M. Schäfers, R. Fischbach, T. Wichter, O. Schober, and K. P. Schäfers, “Effective methods to correct contrast agent-induced errors in PET quantification in cardiac PET/CT,” J. Nucl. Med. 48(7), 1060–1068 (2007).
[CrossRef] [PubMed]

Schober, O.

.F. Büther, L. Stegger, M. Dawood, F. Range, M. Schäfers, R. Fischbach, T. Wichter, O. Schober, and K. P. Schäfers, “Effective methods to correct contrast agent-induced errors in PET quantification in cardiac PET/CT,” J. Nucl. Med. 48(7), 1060–1068 (2007).
[CrossRef] [PubMed]

Schültke, E.

.C. J. Hall, E. Schültke, L. Rigon, K. Ataelmannan, S. Rigley, R. Menk, F. Arfelli, G. Tromba, S. Pearson, S. Wilkinson, A. Round, S. Crittell, R. Griebel, and B. H. J. Juurlink, “Synchrotron-based in vivo tracking of implanted mammalian cells,” Eur. J. Radiol. 68(3Suppl), S156–S159 (2008).
[CrossRef] [PubMed]

Schüth, F.

.A. H. Lu, E. L. Salabas, and F. Schüth, “Magnetic nanoparticles: synthesis, protection, functionalization, and application,” Angew. Chem. Int. Ed. Engl. 46(8), 1222–1244 (2007).
[CrossRef] [PubMed]

Semmler, W.

.W. Eck, A. I. Nicholson, H. Zentgraf, W. Semmler, and S. Bartling, “Anti-CD4-targeted gold nanoparticles induce specific contrast enhancement of peripheral lymph nodes in X-ray computed tomography of live mice,” Nano Lett. 10(7), 2318–2322 (2010).
[CrossRef] [PubMed]

Serduc, R.

.C. Alric, R. Serduc, C. Mandon, J. Taleb, G. Le Duc, A. Le Meur-Herland, C. Billotey, P. Perriat, S. Roux, and O. Tillement, “Gold nanoparticles designed for combining dual modality imaging and radiotherapy,” Gold Bull. 41(2), 90–97 (2008).
[CrossRef]

Shen, M.

.H. Wang, L. Zheng, C. Peng, R. Guo, M. Shen, X. Shi, and G. Zhang, “Computed tomography imaging of cancer cells using acetylated dendrimer-entrapped gold nanoparticles,” Biomaterials 32(11), 2979–2988 (2011).
[CrossRef] [PubMed]

Shen, M. W.

.R. Guo, H. Wang, C. Peng, M. W. Shen, M. J. Pan, X. Y. Cao, G. X. Zhang, and X. Y. Shi, “X-ray attenuation property of dendrimer-entrapped gold nanoparticles,” J. Phys. Chem. C 114(1), 50–56 (2010).
[CrossRef]

Shi, X.

.H. Wang, L. Zheng, C. Peng, R. Guo, M. Shen, X. Shi, and G. Zhang, “Computed tomography imaging of cancer cells using acetylated dendrimer-entrapped gold nanoparticles,” Biomaterials 32(11), 2979–2988 (2011).
[CrossRef] [PubMed]

Shi, X. Y.

.R. Guo, H. Wang, C. Peng, M. W. Shen, M. J. Pan, X. Y. Cao, G. X. Zhang, and X. Y. Shi, “X-ray attenuation property of dendrimer-entrapped gold nanoparticles,” J. Phys. Chem. C 114(1), 50–56 (2010).
[CrossRef]

Shleifer, M.

.F. A. Dilmanian, X. Y. Wu, E. C. Parsons, B. Ren, J. Kress, T. M. Button, L. D. Chapman, J. A. Coderre, F. Giron, D. Greenberg, D. J. Krus, Z. Liang, S. Marcovici, M. J. Petersen, C. T. Roque, M. Shleifer, D. N. Slatkin, W. C. Thomlinson, K. Yamamoto, and Z. Zhong, “Single-and dual-energy CT with monochromatic synchrotron x-rays,” Phys. Med. Biol. 42(2), 371–387 (1997).
[CrossRef] [PubMed]

Skajaa, T.

.M. M. van Schooneveld, D. P. Cormode, R. Koole, J. T. van Wijngaarden, C. Calcagno, T. Skajaa, J. Hilhorst, D. C. ’t Hart, Z. A. Fayad, W. J. M. Mulder, and A. Meijerink, “A fluorescent, paramagnetic and PEGylated gold/silica nanoparticle for MRI, CT and fluorescence imaging,” Contrast Media Mol. Imaging 5(4), 231–236 (2010).
[CrossRef] [PubMed]

Slatkin, D. N.

.J. F. Hainfeld, F. A. Dilmanian, D. N. Slatkin, and H. M. Smilowitz, “Radiotherapy enhancement with gold nanoparticles,” J. Pharm. Pharmacol. 60(8), 977–985 (2008).
[CrossRef] [PubMed]

.J. F. Hainfeld, D. N. Slatkin, T. M. Focella, and H. M. Smilowitz, “Gold nanoparticles: a new X-ray contrast agent,” Br. J. Radiol. 79(939), 248–253 (2006).
[CrossRef] [PubMed]

.J. F. Hainfeld, D. N. Slatkin, and H. M. Smilowitz, “The use of gold nanoparticles to enhance radiotherapy in mice,” Phys. Med. Biol. 49(18), N309–N315 (2004).
[CrossRef] [PubMed]

.F. A. Dilmanian, X. Y. Wu, E. C. Parsons, B. Ren, J. Kress, T. M. Button, L. D. Chapman, J. A. Coderre, F. Giron, D. Greenberg, D. J. Krus, Z. Liang, S. Marcovici, M. J. Petersen, C. T. Roque, M. Shleifer, D. N. Slatkin, W. C. Thomlinson, K. Yamamoto, and Z. Zhong, “Single-and dual-energy CT with monochromatic synchrotron x-rays,” Phys. Med. Biol. 42(2), 371–387 (1997).
[CrossRef] [PubMed]

Slowing, I. I.

.I. I. Slowing, B. G. Trewyn, and V. S. Y. Lin, “Mesoporous silica nanoparticles for intracellular delivery of membrane-impermeable proteins,” J. Am. Chem. Soc. 129(28), 8845–8849 (2007).
[CrossRef] [PubMed]

Smilowitz, H. M.

.J. F. Hainfeld, F. A. Dilmanian, D. N. Slatkin, and H. M. Smilowitz, “Radiotherapy enhancement with gold nanoparticles,” J. Pharm. Pharmacol. 60(8), 977–985 (2008).
[CrossRef] [PubMed]

.J. F. Hainfeld, D. N. Slatkin, T. M. Focella, and H. M. Smilowitz, “Gold nanoparticles: a new X-ray contrast agent,” Br. J. Radiol. 79(939), 248–253 (2006).
[CrossRef] [PubMed]

.J. F. Hainfeld, D. N. Slatkin, and H. M. Smilowitz, “The use of gold nanoparticles to enhance radiotherapy in mice,” Phys. Med. Biol. 49(18), N309–N315 (2004).
[CrossRef] [PubMed]

Sokolov, K.

.Y. S. Chen, W. Frey, S. Kim, K. Homan, P. Kruizinga, K. Sokolov, and S. Emelianov, “Enhanced thermal stability of silica-coated gold nanorods for photoacoustic imaging and image-guided therapy,” Opt. Express 18(9), 8867–8878 (2010).
[CrossRef] [PubMed]

.L. L. Ma, M. D. Feldman, J. M. Tam, A. S. Paranjape, K. K. Cheruku, T. A. Larson, J. O. Tam, D. R. Ingram, V. Paramita, J. W. Villard, J. T. Jenkins, T. Wang, G. D. Clarke, R. Asmis, K. Sokolov, B. Chandrasekar, T. E. Milner, and K. P. Johnston, “Small multifunctional nanoclusters (nanoroses) for targeted cellular imaging and therapy,” ACS Nano 3(9), 2686–2696 (2009).
[CrossRef] [PubMed]

Song, H.

.P. Huang, Z. Li, J. Lin, D. Yang, G. Gao, C. Xu, L. Bao, C. Zhang, K. Wang, H. Song, H. Hu, and D. Cui, “Photosensitizer-conjugated magnetic nanoparticles for in vivo simultaneous magnetofluorescent imaging and targeting therapy,” Biomaterials 32(13), 3447–3458 (2011).
[CrossRef] [PubMed]

Song, I. C.

.H. B. Na, I. C. Song, and T. Hyeon, “Inorganic nanoparticles for MRI contrast agents,” Adv. Mater. (Deerfield Beach Fla.) 21(21), 2133–2148 (2009).
[CrossRef]

Souris, J.

.C. H. Lee, S. H. Cheng, Y. J. Wang, Y. C. Chen, N. T. Chen, J. Souris, C. T. Chen, C. Y. Mou, C. S. Yang, and L. W. Lo, “Near-infrared mesoporous silica nanoparticles for optical imaging: characterization and in vivo biodistribution,” Adv. Funct. Mater. 19(2), 215–222 (2009).
[CrossRef]

Souris, J. S.

.J. S. Souris, C. H. Lee, S. H. Cheng, C. T. Chen, C. S. Yang, J. A. Ho, C. Y. Mou, and L. W. Lo, “Surface charge-mediated rapid hepatobiliary excretion of mesoporous silica nanoparticles,” Biomaterials 31(21), 5564–5574 (2010).
[CrossRef] [PubMed]

Stegger, L.

.F. Büther, L. Stegger, M. Dawood, F. Range, M. Schäfers, R. Fischbach, T. Wichter, O. Schober, and K. P. Schäfers, “Effective methods to correct contrast agent-induced errors in PET quantification in cardiac PET/CT,” J. Nucl. Med. 48(7), 1060–1068 (2007).
[CrossRef] [PubMed]

Stöber, W.

.W. Stöber, A. Fink, and E. Bohn, “Controlled growth of monodisperse silica spheres in the micron size range,” J. Colloid Interface Sci. 26(1), 62–69 (1968).
[CrossRef]

Su, Z. M.

.C. G. Wang, Y. Chen, T. T. Wang, Z. F. Ma, and Z. M. Su, “Monodispersed gold nanorod-embedded silica particles as novel Raman labels for biosensing,” Adv. Funct. Mater. 18(2), 355–361 (2008).
[CrossRef]

Sun, S.

.C. Xu, G. A. Tung, and S. Sun, “Size and concentration effect of gold nanoparticles on X-ray attenuation as measured on computed tomography,” Chem. Mater. 20(13), 4167–4169 (2008).
[CrossRef] [PubMed]

.C. Xu, G. A. Tung, and S. Sun, “Size and concentration effect of gold nanoparticles on X-ray attenuation as measured on computed tomography,” Chem. Mater. 20(13), 4167–4169 (2008).
[CrossRef] [PubMed]

Sun, X.

.M. Xiao, J. Nyagilo, V. Arora, P. Kulkarni, D. Xu, X. Sun, and D. P. Davé, “Gold nanotags for combined multi-colored Raman spectroscopy and x-ray computed tomography,” Nanotechnology 21(3), 035101 (2010).
[CrossRef] [PubMed]

Taleb, J.

.C. Alric, J. Taleb, G. Le Duc, C. Mandon, C. Billotey, A. Le Meur-Herland, T. Brochard, F. Vocanson, M. Janier, P. Perriat, S. Roux, and O. Tillement, “Gadolinium chelate coated gold nanoparticles as contrast agents for both X-ray computed tomography and magnetic resonance imaging,” J. Am. Chem. Soc. 130(18), 5908–5915 (2008).
[CrossRef] [PubMed]

.C. Alric, R. Serduc, C. Mandon, J. Taleb, G. Le Duc, A. Le Meur-Herland, C. Billotey, P. Perriat, S. Roux, and O. Tillement, “Gold nanoparticles designed for combining dual modality imaging and radiotherapy,” Gold Bull. 41(2), 90–97 (2008).
[CrossRef]

Tam, J. M.

.L. L. Ma, M. D. Feldman, J. M. Tam, A. S. Paranjape, K. K. Cheruku, T. A. Larson, J. O. Tam, D. R. Ingram, V. Paramita, J. W. Villard, J. T. Jenkins, T. Wang, G. D. Clarke, R. Asmis, K. Sokolov, B. Chandrasekar, T. E. Milner, and K. P. Johnston, “Small multifunctional nanoclusters (nanoroses) for targeted cellular imaging and therapy,” ACS Nano 3(9), 2686–2696 (2009).
[CrossRef] [PubMed]

Tam, J. O.

.L. L. Ma, M. D. Feldman, J. M. Tam, A. S. Paranjape, K. K. Cheruku, T. A. Larson, J. O. Tam, D. R. Ingram, V. Paramita, J. W. Villard, J. T. Jenkins, T. Wang, G. D. Clarke, R. Asmis, K. Sokolov, B. Chandrasekar, T. E. Milner, and K. P. Johnston, “Small multifunctional nanoclusters (nanoroses) for targeted cellular imaging and therapy,” ACS Nano 3(9), 2686–2696 (2009).
[CrossRef] [PubMed]

Tarnovsky, A. N.

.E. Khon, A. Mereshchenko, A. N. Tarnovsky, K. Acharya, A. Klinkova, N. N. Hewa-Kasakarage, I. Nemitz, and M. Zamkov, “Suppression of the plasmon resonance in Au/CdS colloidal nanocomposites,” Nano Lett. 11(4), 1792–1799 (2011).
[CrossRef] [PubMed]

Thomlinson, W. C.

.F. A. Dilmanian, X. Y. Wu, E. C. Parsons, B. Ren, J. Kress, T. M. Button, L. D. Chapman, J. A. Coderre, F. Giron, D. Greenberg, D. J. Krus, Z. Liang, S. Marcovici, M. J. Petersen, C. T. Roque, M. Shleifer, D. N. Slatkin, W. C. Thomlinson, K. Yamamoto, and Z. Zhong, “Single-and dual-energy CT with monochromatic synchrotron x-rays,” Phys. Med. Biol. 42(2), 371–387 (1997).
[CrossRef] [PubMed]

Tian, H.

.B. Pan, L. Ao, F. Gao, H. Tian, R. He, and D. Cui, “End-to-end self-assembly and colorimetric characterization of gold nanorods and nanospheres via oligonucleotide hybridization,” Nanotechnology 16(9), 1776–1780 (2005).
[CrossRef]

Tillement, O.

.C. Alric, R. Serduc, C. Mandon, J. Taleb, G. Le Duc, A. Le Meur-Herland, C. Billotey, P. Perriat, S. Roux, and O. Tillement, “Gold nanoparticles designed for combining dual modality imaging and radiotherapy,” Gold Bull. 41(2), 90–97 (2008).
[CrossRef]

.C. Alric, J. Taleb, G. Le Duc, C. Mandon, C. Billotey, A. Le Meur-Herland, T. Brochard, F. Vocanson, M. Janier, P. Perriat, S. Roux, and O. Tillement, “Gadolinium chelate coated gold nanoparticles as contrast agents for both X-ray computed tomography and magnetic resonance imaging,” J. Am. Chem. Soc. 130(18), 5908–5915 (2008).
[CrossRef] [PubMed]

Tong, L.

.L. Tong, Y. Zhao, T. B. Huff, M. N. Hansen, A. Wei, and J. X. Cheng, “Gold nanorods mediate tumor cell death by compromising membrane integrity,” Adv. Mater. (Deerfield Beach Fla.) 19(20), 3136–3141 (2007).
[CrossRef] [PubMed]

Trewyn, B. G.

.I. I. Slowing, B. G. Trewyn, and V. S. Y. Lin, “Mesoporous silica nanoparticles for intracellular delivery of membrane-impermeable proteins,” J. Am. Chem. Soc. 129(28), 8845–8849 (2007).
[CrossRef] [PubMed]

Tromba, G.

.C. J. Hall, E. Schültke, L. Rigon, K. Ataelmannan, S. Rigley, R. Menk, F. Arfelli, G. Tromba, S. Pearson, S. Wilkinson, A. Round, S. Crittell, R. Griebel, and B. H. J. Juurlink, “Synchrotron-based in vivo tracking of implanted mammalian cells,” Eur. J. Radiol. 68(3Suppl), S156–S159 (2008).
[CrossRef] [PubMed]

Tung, G. A.

.C. Xu, G. A. Tung, and S. Sun, “Size and concentration effect of gold nanoparticles on X-ray attenuation as measured on computed tomography,” Chem. Mater. 20(13), 4167–4169 (2008).
[CrossRef] [PubMed]

.C. Xu, G. A. Tung, and S. Sun, “Size and concentration effect of gold nanoparticles on X-ray attenuation as measured on computed tomography,” Chem. Mater. 20(13), 4167–4169 (2008).
[CrossRef] [PubMed]

Tzeng, H. C.

.C. C. Chen, Y. P. Lin, C. W. Wang, H. C. Tzeng, C. H. Wu, Y. C. Chen, C. P. Chen, L. C. Chen, and Y. C. Wu, “DNA-gold nanorod conjugates for remote control of localized gene expression by near infrared irradiation,” J. Am. Chem. Soc. 128(11), 3709–3715 (2006).
[CrossRef] [PubMed]

Uetrecht, P.

.R. Rajagopalan, P. Uetrecht, J. E. Bugaj, S. A. Achilefu, and R. B. Dorshow, “Stabilization of the optical tracer agent indocyanine green using noncovalent interactions,” Photochem. Photobiol. 71(3), 347–350 (2000).
[CrossRef] [PubMed]

Vallet-Regí, M.

.M. Vallet-Regí, F. Balas, and D. Arcos, “Mesoporous materials for drug delivery,” Angew. Chem. Int. Ed. Engl. 46(40), 7548–7558 (2007).
[CrossRef] [PubMed]

van Schooneveld, M. M.

.M. M. van Schooneveld, D. P. Cormode, R. Koole, J. T. van Wijngaarden, C. Calcagno, T. Skajaa, J. Hilhorst, D. C. ’t Hart, Z. A. Fayad, W. J. M. Mulder, and A. Meijerink, “A fluorescent, paramagnetic and PEGylated gold/silica nanoparticle for MRI, CT and fluorescence imaging,” Contrast Media Mol. Imaging 5(4), 231–236 (2010).
[CrossRef] [PubMed]

van Wijngaarden, J. T.

.M. M. van Schooneveld, D. P. Cormode, R. Koole, J. T. van Wijngaarden, C. Calcagno, T. Skajaa, J. Hilhorst, D. C. ’t Hart, Z. A. Fayad, W. J. M. Mulder, and A. Meijerink, “A fluorescent, paramagnetic and PEGylated gold/silica nanoparticle for MRI, CT and fluorescence imaging,” Contrast Media Mol. Imaging 5(4), 231–236 (2010).
[CrossRef] [PubMed]

Villard, J. W.

.L. L. Ma, M. D. Feldman, J. M. Tam, A. S. Paranjape, K. K. Cheruku, T. A. Larson, J. O. Tam, D. R. Ingram, V. Paramita, J. W. Villard, J. T. Jenkins, T. Wang, G. D. Clarke, R. Asmis, K. Sokolov, B. Chandrasekar, T. E. Milner, and K. P. Johnston, “Small multifunctional nanoclusters (nanoroses) for targeted cellular imaging and therapy,” ACS Nano 3(9), 2686–2696 (2009).
[CrossRef] [PubMed]

Vocanson, F.

.C. Alric, J. Taleb, G. Le Duc, C. Mandon, C. Billotey, A. Le Meur-Herland, T. Brochard, F. Vocanson, M. Janier, P. Perriat, S. Roux, and O. Tillement, “Gadolinium chelate coated gold nanoparticles as contrast agents for both X-ray computed tomography and magnetic resonance imaging,” J. Am. Chem. Soc. 130(18), 5908–5915 (2008).
[CrossRef] [PubMed]

von Maltzahn, G.

.G. von Maltzahn, A. Centrone, J. Park, R. Ramanathan, M. Sailor, T. Hatton, and S. Bhatia, “SERS-coded Gold nanorods as a multifunctional platform for densely multiplexed near-infrared imaging and photothermal heating,” Adv. Mater. (Deerfield Beach Fla.) 21(31), 3175–3180 (2009).
[CrossRef]

Wang, C. G.

.C. G. Wang, Y. Chen, T. T. Wang, Z. F. Ma, and Z. M. Su, “Monodispersed gold nanorod-embedded silica particles as novel Raman labels for biosensing,” Adv. Funct. Mater. 18(2), 355–361 (2008).
[CrossRef]

Wang, C. W.

.C. C. Chen, Y. P. Lin, C. W. Wang, H. C. Tzeng, C. H. Wu, Y. C. Chen, C. P. Chen, L. C. Chen, and Y. C. Wu, “DNA-gold nanorod conjugates for remote control of localized gene expression by near infrared irradiation,” J. Am. Chem. Soc. 128(11), 3709–3715 (2006).
[CrossRef] [PubMed]

Wang, H.

.H. Wang, L. Zheng, C. Peng, R. Guo, M. Shen, X. Shi, and G. Zhang, “Computed tomography imaging of cancer cells using acetylated dendrimer-entrapped gold nanoparticles,” Biomaterials 32(11), 2979–2988 (2011).
[CrossRef] [PubMed]

.R. Guo, H. Wang, C. Peng, M. W. Shen, M. J. Pan, X. Y. Cao, G. X. Zhang, and X. Y. Shi, “X-ray attenuation property of dendrimer-entrapped gold nanoparticles,” J. Phys. Chem. C 114(1), 50–56 (2010).
[CrossRef]

Wang, K.

.P. Huang, Z. Li, J. Lin, D. Yang, G. Gao, C. Xu, L. Bao, C. Zhang, K. Wang, H. Song, H. Hu, and D. Cui, “Photosensitizer-conjugated magnetic nanoparticles for in vivo simultaneous magnetofluorescent imaging and targeting therapy,” Biomaterials 32(13), 3447–3458 (2011).
[CrossRef] [PubMed]

Wang, T.

.L. L. Ma, M. D. Feldman, J. M. Tam, A. S. Paranjape, K. K. Cheruku, T. A. Larson, J. O. Tam, D. R. Ingram, V. Paramita, J. W. Villard, J. T. Jenkins, T. Wang, G. D. Clarke, R. Asmis, K. Sokolov, B. Chandrasekar, T. E. Milner, and K. P. Johnston, “Small multifunctional nanoclusters (nanoroses) for targeted cellular imaging and therapy,” ACS Nano 3(9), 2686–2696 (2009).
[CrossRef] [PubMed]

Wang, T. T.

.C. G. Wang, Y. Chen, T. T. Wang, Z. F. Ma, and Z. M. Su, “Monodispersed gold nanorod-embedded silica particles as novel Raman labels for biosensing,” Adv. Funct. Mater. 18(2), 355–361 (2008).
[CrossRef]

Wang, Y. J.

.C. H. Lee, S. H. Cheng, Y. J. Wang, Y. C. Chen, N. T. Chen, J. Souris, C. T. Chen, C. Y. Mou, C. S. Yang, and L. W. Lo, “Near-infrared mesoporous silica nanoparticles for optical imaging: characterization and in vivo biodistribution,” Adv. Funct. Mater. 19(2), 215–222 (2009).
[CrossRef]

Wang, Z. L.

.B. Nikoobakht, Z. L. Wang, and M. A. El-Sayed, “Self-Assembly Of Gold Nanorods,” J. Phys. Chem. B 104(36), 8635–8640 (2000).
[CrossRef]

Wei, A.

.L. Tong, Y. Zhao, T. B. Huff, M. N. Hansen, A. Wei, and J. X. Cheng, “Gold nanorods mediate tumor cell death by compromising membrane integrity,” Adv. Mater. (Deerfield Beach Fla.) 19(20), 3136–3141 (2007).
[CrossRef] [PubMed]

Wichter, T.

.F. Büther, L. Stegger, M. Dawood, F. Range, M. Schäfers, R. Fischbach, T. Wichter, O. Schober, and K. P. Schäfers, “Effective methods to correct contrast agent-induced errors in PET quantification in cardiac PET/CT,” J. Nucl. Med. 48(7), 1060–1068 (2007).
[CrossRef] [PubMed]

Wilkinson, S.

.C. J. Hall, E. Schültke, L. Rigon, K. Ataelmannan, S. Rigley, R. Menk, F. Arfelli, G. Tromba, S. Pearson, S. Wilkinson, A. Round, S. Crittell, R. Griebel, and B. H. J. Juurlink, “Synchrotron-based in vivo tracking of implanted mammalian cells,” Eur. J. Radiol. 68(3Suppl), S156–S159 (2008).
[CrossRef] [PubMed]

Wong, C. J.

.P. A. Jackson, W. N. Rahman, C. J. Wong, T. Ackerly, and M. Geso, “Potential dependent superiority of gold nanoparticles in comparison to iodinated contrast agents,” Eur. J. Radiol. 75(1), 104–109 (2010).
[CrossRef] [PubMed]

Wu, C. H.

.C. C. Chen, Y. P. Lin, C. W. Wang, H. C. Tzeng, C. H. Wu, Y. C. Chen, C. P. Chen, L. C. Chen, and Y. C. Wu, “DNA-gold nanorod conjugates for remote control of localized gene expression by near infrared irradiation,” J. Am. Chem. Soc. 128(11), 3709–3715 (2006).
[CrossRef] [PubMed]

Wu, H.

.T. Zhao, H. Wu, S. Q. Yao, Q. H. Xu, and G. Q. Xu, “Nanocomposites containing gold nanorods and porphyrin-doped mesoporous silica with dual capability of two-photon imaging and photosensitization,” Langmuir 26(18), 14937–14942 (2010).
[CrossRef] [PubMed]

Wu, X. Y.

.F. A. Dilmanian, X. Y. Wu, E. C. Parsons, B. Ren, J. Kress, T. M. Button, L. D. Chapman, J. A. Coderre, F. Giron, D. Greenberg, D. J. Krus, Z. Liang, S. Marcovici, M. J. Petersen, C. T. Roque, M. Shleifer, D. N. Slatkin, W. C. Thomlinson, K. Yamamoto, and Z. Zhong, “Single-and dual-energy CT with monochromatic synchrotron x-rays,” Phys. Med. Biol. 42(2), 371–387 (1997).
[CrossRef] [PubMed]

Wu, Y. C.

.C. C. Chen, Y. P. Lin, C. W. Wang, H. C. Tzeng, C. H. Wu, Y. C. Chen, C. P. Chen, L. C. Chen, and Y. C. Wu, “DNA-gold nanorod conjugates for remote control of localized gene expression by near infrared irradiation,” J. Am. Chem. Soc. 128(11), 3709–3715 (2006).
[CrossRef] [PubMed]

Xi, P.

.Z. Li, P. Huang, X. Zhang, J. Lin, S. Yang, B. Liu, F. Gao, P. Xi, Q. Ren, and D. Cui, “RGD-conjugated dendrimer-modified gold nanorods for in vivo tumor targeting and photothermal therapy,” Mol. Pharm. 7(1), 94–104 (2010).
[CrossRef] [PubMed]

Xiao, M.

.M. Xiao, J. Nyagilo, V. Arora, P. Kulkarni, D. Xu, X. Sun, and D. P. Davé, “Gold nanotags for combined multi-colored Raman spectroscopy and x-ray computed tomography,” Nanotechnology 21(3), 035101 (2010).
[CrossRef] [PubMed]

Xu, C.

.P. Huang, Z. Li, J. Lin, D. Yang, G. Gao, C. Xu, L. Bao, C. Zhang, K. Wang, H. Song, H. Hu, and D. Cui, “Photosensitizer-conjugated magnetic nanoparticles for in vivo simultaneous magnetofluorescent imaging and targeting therapy,” Biomaterials 32(13), 3447–3458 (2011).
[CrossRef] [PubMed]

.C. Xu, G. A. Tung, and S. Sun, “Size and concentration effect of gold nanoparticles on X-ray attenuation as measured on computed tomography,” Chem. Mater. 20(13), 4167–4169 (2008).
[CrossRef] [PubMed]

.C. Xu, G. A. Tung, and S. Sun, “Size and concentration effect of gold nanoparticles on X-ray attenuation as measured on computed tomography,” Chem. Mater. 20(13), 4167–4169 (2008).
[CrossRef] [PubMed]

Xu, D.

.M. Xiao, J. Nyagilo, V. Arora, P. Kulkarni, D. Xu, X. Sun, and D. P. Davé, “Gold nanotags for combined multi-colored Raman spectroscopy and x-ray computed tomography,” Nanotechnology 21(3), 035101 (2010).
[CrossRef] [PubMed]

Xu, G. Q.

.T. Zhao, H. Wu, S. Q. Yao, Q. H. Xu, and G. Q. Xu, “Nanocomposites containing gold nanorods and porphyrin-doped mesoporous silica with dual capability of two-photon imaging and photosensitization,” Langmuir 26(18), 14937–14942 (2010).
[CrossRef] [PubMed]

Xu, Q. H.

.T. Zhao, H. Wu, S. Q. Yao, Q. H. Xu, and G. Q. Xu, “Nanocomposites containing gold nanorods and porphyrin-doped mesoporous silica with dual capability of two-photon imaging and photosensitization,” Langmuir 26(18), 14937–14942 (2010).
[CrossRef] [PubMed]

Xu, X.

.Y. Kong, J. Chen, F. Gao, W. Li, X. Xu, O. Pandoli, H. Yang, J. Ji, and D. Cui, “A multifunctional ribonuclease-A-conjugated CdTe quantum dot cluster nanosystem for synchronous cancer imaging and therapy,” Small 6(21), 2367–2373 (2010).
[CrossRef] [PubMed]

Yamamoto, K.

.F. A. Dilmanian, X. Y. Wu, E. C. Parsons, B. Ren, J. Kress, T. M. Button, L. D. Chapman, J. A. Coderre, F. Giron, D. Greenberg, D. J. Krus, Z. Liang, S. Marcovici, M. J. Petersen, C. T. Roque, M. Shleifer, D. N. Slatkin, W. C. Thomlinson, K. Yamamoto, and Z. Zhong, “Single-and dual-energy CT with monochromatic synchrotron x-rays,” Phys. Med. Biol. 42(2), 371–387 (1997).
[CrossRef] [PubMed]

Yang, C. S.

.J. S. Souris, C. H. Lee, S. H. Cheng, C. T. Chen, C. S. Yang, J. A. Ho, C. Y. Mou, and L. W. Lo, “Surface charge-mediated rapid hepatobiliary excretion of mesoporous silica nanoparticles,” Biomaterials 31(21), 5564–5574 (2010).
[CrossRef] [PubMed]

.C. H. Lee, S. H. Cheng, Y. J. Wang, Y. C. Chen, N. T. Chen, J. Souris, C. T. Chen, C. Y. Mou, C. S. Yang, and L. W. Lo, “Near-infrared mesoporous silica nanoparticles for optical imaging: characterization and in vivo biodistribution,” Adv. Funct. Mater. 19(2), 215–222 (2009).
[CrossRef]

Yang, D.

.P. Huang, Z. Li, J. Lin, D. Yang, G. Gao, C. Xu, L. Bao, C. Zhang, K. Wang, H. Song, H. Hu, and D. Cui, “Photosensitizer-conjugated magnetic nanoparticles for in vivo simultaneous magnetofluorescent imaging and targeting therapy,” Biomaterials 32(13), 3447–3458 (2011).
[CrossRef] [PubMed]

Yang, H.

.Y. Kong, J. Chen, F. Gao, W. Li, X. Xu, O. Pandoli, H. Yang, J. Ji, and D. Cui, “A multifunctional ribonuclease-A-conjugated CdTe quantum dot cluster nanosystem for synchronous cancer imaging and therapy,” Small 6(21), 2367–2373 (2010).
[CrossRef] [PubMed]

Yang, M. H.

.W. S. Kuo, C. N. Chang, Y. T. Chang, M. H. Yang, Y. H. Chien, S. J. Chen, and C. S. Yeh, “Gold nanorods in photodynamic therapy, as hyperthermia agents, and in near-infrared optical imaging,” Angew. Chem. Int. Ed. Engl. 49(15), 2711–2715 (2010).
[PubMed]

Yang, S.

.Z. Li, P. Huang, X. Zhang, J. Lin, S. Yang, B. Liu, F. Gao, P. Xi, Q. Ren, and D. Cui, “RGD-conjugated dendrimer-modified gold nanorods for in vivo tumor targeting and photothermal therapy,” Mol. Pharm. 7(1), 94–104 (2010).
[CrossRef] [PubMed]

Yao, S. Q.

.T. Zhao, H. Wu, S. Q. Yao, Q. H. Xu, and G. Q. Xu, “Nanocomposites containing gold nanorods and porphyrin-doped mesoporous silica with dual capability of two-photon imaging and photosensitization,” Langmuir 26(18), 14937–14942 (2010).
[CrossRef] [PubMed]

Yeh, C. S.

.W. S. Kuo, C. N. Chang, Y. T. Chang, M. H. Yang, Y. H. Chien, S. J. Chen, and C. S. Yeh, “Gold nanorods in photodynamic therapy, as hyperthermia agents, and in near-infrared optical imaging,” Angew. Chem. Int. Ed. Engl. 49(15), 2711–2715 (2010).
[PubMed]

Yoon, H. C.

.E. Oh, M. Y. Hong, D. Lee, S. H. Nam, H. C. Yoon, and H. S. Kim, “Inhibition assay of biomolecules based on fluorescence resonance energy transfer (FRET) between quantum dots and gold nanoparticles,” J. Am. Chem. Soc. 127(10), 3270–3271 (2005).
[CrossRef] [PubMed]

Yoon, K. H.

.Q. Y. Cai, S. H. Kim, K. S. Choi, S. Y. Kim, S. J. Byun, K. W. Kim, S. H. Park, S. K. Juhng, and K. H. Yoon, “Colloidal gold nanoparticles as a blood-pool contrast agent for X-ray computed tomography in mice,” Invest. Radiol. 42(12), 797–806 (2007).
[CrossRef] [PubMed]

Zamkov, M.

.E. Khon, A. Mereshchenko, A. N. Tarnovsky, K. Acharya, A. Klinkova, N. N. Hewa-Kasakarage, I. Nemitz, and M. Zamkov, “Suppression of the plasmon resonance in Au/CdS colloidal nanocomposites,” Nano Lett. 11(4), 1792–1799 (2011).
[CrossRef] [PubMed]

Zentgraf, H.

.W. Eck, A. I. Nicholson, H. Zentgraf, W. Semmler, and S. Bartling, “Anti-CD4-targeted gold nanoparticles induce specific contrast enhancement of peripheral lymph nodes in X-ray computed tomography of live mice,” Nano Lett. 10(7), 2318–2322 (2010).
[CrossRef] [PubMed]

Zhang, C.

.P. Huang, Z. Li, J. Lin, D. Yang, G. Gao, C. Xu, L. Bao, C. Zhang, K. Wang, H. Song, H. Hu, and D. Cui, “Photosensitizer-conjugated magnetic nanoparticles for in vivo simultaneous magnetofluorescent imaging and targeting therapy,” Biomaterials 32(13), 3447–3458 (2011).
[CrossRef] [PubMed]

Zhang, G.

.H. Wang, L. Zheng, C. Peng, R. Guo, M. Shen, X. Shi, and G. Zhang, “Computed tomography imaging of cancer cells using acetylated dendrimer-entrapped gold nanoparticles,” Biomaterials 32(11), 2979–2988 (2011).
[CrossRef] [PubMed]

Zhang, G. X.

.R. Guo, H. Wang, C. Peng, M. W. Shen, M. J. Pan, X. Y. Cao, G. X. Zhang, and X. Y. Shi, “X-ray attenuation property of dendrimer-entrapped gold nanoparticles,” J. Phys. Chem. C 114(1), 50–56 (2010).
[CrossRef]

Zhang, X.

.Z. Li, P. Huang, X. Zhang, J. Lin, S. Yang, B. Liu, F. Gao, P. Xi, Q. Ren, and D. Cui, “RGD-conjugated dendrimer-modified gold nanorods for in vivo tumor targeting and photothermal therapy,” Mol. Pharm. 7(1), 94–104 (2010).
[CrossRef] [PubMed]

Zhao, T.

.T. Zhao, H. Wu, S. Q. Yao, Q. H. Xu, and G. Q. Xu, “Nanocomposites containing gold nanorods and porphyrin-doped mesoporous silica with dual capability of two-photon imaging and photosensitization,” Langmuir 26(18), 14937–14942 (2010).
[CrossRef] [PubMed]

Zhao, Y.

.L. Tong, Y. Zhao, T. B. Huff, M. N. Hansen, A. Wei, and J. X. Cheng, “Gold nanorods mediate tumor cell death by compromising membrane integrity,” Adv. Mater. (Deerfield Beach Fla.) 19(20), 3136–3141 (2007).
[CrossRef] [PubMed]

Zheng, L.

.H. Wang, L. Zheng, C. Peng, R. Guo, M. Shen, X. Shi, and G. Zhang, “Computed tomography imaging of cancer cells using acetylated dendrimer-entrapped gold nanoparticles,” Biomaterials 32(11), 2979–2988 (2011).
[CrossRef] [PubMed]

Zhong, Z.

.F. A. Dilmanian, X. Y. Wu, E. C. Parsons, B. Ren, J. Kress, T. M. Button, L. D. Chapman, J. A. Coderre, F. Giron, D. Greenberg, D. J. Krus, Z. Liang, S. Marcovici, M. J. Petersen, C. T. Roque, M. Shleifer, D. N. Slatkin, W. C. Thomlinson, K. Yamamoto, and Z. Zhong, “Single-and dual-energy CT with monochromatic synchrotron x-rays,” Phys. Med. Biol. 42(2), 371–387 (1997).
[CrossRef] [PubMed]

ACS Nano (2)

.L. L. Ma, M. D. Feldman, J. M. Tam, A. S. Paranjape, K. K. Cheruku, T. A. Larson, J. O. Tam, D. R. Ingram, V. Paramita, J. W. Villard, J. T. Jenkins, T. Wang, G. D. Clarke, R. Asmis, K. Sokolov, B. Chandrasekar, T. E. Milner, and K. P. Johnston, “Small multifunctional nanoclusters (nanoroses) for targeted cellular imaging and therapy,” ACS Nano 3(9), 2686–2696 (2009).
[CrossRef] [PubMed]

.D. Kim, Y. Y. Jeong, and S. Jon, “A drug-loaded aptamer-gold nanoparticle bioconjugate for combined CT imaging and therapy of prostate cancer,” ACS Nano 4(7), 3689–3696 (2010).
[CrossRef] [PubMed]

Adv. Drug Deliv. Rev. (1)

.W. Krause, “Delivery of diagnostic agents in computed tomography,” Adv. Drug Deliv. Rev. 37(1-3), 159–173 (1999).
[CrossRef] [PubMed]

Adv. Funct. Mater. (2)

.C. H. Lee, S. H. Cheng, Y. J. Wang, Y. C. Chen, N. T. Chen, J. Souris, C. T. Chen, C. Y. Mou, C. S. Yang, and L. W. Lo, “Near-infrared mesoporous silica nanoparticles for optical imaging: characterization and in vivo biodistribution,” Adv. Funct. Mater. 19(2), 215–222 (2009).
[CrossRef]

.C. G. Wang, Y. Chen, T. T. Wang, Z. F. Ma, and Z. M. Su, “Monodispersed gold nanorod-embedded silica particles as novel Raman labels for biosensing,” Adv. Funct. Mater. 18(2), 355–361 (2008).
[CrossRef]

Adv. Mater. (Deerfield Beach Fla.) (5)

.G. von Maltzahn, A. Centrone, J. Park, R. Ramanathan, M. Sailor, T. Hatton, and S. Bhatia, “SERS-coded Gold nanorods as a multifunctional platform for densely multiplexed near-infrared imaging and photothermal heating,” Adv. Mater. (Deerfield Beach Fla.) 21(31), 3175–3180 (2009).
[CrossRef]

.J. M. Klostranec and W. C. W. Chan, “Quantum dots in biological and biomedical research: Recent progress and present challenges,” Adv. Mater. (Deerfield Beach Fla.) 18(15), 1953–1964 (2006).
[CrossRef]

.H. B. Na, I. C. Song, and T. Hyeon, “Inorganic nanoparticles for MRI contrast agents,” Adv. Mater. (Deerfield Beach Fla.) 21(21), 2133–2148 (2009).
[CrossRef]

.L. Tong, Y. Zhao, T. B. Huff, M. N. Hansen, A. Wei, and J. X. Cheng, “Gold nanorods mediate tumor cell death by compromising membrane integrity,” Adv. Mater. (Deerfield Beach Fla.) 19(20), 3136–3141 (2007).
[CrossRef] [PubMed]

.C. Murphy and N. Jana, “Controlling the aspect ratio of inorganic nanorods and nanowires,” Adv. Mater. (Deerfield Beach Fla.) 14(1), 80–82 (2002).
[CrossRef]

Angew. Chem. Int. Ed. Engl. (4)

.M. Vallet-Regí, F. Balas, and D. Arcos, “Mesoporous materials for drug delivery,” Angew. Chem. Int. Ed. Engl. 46(40), 7548–7558 (2007).
[CrossRef] [PubMed]

.A. H. Lu, E. L. Salabas, and F. Schüth, “Magnetic nanoparticles: synthesis, protection, functionalization, and application,” Angew. Chem. Int. Ed. Engl. 46(8), 1222–1244 (2007).
[CrossRef] [PubMed]

.M. S. Han, A. K. R. Lytton-Jean, B. K. Oh, J. Heo, and C. A. Mirkin, “Colorimetric screening of DNA-binding molecules with gold nanoparticle probes,” Angew. Chem. Int. Ed. Engl. 45(11), 1807–1810 (2006).
[CrossRef] [PubMed]

.W. S. Kuo, C. N. Chang, Y. T. Chang, M. H. Yang, Y. H. Chien, S. J. Chen, and C. S. Yeh, “Gold nanorods in photodynamic therapy, as hyperthermia agents, and in near-infrared optical imaging,” Angew. Chem. Int. Ed. Engl. 49(15), 2711–2715 (2010).
[PubMed]

Biomaterials (3)

.J. S. Souris, C. H. Lee, S. H. Cheng, C. T. Chen, C. S. Yang, J. A. Ho, C. Y. Mou, and L. W. Lo, “Surface charge-mediated rapid hepatobiliary excretion of mesoporous silica nanoparticles,” Biomaterials 31(21), 5564–5574 (2010).
[CrossRef] [PubMed]

.P. Huang, Z. Li, J. Lin, D. Yang, G. Gao, C. Xu, L. Bao, C. Zhang, K. Wang, H. Song, H. Hu, and D. Cui, “Photosensitizer-conjugated magnetic nanoparticles for in vivo simultaneous magnetofluorescent imaging and targeting therapy,” Biomaterials 32(13), 3447–3458 (2011).
[CrossRef] [PubMed]

.H. Wang, L. Zheng, C. Peng, R. Guo, M. Shen, X. Shi, and G. Zhang, “Computed tomography imaging of cancer cells using acetylated dendrimer-entrapped gold nanoparticles,” Biomaterials 32(11), 2979–2988 (2011).
[CrossRef] [PubMed]

Br. J. Radiol. (1)

.J. F. Hainfeld, D. N. Slatkin, T. M. Focella, and H. M. Smilowitz, “Gold nanoparticles: a new X-ray contrast agent,” Br. J. Radiol. 79(939), 248–253 (2006).
[CrossRef] [PubMed]

Chem. Mater. (2)

.C. Xu, G. A. Tung, and S. Sun, “Size and concentration effect of gold nanoparticles on X-ray attenuation as measured on computed tomography,” Chem. Mater. 20(13), 4167–4169 (2008).
[CrossRef] [PubMed]

.C. Xu, G. A. Tung, and S. Sun, “Size and concentration effect of gold nanoparticles on X-ray attenuation as measured on computed tomography,” Chem. Mater. 20(13), 4167–4169 (2008).
[CrossRef] [PubMed]

Contrast Media Mol. Imaging (1)

.M. M. van Schooneveld, D. P. Cormode, R. Koole, J. T. van Wijngaarden, C. Calcagno, T. Skajaa, J. Hilhorst, D. C. ’t Hart, Z. A. Fayad, W. J. M. Mulder, and A. Meijerink, “A fluorescent, paramagnetic and PEGylated gold/silica nanoparticle for MRI, CT and fluorescence imaging,” Contrast Media Mol. Imaging 5(4), 231–236 (2010).
[CrossRef] [PubMed]

Eur. J. Radiol. (2)

.P. A. Jackson, W. N. Rahman, C. J. Wong, T. Ackerly, and M. Geso, “Potential dependent superiority of gold nanoparticles in comparison to iodinated contrast agents,” Eur. J. Radiol. 75(1), 104–109 (2010).
[CrossRef] [PubMed]

.C. J. Hall, E. Schültke, L. Rigon, K. Ataelmannan, S. Rigley, R. Menk, F. Arfelli, G. Tromba, S. Pearson, S. Wilkinson, A. Round, S. Crittell, R. Griebel, and B. H. J. Juurlink, “Synchrotron-based in vivo tracking of implanted mammalian cells,” Eur. J. Radiol. 68(3Suppl), S156–S159 (2008).
[CrossRef] [PubMed]

Gold Bull. (1)

.C. Alric, R. Serduc, C. Mandon, J. Taleb, G. Le Duc, A. Le Meur-Herland, C. Billotey, P. Perriat, S. Roux, and O. Tillement, “Gold nanoparticles designed for combining dual modality imaging and radiotherapy,” Gold Bull. 41(2), 90–97 (2008).
[CrossRef]

Invest. Radiol. (3)

.Q. Y. Cai, S. H. Kim, K. S. Choi, S. Y. Kim, S. J. Byun, K. W. Kim, S. H. Park, S. K. Juhng, and K. H. Yoon, “Colloidal gold nanoparticles as a blood-pool contrast agent for X-ray computed tomography in mice,” Invest. Radiol. 42(12), 797–806 (2007).
[CrossRef] [PubMed]

.I. Hizoh and C. Haller, “Radiocontrast-induced renal tubular cell apoptosis: hypertonic versus oxidative stress,” Invest. Radiol. 37(8), 428–434 (2002).
[CrossRef] [PubMed]

.C. Haller and I. Hizoh, “The cytotoxicity of iodinated radiocontrast agents on renal cells in vitro,” Invest. Radiol. 39(3), 149–154 (2004).
[CrossRef] [PubMed]

J. Am. Chem. Soc. (6)

.D. Kim, S. Park, J. H. Lee, Y. Y. Jeong, and S. Jon, “Antibiofouling polymer-coated gold nanoparticles as a contrast agent for in vivo X-ray computed tomography imaging,” J. Am. Chem. Soc. 129(24), 7661–7665 (2007).
[CrossRef] [PubMed]

.X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006).
[CrossRef] [PubMed]

.C. Alric, J. Taleb, G. Le Duc, C. Mandon, C. Billotey, A. Le Meur-Herland, T. Brochard, F. Vocanson, M. Janier, P. Perriat, S. Roux, and O. Tillement, “Gadolinium chelate coated gold nanoparticles as contrast agents for both X-ray computed tomography and magnetic resonance imaging,” J. Am. Chem. Soc. 130(18), 5908–5915 (2008).
[CrossRef] [PubMed]

.C. C. Chen, Y. P. Lin, C. W. Wang, H. C. Tzeng, C. H. Wu, Y. C. Chen, C. P. Chen, L. C. Chen, and Y. C. Wu, “DNA-gold nanorod conjugates for remote control of localized gene expression by near infrared irradiation,” J. Am. Chem. Soc. 128(11), 3709–3715 (2006).
[CrossRef] [PubMed]

.I. I. Slowing, B. G. Trewyn, and V. S. Y. Lin, “Mesoporous silica nanoparticles for intracellular delivery of membrane-impermeable proteins,” J. Am. Chem. Soc. 129(28), 8845–8849 (2007).
[CrossRef] [PubMed]

.E. Oh, M. Y. Hong, D. Lee, S. H. Nam, H. C. Yoon, and H. S. Kim, “Inhibition assay of biomolecules based on fluorescence resonance energy transfer (FRET) between quantum dots and gold nanoparticles,” J. Am. Chem. Soc. 127(10), 3270–3271 (2005).
[CrossRef] [PubMed]

J. Colloid Interface Sci. (1)

.W. Stöber, A. Fink, and E. Bohn, “Controlled growth of monodisperse silica spheres in the micron size range,” J. Colloid Interface Sci. 26(1), 62–69 (1968).
[CrossRef]

J. Comput. Tomogr. (1)

.M. Banna and P. S. Olutola, “Orbital histiocytosis on computed tomography,” J. Comput. Tomogr. 7(2), 167–170 (1983).
[CrossRef] [PubMed]

J. Nanosci. Nanotechnol. (1)

.Z. B. Li, W. Cai, and X. Chen, “Semiconductor quantum dots for in vivo imaging,” J. Nanosci. Nanotechnol. 7(8), 2567–2581 (2007).
[CrossRef] [PubMed]

J. Nucl. Med. (1)

.F. Büther, L. Stegger, M. Dawood, F. Range, M. Schäfers, R. Fischbach, T. Wichter, O. Schober, and K. P. Schäfers, “Effective methods to correct contrast agent-induced errors in PET quantification in cardiac PET/CT,” J. Nucl. Med. 48(7), 1060–1068 (2007).
[CrossRef] [PubMed]

J. Pharm. Pharmacol. (1)

.J. F. Hainfeld, F. A. Dilmanian, D. N. Slatkin, and H. M. Smilowitz, “Radiotherapy enhancement with gold nanoparticles,” J. Pharm. Pharmacol. 60(8), 977–985 (2008).
[CrossRef] [PubMed]

J. Phys. Chem. B (1)

.B. Nikoobakht, Z. L. Wang, and M. A. El-Sayed, “Self-Assembly Of Gold Nanorods,” J. Phys. Chem. B 104(36), 8635–8640 (2000).
[CrossRef]

J. Phys. Chem. C (1)

.R. Guo, H. Wang, C. Peng, M. W. Shen, M. J. Pan, X. Y. Cao, G. X. Zhang, and X. Y. Shi, “X-ray attenuation property of dendrimer-entrapped gold nanoparticles,” J. Phys. Chem. C 114(1), 50–56 (2010).
[CrossRef]

Langmuir (1)

.T. Zhao, H. Wu, S. Q. Yao, Q. H. Xu, and G. Q. Xu, “Nanocomposites containing gold nanorods and porphyrin-doped mesoporous silica with dual capability of two-photon imaging and photosensitization,” Langmuir 26(18), 14937–14942 (2010).
[CrossRef] [PubMed]

Mol. Pharm. (1)

.Z. Li, P. Huang, X. Zhang, J. Lin, S. Yang, B. Liu, F. Gao, P. Xi, Q. Ren, and D. Cui, “RGD-conjugated dendrimer-modified gold nanorods for in vivo tumor targeting and photothermal therapy,” Mol. Pharm. 7(1), 94–104 (2010).
[CrossRef] [PubMed]

Nano Lett. (3)

.E. Khon, A. Mereshchenko, A. N. Tarnovsky, K. Acharya, A. Klinkova, N. N. Hewa-Kasakarage, I. Nemitz, and M. Zamkov, “Suppression of the plasmon resonance in Au/CdS colloidal nanocomposites,” Nano Lett. 11(4), 1792–1799 (2011).
[CrossRef] [PubMed]

.R. Popovtzer, A. Agrawal, N. A. Kotov, A. Popovtzer, J. Balter, T. E. Carey, and R. Kopelman, “Targeted gold nanoparticles enable molecular CT imaging of cancer,” Nano Lett. 8(12), 4593–4596 (2008).
[CrossRef] [PubMed]

.W. Eck, A. I. Nicholson, H. Zentgraf, W. Semmler, and S. Bartling, “Anti-CD4-targeted gold nanoparticles induce specific contrast enhancement of peripheral lymph nodes in X-ray computed tomography of live mice,” Nano Lett. 10(7), 2318–2322 (2010).
[CrossRef] [PubMed]

Nanotechnology (2)

.B. Pan, L. Ao, F. Gao, H. Tian, R. He, and D. Cui, “End-to-end self-assembly and colorimetric characterization of gold nanorods and nanospheres via oligonucleotide hybridization,” Nanotechnology 16(9), 1776–1780 (2005).
[CrossRef]

.M. Xiao, J. Nyagilo, V. Arora, P. Kulkarni, D. Xu, X. Sun, and D. P. Davé, “Gold nanotags for combined multi-colored Raman spectroscopy and x-ray computed tomography,” Nanotechnology 21(3), 035101 (2010).
[CrossRef] [PubMed]

Opt. Express (2)

Photochem. Photobiol. (1)

.R. Rajagopalan, P. Uetrecht, J. E. Bugaj, S. A. Achilefu, and R. B. Dorshow, “Stabilization of the optical tracer agent indocyanine green using noncovalent interactions,” Photochem. Photobiol. 71(3), 347–350 (2000).
[CrossRef] [PubMed]

Phys. Med. Biol. (2)

.F. A. Dilmanian, X. Y. Wu, E. C. Parsons, B. Ren, J. Kress, T. M. Button, L. D. Chapman, J. A. Coderre, F. Giron, D. Greenberg, D. J. Krus, Z. Liang, S. Marcovici, M. J. Petersen, C. T. Roque, M. Shleifer, D. N. Slatkin, W. C. Thomlinson, K. Yamamoto, and Z. Zhong, “Single-and dual-energy CT with monochromatic synchrotron x-rays,” Phys. Med. Biol. 42(2), 371–387 (1997).
[CrossRef] [PubMed]

.J. F. Hainfeld, D. N. Slatkin, and H. M. Smilowitz, “The use of gold nanoparticles to enhance radiotherapy in mice,” Phys. Med. Biol. 49(18), N309–N315 (2004).
[CrossRef] [PubMed]

Small (2)

.Y. Kong, J. Chen, F. Gao, W. Li, X. Xu, O. Pandoli, H. Yang, J. Ji, and D. Cui, “A multifunctional ribonuclease-A-conjugated CdTe quantum dot cluster nanosystem for synchronous cancer imaging and therapy,” Small 6(21), 2367–2373 (2010).
[CrossRef] [PubMed]

.V. Kattumuri, K. Katti, S. Bhaskaran, E. J. Boote, S. W. Casteel, G. M. Fent, D. J. Robertson, M. Chandrasekhar, R. Kannan, and K. V. Katti, “Gum arabic as a phytochemical construct for the stabilization of gold nanoparticles: in vivo pharmacokinetics and X-ray-contrast-imaging studies,” Small 3(2), 333–341 (2007).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

TEM images of the prepared mesoporous Au@SiO2 with different scale bar. (a): 50 nm, (b): 20nm.

Fig. 2
Fig. 2

Characterization of prepared samples. The UV-vis absorbance spectra (a): uncoated GNRs and Au@SiO2, (b): ICG-loaded Au@SiO2 (Inset: absorbance profile of ICG). (c) Fluorescence emission spectra for ICG and ICG-loaded Au@SiO2 in ethanol; λex = 785 nm. (d) The FTIR spectra of ICG and ICG-loaded Au@SiO2.

Fig. 3
Fig. 3

X-ray CT of Au@SiO2. (a) Concentration–signal curve obtained from the CT images of Au@SiO2 in PBS media (Inset: the corresponding Au@SiO2 concentrations are given in mg/mL); the HU value of PBS was 8. (b) CT images of a mouse viewed from the rear 1 min and 15 min after an intratumoral injection of Au@SiO2. Red circles indicate regions with enhanced contrast in the gastric tumor; the green arrow indicates a black hole at the needle injection site. Evaluation of Au@SiO2 contrast enhancement was carried out by loading digital CT images into a standard display program and then selecting a uniform round region of interest for each sample.

Fig. 4
Fig. 4

The effects of exposure time on planar projection X-ray images. X-ray images using 15 s (a) and 30 s (b) exposure times before an ICG-loaded Au@SiO2 injection. X-ray images using 15 s (c) and 30 s (d) exposure times immediately after an injection of 200 μL of ICG-loaded Au@SiO2 (3 mg/mL). The green arrow indicates the tumor.

Fig. 5
Fig. 5

In vivo series of planar X-ray images (30 s exposures) of an animal following an injection of 200 μL of ICG-loaded Au@SiO2 (3 mg/mL). The green arrow indicates the gastric cancer tumor.

Fig. 6
Fig. 6

ICG-loaded Au@SiO2 was examined using X-ray and NIR fluorescence dual mode imaging. Planar X-ray (a) and NIR fluorescence images (b) were obtained of 7 mg/mL Au@SiO2 (I), PBS (II), 3.2 mg/mL ICG-loaded Au@SiO2 (III) and 1.5 mg/mL ICG-loaded Au@SiO2 (IV). (c) In vivo planar X-ray images (exposure time 30 s) of a mouse prior to and 12 h post intratumoral injection of ICG-loaded Au@SiO2 (200 μL, 1.5 mg/mL). (d) An in vivo planar X-ray image using a 60 s exposure time (left) taken 12 h post intratumoral injection of the dual mode imaging contrast agent was overlapped with the homologous NIR fluorescence image (10 s exposure time) (right). Inset: the corresponding overlay of bright field and NIR fluorescent images; the quantification of fluorescence intensity was recorded as radiant (), with an exposure time of 10 s. The green arrow indicates the tumor. The images were reconstructed using the software supplied by the manufacturer.

Fig. 7
Fig. 7

Real-time in vivo NIR images of a control (left) mouse and a mouse with a 200 μL subcutaneous chest injection of ICG-loaded Au@SiO2 (1.5 mg/mL).

Metrics