Abstract

Solid materials with different structure containing C and N were analyzed by laser-induced breakdown spectroscopy (LIBS). Comparing the emission molecular species in different atmosphere (air and argon), it can be determined that whether the molecular species are directly vaporized from sample or generated through dissociation or the interaction between plasma and air molecules. The results showed that the characteristic of C2 bands emission is similar with that of neutral atomic carbon emission CI in different atmosphere (air and argon). While the characteristic of CN bands emission is more complicated and it has great relationship with the existence of CN radicals, the interaction between plasma and air ambient, and the recombination of excited partials.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. A. Cremers and L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy (Wiley, Chichester, 2006).
  2. J. P. Singh and S. N. Thakur, Laser-Induced Breakdown Spectroscopy (Elsevier Science, Amsterdam, 2007).
  3. J. Cuñat, F. J. Fortes, and J. J. Laserna, “Real time and in situ determination of lead in road sediments using a man-portable laser-induced breakdown spectroscopy analyzer,” Anal. Chim. Acta 633(1), 38–42 (2009).
    [CrossRef] [PubMed]
  4. J. Goujon, A. Giakoumaki, V. Piñon, O. Musset, D. Anglos, E. Georgiou, and J. P. Boquillon, “A compact and portable laser-induced breakdown spectroscopy instrument for single and double pulse applications,” Spectrochim. Acta, B At. Spectrosc. 63(10), 1091–1096 (2008).
    [CrossRef]
  5. J. J. Laserna, R. F. Reyes, R. González, L. Tobaria, and P. Lucena, “Study on the effect of beam propagation through atmospheric turbulence on standoff nanosecond laser induced breakdown spectroscopy measurements,” Opt. Express 17(12), 10265–10276 (2009).
    [CrossRef] [PubMed]
  6. C. López-Moreno, S. Palanco, and J. J. Laserna, “Stand-off analysis of moving targets using laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 22(1), 84–87 (2007).
    [CrossRef]
  7. S. Acquaviva, “Simulation of emission molecular spectra by a semi-automatic programme package: the case of C2 and CN diatomic molecules emitting during laser ablation of a graphite target in nitrogen environment,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 60(8-9), 2079–2086 (2004).
    [CrossRef] [PubMed]
  8. C. Vivien, J. Hermann, A. Perrone, C. Boulmer-Leborgne, and A. Luches, “A study of molecule formation during laser ablation of graphite in low-pressure nitrogen,” J. Phys. D 31(10), 1263–1272 (1998).
    [CrossRef]
  9. M. Tran, Q. Sun, B. W. Smith, and J. D. Winefordner, “Determination of C: H: O: N ratios in solid organic compounds by laser-induced plasma spectroscopy,” J. Anal. At. Spectrom. 16(6), 628–632 (2001).
    [CrossRef]
  10. R. Sattmann, I. Monch, H. Krause, R. Noll, S. Couris, A. Hatziapostolou, A. Mavromanolakis, C. Fotakis, E. Larrauri, and R. Miguel, “Laser-induced breakdown spectroscopy for polymer identification,” Appl. Spectrosc. 52(3), 456–461 (1998).
    [CrossRef]
  11. J. Anzano, R. J. Lasheras, B. Bonilla, and J. Casas, ““Classification of polymers by determining of C1:C2: CN: H: N: O ratios by laser-induced plasma spectroscopy (LIPS), ” J. Casas,” Polym. Test. 27(6), 705–710 (2008).
    [CrossRef]
  12. S. Grégoire, M. Boudinet, F. Pelascini, F. Surma, V. Detalle, and Y. Holl, “Laser-induced breakdown spectroscopy for polymer identification,” Anal. Bioanal. Chem. 400(10), 3331–3340 (2011).
    [CrossRef] [PubMed]
  13. P. Lucena, A. Dona, L. M. Tobaria, and J. J. Laserna, “New challenges and insights in the detection and spectral identification of organic explosives by laser induced breakdown spectroscopy,” Spectrochim. Acta, B At. Spectrosc. 66(1), 12–20 (2011).
    [CrossRef]
  14. M. Baudelet, L. Guyon, J. Yu, J. P. Wolf, T. Amodeo, E. Frejafon, and P. Laloi, “Spectral signature of native CN bonds for bacterium detection and identification using femtosecond laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 88(6), 063901 (2006).
    [CrossRef]
  15. M. Baudelet, M. Boueri, J. Yu, S. S. Mao, V. Piscitelli, X. L. Mao, and R. E. Russo, “Time-resolved ultraviolet laser-induced breakdown spectroscopy for organic material analysis,” Spectrochim. Acta, B At. Spectrosc. 62(12), 1329–1334 (2007).
    [CrossRef]
  16. L. St-Onge, R. Sing, S. Bechard, and M. Sabsabi, “Carbon emissions following 1.064 μm laser ablation of graphite and organic samples in ambient air,” Appl. Phys. A 69, S913–S916 (1999).
  17. G. Dinescu, E. Aldea, M. L. De Giorgi, A. Luches, A. Perrone, and A. Zocco, “Optical emission spectroscopy of molecular species in plasma induced by laser ablation of carbon in nitrogen,” Appl. Surf. Sci. 127–129(1-2), 697–702 (1998).
    [CrossRef]
  18. M. Boueri, M. Baudelet, J. Yu, X. L. Mao, S. S. Mao, and R. Russo, “Early stage expansion and time-resolved spectral emission of laser-induced plasma from polymer,” Appl. Surf. Sci. 255(24), 9566–9571 (2009).
    [CrossRef]
  19. K. C. Xie, Coal Structure and Its Reactivity (Science Press, Beijing, 2002) (in Chinese).
  20. F. Y. Wang and Z. Y. Wu, The Manual of the Using of Coal Fly Ash (China Electric Power Press, Beijing, 1997) (in Chinese).
  21. Fertilizer and Soil Conditioner National Standardization Technical Committee, “Determination of potassium content for compound fertilizers potassium tetraphenylborate gravimetric method,”·GB/T8574[S] (2002) (in Chinese).
  22. “NIST: Atomic Spectra Database Lines Form,” http://physics.nist.gov/PhysRefData/ASD/lines_form.html .
  23. S. Abdelli-Messaci, T. Kerdja, A. Bendib, and S. Malek, “CN emission spectroscopy study of carbon plasma in nitrogen environment,” Spectrochim. Acta, B At. Spectrosc. 60(7-8), 955–959 (2005).
    [CrossRef]
  24. Z. Zelinger, M. Novotny, J. Bulir, J. Lancok, P. Kubat, and M. Jelinek, “Laser plasma plume kinetic spectroscopy of the nitrogen and carbon species,” Contrib. Plasma Phys. 43(7), 426–432 (2003).
    [CrossRef]
  25. Q. Ma and P. J. Dagdigian, “Kinetic model of atomic and molecular emissions in laser-induced breakdown spectroscopy of organic compounds,” Anal. Bioanal. Chem. 400(10), 3193–3205 (2011).
    [CrossRef] [PubMed]
  26. J. A. Aguilera and C. Aragon, “A comparison of the temperatures and electron densities of laser-produced plasma obtained in air, argon, and helium at atmospheric pressure,” Appl. Phys., A Mater. Sci. Process. 69(7), S475–S478 (1999).
    [CrossRef]
  27. J. A. Aguilera and C. Aragon, “Temperature and electron density distributions of laser-induced plasmas generated with an iron sample at different ambient gas pressures,” Appl. Surf. Sci. 197–198, 273–280 (2002).
    [CrossRef]
  28. V. Babushok, F. Deluciajr, P. Dagdigian, and A. Miziolek, “Experimental and kinetic modeling study of the laser-induced breakdown spectroscopy plume from metallic lead in argon,” Spectrochim. Acta, B At. Spectrosc. 60(7-8), 926–934 (2005).
    [CrossRef]
  29. M. Baudelet, L. Guyon, J. Yu, J. P. Wolf, T. Amodeo, E. Frejafon, and P. Laloi, “Femtosecond time-resolved laserinduced breakdown spectroscopy for detection and identification of bacteria: A comparison to the nanosecond regime,” J. Appl. Phys. 99(8), 084701 (2006).
    [CrossRef]
  30. R. Krasniker, V. Bulatov, and I. Schechter, “Study of matrix effects in laser plasma spectroscopy by shock wave propagation,” Spectrochim. Acta, B At. Spectrosc. 56(6), 609–618 (2001).
    [CrossRef]

2011 (3)

S. Grégoire, M. Boudinet, F. Pelascini, F. Surma, V. Detalle, and Y. Holl, “Laser-induced breakdown spectroscopy for polymer identification,” Anal. Bioanal. Chem. 400(10), 3331–3340 (2011).
[CrossRef] [PubMed]

P. Lucena, A. Dona, L. M. Tobaria, and J. J. Laserna, “New challenges and insights in the detection and spectral identification of organic explosives by laser induced breakdown spectroscopy,” Spectrochim. Acta, B At. Spectrosc. 66(1), 12–20 (2011).
[CrossRef]

Q. Ma and P. J. Dagdigian, “Kinetic model of atomic and molecular emissions in laser-induced breakdown spectroscopy of organic compounds,” Anal. Bioanal. Chem. 400(10), 3193–3205 (2011).
[CrossRef] [PubMed]

2009 (3)

M. Boueri, M. Baudelet, J. Yu, X. L. Mao, S. S. Mao, and R. Russo, “Early stage expansion and time-resolved spectral emission of laser-induced plasma from polymer,” Appl. Surf. Sci. 255(24), 9566–9571 (2009).
[CrossRef]

J. Cuñat, F. J. Fortes, and J. J. Laserna, “Real time and in situ determination of lead in road sediments using a man-portable laser-induced breakdown spectroscopy analyzer,” Anal. Chim. Acta 633(1), 38–42 (2009).
[CrossRef] [PubMed]

J. J. Laserna, R. F. Reyes, R. González, L. Tobaria, and P. Lucena, “Study on the effect of beam propagation through atmospheric turbulence on standoff nanosecond laser induced breakdown spectroscopy measurements,” Opt. Express 17(12), 10265–10276 (2009).
[CrossRef] [PubMed]

2008 (2)

J. Goujon, A. Giakoumaki, V. Piñon, O. Musset, D. Anglos, E. Georgiou, and J. P. Boquillon, “A compact and portable laser-induced breakdown spectroscopy instrument for single and double pulse applications,” Spectrochim. Acta, B At. Spectrosc. 63(10), 1091–1096 (2008).
[CrossRef]

J. Anzano, R. J. Lasheras, B. Bonilla, and J. Casas, ““Classification of polymers by determining of C1:C2: CN: H: N: O ratios by laser-induced plasma spectroscopy (LIPS), ” J. Casas,” Polym. Test. 27(6), 705–710 (2008).
[CrossRef]

2007 (2)

C. López-Moreno, S. Palanco, and J. J. Laserna, “Stand-off analysis of moving targets using laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 22(1), 84–87 (2007).
[CrossRef]

M. Baudelet, M. Boueri, J. Yu, S. S. Mao, V. Piscitelli, X. L. Mao, and R. E. Russo, “Time-resolved ultraviolet laser-induced breakdown spectroscopy for organic material analysis,” Spectrochim. Acta, B At. Spectrosc. 62(12), 1329–1334 (2007).
[CrossRef]

2006 (2)

M. Baudelet, L. Guyon, J. Yu, J. P. Wolf, T. Amodeo, E. Frejafon, and P. Laloi, “Spectral signature of native CN bonds for bacterium detection and identification using femtosecond laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 88(6), 063901 (2006).
[CrossRef]

M. Baudelet, L. Guyon, J. Yu, J. P. Wolf, T. Amodeo, E. Frejafon, and P. Laloi, “Femtosecond time-resolved laserinduced breakdown spectroscopy for detection and identification of bacteria: A comparison to the nanosecond regime,” J. Appl. Phys. 99(8), 084701 (2006).
[CrossRef]

2005 (2)

V. Babushok, F. Deluciajr, P. Dagdigian, and A. Miziolek, “Experimental and kinetic modeling study of the laser-induced breakdown spectroscopy plume from metallic lead in argon,” Spectrochim. Acta, B At. Spectrosc. 60(7-8), 926–934 (2005).
[CrossRef]

S. Abdelli-Messaci, T. Kerdja, A. Bendib, and S. Malek, “CN emission spectroscopy study of carbon plasma in nitrogen environment,” Spectrochim. Acta, B At. Spectrosc. 60(7-8), 955–959 (2005).
[CrossRef]

2004 (1)

S. Acquaviva, “Simulation of emission molecular spectra by a semi-automatic programme package: the case of C2 and CN diatomic molecules emitting during laser ablation of a graphite target in nitrogen environment,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 60(8-9), 2079–2086 (2004).
[CrossRef] [PubMed]

2003 (1)

Z. Zelinger, M. Novotny, J. Bulir, J. Lancok, P. Kubat, and M. Jelinek, “Laser plasma plume kinetic spectroscopy of the nitrogen and carbon species,” Contrib. Plasma Phys. 43(7), 426–432 (2003).
[CrossRef]

2002 (1)

J. A. Aguilera and C. Aragon, “Temperature and electron density distributions of laser-induced plasmas generated with an iron sample at different ambient gas pressures,” Appl. Surf. Sci. 197–198, 273–280 (2002).
[CrossRef]

2001 (2)

R. Krasniker, V. Bulatov, and I. Schechter, “Study of matrix effects in laser plasma spectroscopy by shock wave propagation,” Spectrochim. Acta, B At. Spectrosc. 56(6), 609–618 (2001).
[CrossRef]

M. Tran, Q. Sun, B. W. Smith, and J. D. Winefordner, “Determination of C: H: O: N ratios in solid organic compounds by laser-induced plasma spectroscopy,” J. Anal. At. Spectrom. 16(6), 628–632 (2001).
[CrossRef]

1999 (2)

J. A. Aguilera and C. Aragon, “A comparison of the temperatures and electron densities of laser-produced plasma obtained in air, argon, and helium at atmospheric pressure,” Appl. Phys., A Mater. Sci. Process. 69(7), S475–S478 (1999).
[CrossRef]

L. St-Onge, R. Sing, S. Bechard, and M. Sabsabi, “Carbon emissions following 1.064 μm laser ablation of graphite and organic samples in ambient air,” Appl. Phys. A 69, S913–S916 (1999).

1998 (3)

G. Dinescu, E. Aldea, M. L. De Giorgi, A. Luches, A. Perrone, and A. Zocco, “Optical emission spectroscopy of molecular species in plasma induced by laser ablation of carbon in nitrogen,” Appl. Surf. Sci. 127–129(1-2), 697–702 (1998).
[CrossRef]

C. Vivien, J. Hermann, A. Perrone, C. Boulmer-Leborgne, and A. Luches, “A study of molecule formation during laser ablation of graphite in low-pressure nitrogen,” J. Phys. D 31(10), 1263–1272 (1998).
[CrossRef]

R. Sattmann, I. Monch, H. Krause, R. Noll, S. Couris, A. Hatziapostolou, A. Mavromanolakis, C. Fotakis, E. Larrauri, and R. Miguel, “Laser-induced breakdown spectroscopy for polymer identification,” Appl. Spectrosc. 52(3), 456–461 (1998).
[CrossRef]

Abdelli-Messaci, S.

S. Abdelli-Messaci, T. Kerdja, A. Bendib, and S. Malek, “CN emission spectroscopy study of carbon plasma in nitrogen environment,” Spectrochim. Acta, B At. Spectrosc. 60(7-8), 955–959 (2005).
[CrossRef]

Acquaviva, S.

S. Acquaviva, “Simulation of emission molecular spectra by a semi-automatic programme package: the case of C2 and CN diatomic molecules emitting during laser ablation of a graphite target in nitrogen environment,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 60(8-9), 2079–2086 (2004).
[CrossRef] [PubMed]

Aguilera, J. A.

J. A. Aguilera and C. Aragon, “Temperature and electron density distributions of laser-induced plasmas generated with an iron sample at different ambient gas pressures,” Appl. Surf. Sci. 197–198, 273–280 (2002).
[CrossRef]

J. A. Aguilera and C. Aragon, “A comparison of the temperatures and electron densities of laser-produced plasma obtained in air, argon, and helium at atmospheric pressure,” Appl. Phys., A Mater. Sci. Process. 69(7), S475–S478 (1999).
[CrossRef]

Aldea, E.

G. Dinescu, E. Aldea, M. L. De Giorgi, A. Luches, A. Perrone, and A. Zocco, “Optical emission spectroscopy of molecular species in plasma induced by laser ablation of carbon in nitrogen,” Appl. Surf. Sci. 127–129(1-2), 697–702 (1998).
[CrossRef]

Amodeo, T.

M. Baudelet, L. Guyon, J. Yu, J. P. Wolf, T. Amodeo, E. Frejafon, and P. Laloi, “Spectral signature of native CN bonds for bacterium detection and identification using femtosecond laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 88(6), 063901 (2006).
[CrossRef]

M. Baudelet, L. Guyon, J. Yu, J. P. Wolf, T. Amodeo, E. Frejafon, and P. Laloi, “Femtosecond time-resolved laserinduced breakdown spectroscopy for detection and identification of bacteria: A comparison to the nanosecond regime,” J. Appl. Phys. 99(8), 084701 (2006).
[CrossRef]

Anglos, D.

J. Goujon, A. Giakoumaki, V. Piñon, O. Musset, D. Anglos, E. Georgiou, and J. P. Boquillon, “A compact and portable laser-induced breakdown spectroscopy instrument for single and double pulse applications,” Spectrochim. Acta, B At. Spectrosc. 63(10), 1091–1096 (2008).
[CrossRef]

Anzano, J.

J. Anzano, R. J. Lasheras, B. Bonilla, and J. Casas, ““Classification of polymers by determining of C1:C2: CN: H: N: O ratios by laser-induced plasma spectroscopy (LIPS), ” J. Casas,” Polym. Test. 27(6), 705–710 (2008).
[CrossRef]

Aragon, C.

J. A. Aguilera and C. Aragon, “Temperature and electron density distributions of laser-induced plasmas generated with an iron sample at different ambient gas pressures,” Appl. Surf. Sci. 197–198, 273–280 (2002).
[CrossRef]

J. A. Aguilera and C. Aragon, “A comparison of the temperatures and electron densities of laser-produced plasma obtained in air, argon, and helium at atmospheric pressure,” Appl. Phys., A Mater. Sci. Process. 69(7), S475–S478 (1999).
[CrossRef]

Babushok, V.

V. Babushok, F. Deluciajr, P. Dagdigian, and A. Miziolek, “Experimental and kinetic modeling study of the laser-induced breakdown spectroscopy plume from metallic lead in argon,” Spectrochim. Acta, B At. Spectrosc. 60(7-8), 926–934 (2005).
[CrossRef]

Baudelet, M.

M. Boueri, M. Baudelet, J. Yu, X. L. Mao, S. S. Mao, and R. Russo, “Early stage expansion and time-resolved spectral emission of laser-induced plasma from polymer,” Appl. Surf. Sci. 255(24), 9566–9571 (2009).
[CrossRef]

M. Baudelet, M. Boueri, J. Yu, S. S. Mao, V. Piscitelli, X. L. Mao, and R. E. Russo, “Time-resolved ultraviolet laser-induced breakdown spectroscopy for organic material analysis,” Spectrochim. Acta, B At. Spectrosc. 62(12), 1329–1334 (2007).
[CrossRef]

M. Baudelet, L. Guyon, J. Yu, J. P. Wolf, T. Amodeo, E. Frejafon, and P. Laloi, “Spectral signature of native CN bonds for bacterium detection and identification using femtosecond laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 88(6), 063901 (2006).
[CrossRef]

M. Baudelet, L. Guyon, J. Yu, J. P. Wolf, T. Amodeo, E. Frejafon, and P. Laloi, “Femtosecond time-resolved laserinduced breakdown spectroscopy for detection and identification of bacteria: A comparison to the nanosecond regime,” J. Appl. Phys. 99(8), 084701 (2006).
[CrossRef]

Bechard, S.

L. St-Onge, R. Sing, S. Bechard, and M. Sabsabi, “Carbon emissions following 1.064 μm laser ablation of graphite and organic samples in ambient air,” Appl. Phys. A 69, S913–S916 (1999).

Bendib, A.

S. Abdelli-Messaci, T. Kerdja, A. Bendib, and S. Malek, “CN emission spectroscopy study of carbon plasma in nitrogen environment,” Spectrochim. Acta, B At. Spectrosc. 60(7-8), 955–959 (2005).
[CrossRef]

Bonilla, B.

J. Anzano, R. J. Lasheras, B. Bonilla, and J. Casas, ““Classification of polymers by determining of C1:C2: CN: H: N: O ratios by laser-induced plasma spectroscopy (LIPS), ” J. Casas,” Polym. Test. 27(6), 705–710 (2008).
[CrossRef]

Boquillon, J. P.

J. Goujon, A. Giakoumaki, V. Piñon, O. Musset, D. Anglos, E. Georgiou, and J. P. Boquillon, “A compact and portable laser-induced breakdown spectroscopy instrument for single and double pulse applications,” Spectrochim. Acta, B At. Spectrosc. 63(10), 1091–1096 (2008).
[CrossRef]

Boudinet, M.

S. Grégoire, M. Boudinet, F. Pelascini, F. Surma, V. Detalle, and Y. Holl, “Laser-induced breakdown spectroscopy for polymer identification,” Anal. Bioanal. Chem. 400(10), 3331–3340 (2011).
[CrossRef] [PubMed]

Boueri, M.

M. Boueri, M. Baudelet, J. Yu, X. L. Mao, S. S. Mao, and R. Russo, “Early stage expansion and time-resolved spectral emission of laser-induced plasma from polymer,” Appl. Surf. Sci. 255(24), 9566–9571 (2009).
[CrossRef]

M. Baudelet, M. Boueri, J. Yu, S. S. Mao, V. Piscitelli, X. L. Mao, and R. E. Russo, “Time-resolved ultraviolet laser-induced breakdown spectroscopy for organic material analysis,” Spectrochim. Acta, B At. Spectrosc. 62(12), 1329–1334 (2007).
[CrossRef]

Boulmer-Leborgne, C.

C. Vivien, J. Hermann, A. Perrone, C. Boulmer-Leborgne, and A. Luches, “A study of molecule formation during laser ablation of graphite in low-pressure nitrogen,” J. Phys. D 31(10), 1263–1272 (1998).
[CrossRef]

Bulatov, V.

R. Krasniker, V. Bulatov, and I. Schechter, “Study of matrix effects in laser plasma spectroscopy by shock wave propagation,” Spectrochim. Acta, B At. Spectrosc. 56(6), 609–618 (2001).
[CrossRef]

Bulir, J.

Z. Zelinger, M. Novotny, J. Bulir, J. Lancok, P. Kubat, and M. Jelinek, “Laser plasma plume kinetic spectroscopy of the nitrogen and carbon species,” Contrib. Plasma Phys. 43(7), 426–432 (2003).
[CrossRef]

Casas, J.

J. Anzano, R. J. Lasheras, B. Bonilla, and J. Casas, ““Classification of polymers by determining of C1:C2: CN: H: N: O ratios by laser-induced plasma spectroscopy (LIPS), ” J. Casas,” Polym. Test. 27(6), 705–710 (2008).
[CrossRef]

Couris, S.

Cuñat, J.

J. Cuñat, F. J. Fortes, and J. J. Laserna, “Real time and in situ determination of lead in road sediments using a man-portable laser-induced breakdown spectroscopy analyzer,” Anal. Chim. Acta 633(1), 38–42 (2009).
[CrossRef] [PubMed]

Dagdigian, P.

V. Babushok, F. Deluciajr, P. Dagdigian, and A. Miziolek, “Experimental and kinetic modeling study of the laser-induced breakdown spectroscopy plume from metallic lead in argon,” Spectrochim. Acta, B At. Spectrosc. 60(7-8), 926–934 (2005).
[CrossRef]

Dagdigian, P. J.

Q. Ma and P. J. Dagdigian, “Kinetic model of atomic and molecular emissions in laser-induced breakdown spectroscopy of organic compounds,” Anal. Bioanal. Chem. 400(10), 3193–3205 (2011).
[CrossRef] [PubMed]

De Giorgi, M. L.

G. Dinescu, E. Aldea, M. L. De Giorgi, A. Luches, A. Perrone, and A. Zocco, “Optical emission spectroscopy of molecular species in plasma induced by laser ablation of carbon in nitrogen,” Appl. Surf. Sci. 127–129(1-2), 697–702 (1998).
[CrossRef]

Deluciajr, F.

V. Babushok, F. Deluciajr, P. Dagdigian, and A. Miziolek, “Experimental and kinetic modeling study of the laser-induced breakdown spectroscopy plume from metallic lead in argon,” Spectrochim. Acta, B At. Spectrosc. 60(7-8), 926–934 (2005).
[CrossRef]

Detalle, V.

S. Grégoire, M. Boudinet, F. Pelascini, F. Surma, V. Detalle, and Y. Holl, “Laser-induced breakdown spectroscopy for polymer identification,” Anal. Bioanal. Chem. 400(10), 3331–3340 (2011).
[CrossRef] [PubMed]

Dinescu, G.

G. Dinescu, E. Aldea, M. L. De Giorgi, A. Luches, A. Perrone, and A. Zocco, “Optical emission spectroscopy of molecular species in plasma induced by laser ablation of carbon in nitrogen,” Appl. Surf. Sci. 127–129(1-2), 697–702 (1998).
[CrossRef]

Dona, A.

P. Lucena, A. Dona, L. M. Tobaria, and J. J. Laserna, “New challenges and insights in the detection and spectral identification of organic explosives by laser induced breakdown spectroscopy,” Spectrochim. Acta, B At. Spectrosc. 66(1), 12–20 (2011).
[CrossRef]

Fortes, F. J.

J. Cuñat, F. J. Fortes, and J. J. Laserna, “Real time and in situ determination of lead in road sediments using a man-portable laser-induced breakdown spectroscopy analyzer,” Anal. Chim. Acta 633(1), 38–42 (2009).
[CrossRef] [PubMed]

Fotakis, C.

Frejafon, E.

M. Baudelet, L. Guyon, J. Yu, J. P. Wolf, T. Amodeo, E. Frejafon, and P. Laloi, “Spectral signature of native CN bonds for bacterium detection and identification using femtosecond laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 88(6), 063901 (2006).
[CrossRef]

M. Baudelet, L. Guyon, J. Yu, J. P. Wolf, T. Amodeo, E. Frejafon, and P. Laloi, “Femtosecond time-resolved laserinduced breakdown spectroscopy for detection and identification of bacteria: A comparison to the nanosecond regime,” J. Appl. Phys. 99(8), 084701 (2006).
[CrossRef]

Georgiou, E.

J. Goujon, A. Giakoumaki, V. Piñon, O. Musset, D. Anglos, E. Georgiou, and J. P. Boquillon, “A compact and portable laser-induced breakdown spectroscopy instrument for single and double pulse applications,” Spectrochim. Acta, B At. Spectrosc. 63(10), 1091–1096 (2008).
[CrossRef]

Giakoumaki, A.

J. Goujon, A. Giakoumaki, V. Piñon, O. Musset, D. Anglos, E. Georgiou, and J. P. Boquillon, “A compact and portable laser-induced breakdown spectroscopy instrument for single and double pulse applications,” Spectrochim. Acta, B At. Spectrosc. 63(10), 1091–1096 (2008).
[CrossRef]

González, R.

Goujon, J.

J. Goujon, A. Giakoumaki, V. Piñon, O. Musset, D. Anglos, E. Georgiou, and J. P. Boquillon, “A compact and portable laser-induced breakdown spectroscopy instrument for single and double pulse applications,” Spectrochim. Acta, B At. Spectrosc. 63(10), 1091–1096 (2008).
[CrossRef]

Grégoire, S.

S. Grégoire, M. Boudinet, F. Pelascini, F. Surma, V. Detalle, and Y. Holl, “Laser-induced breakdown spectroscopy for polymer identification,” Anal. Bioanal. Chem. 400(10), 3331–3340 (2011).
[CrossRef] [PubMed]

Guyon, L.

M. Baudelet, L. Guyon, J. Yu, J. P. Wolf, T. Amodeo, E. Frejafon, and P. Laloi, “Spectral signature of native CN bonds for bacterium detection and identification using femtosecond laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 88(6), 063901 (2006).
[CrossRef]

M. Baudelet, L. Guyon, J. Yu, J. P. Wolf, T. Amodeo, E. Frejafon, and P. Laloi, “Femtosecond time-resolved laserinduced breakdown spectroscopy for detection and identification of bacteria: A comparison to the nanosecond regime,” J. Appl. Phys. 99(8), 084701 (2006).
[CrossRef]

Hatziapostolou, A.

Hermann, J.

C. Vivien, J. Hermann, A. Perrone, C. Boulmer-Leborgne, and A. Luches, “A study of molecule formation during laser ablation of graphite in low-pressure nitrogen,” J. Phys. D 31(10), 1263–1272 (1998).
[CrossRef]

Holl, Y.

S. Grégoire, M. Boudinet, F. Pelascini, F. Surma, V. Detalle, and Y. Holl, “Laser-induced breakdown spectroscopy for polymer identification,” Anal. Bioanal. Chem. 400(10), 3331–3340 (2011).
[CrossRef] [PubMed]

Jelinek, M.

Z. Zelinger, M. Novotny, J. Bulir, J. Lancok, P. Kubat, and M. Jelinek, “Laser plasma plume kinetic spectroscopy of the nitrogen and carbon species,” Contrib. Plasma Phys. 43(7), 426–432 (2003).
[CrossRef]

Kerdja, T.

S. Abdelli-Messaci, T. Kerdja, A. Bendib, and S. Malek, “CN emission spectroscopy study of carbon plasma in nitrogen environment,” Spectrochim. Acta, B At. Spectrosc. 60(7-8), 955–959 (2005).
[CrossRef]

Krasniker, R.

R. Krasniker, V. Bulatov, and I. Schechter, “Study of matrix effects in laser plasma spectroscopy by shock wave propagation,” Spectrochim. Acta, B At. Spectrosc. 56(6), 609–618 (2001).
[CrossRef]

Krause, H.

Kubat, P.

Z. Zelinger, M. Novotny, J. Bulir, J. Lancok, P. Kubat, and M. Jelinek, “Laser plasma plume kinetic spectroscopy of the nitrogen and carbon species,” Contrib. Plasma Phys. 43(7), 426–432 (2003).
[CrossRef]

Laloi, P.

M. Baudelet, L. Guyon, J. Yu, J. P. Wolf, T. Amodeo, E. Frejafon, and P. Laloi, “Femtosecond time-resolved laserinduced breakdown spectroscopy for detection and identification of bacteria: A comparison to the nanosecond regime,” J. Appl. Phys. 99(8), 084701 (2006).
[CrossRef]

M. Baudelet, L. Guyon, J. Yu, J. P. Wolf, T. Amodeo, E. Frejafon, and P. Laloi, “Spectral signature of native CN bonds for bacterium detection and identification using femtosecond laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 88(6), 063901 (2006).
[CrossRef]

Lancok, J.

Z. Zelinger, M. Novotny, J. Bulir, J. Lancok, P. Kubat, and M. Jelinek, “Laser plasma plume kinetic spectroscopy of the nitrogen and carbon species,” Contrib. Plasma Phys. 43(7), 426–432 (2003).
[CrossRef]

Larrauri, E.

Laserna, J. J.

P. Lucena, A. Dona, L. M. Tobaria, and J. J. Laserna, “New challenges and insights in the detection and spectral identification of organic explosives by laser induced breakdown spectroscopy,” Spectrochim. Acta, B At. Spectrosc. 66(1), 12–20 (2011).
[CrossRef]

J. Cuñat, F. J. Fortes, and J. J. Laserna, “Real time and in situ determination of lead in road sediments using a man-portable laser-induced breakdown spectroscopy analyzer,” Anal. Chim. Acta 633(1), 38–42 (2009).
[CrossRef] [PubMed]

J. J. Laserna, R. F. Reyes, R. González, L. Tobaria, and P. Lucena, “Study on the effect of beam propagation through atmospheric turbulence on standoff nanosecond laser induced breakdown spectroscopy measurements,” Opt. Express 17(12), 10265–10276 (2009).
[CrossRef] [PubMed]

C. López-Moreno, S. Palanco, and J. J. Laserna, “Stand-off analysis of moving targets using laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 22(1), 84–87 (2007).
[CrossRef]

Lasheras, R. J.

J. Anzano, R. J. Lasheras, B. Bonilla, and J. Casas, ““Classification of polymers by determining of C1:C2: CN: H: N: O ratios by laser-induced plasma spectroscopy (LIPS), ” J. Casas,” Polym. Test. 27(6), 705–710 (2008).
[CrossRef]

López-Moreno, C.

C. López-Moreno, S. Palanco, and J. J. Laserna, “Stand-off analysis of moving targets using laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 22(1), 84–87 (2007).
[CrossRef]

Lucena, P.

P. Lucena, A. Dona, L. M. Tobaria, and J. J. Laserna, “New challenges and insights in the detection and spectral identification of organic explosives by laser induced breakdown spectroscopy,” Spectrochim. Acta, B At. Spectrosc. 66(1), 12–20 (2011).
[CrossRef]

J. J. Laserna, R. F. Reyes, R. González, L. Tobaria, and P. Lucena, “Study on the effect of beam propagation through atmospheric turbulence on standoff nanosecond laser induced breakdown spectroscopy measurements,” Opt. Express 17(12), 10265–10276 (2009).
[CrossRef] [PubMed]

Luches, A.

C. Vivien, J. Hermann, A. Perrone, C. Boulmer-Leborgne, and A. Luches, “A study of molecule formation during laser ablation of graphite in low-pressure nitrogen,” J. Phys. D 31(10), 1263–1272 (1998).
[CrossRef]

G. Dinescu, E. Aldea, M. L. De Giorgi, A. Luches, A. Perrone, and A. Zocco, “Optical emission spectroscopy of molecular species in plasma induced by laser ablation of carbon in nitrogen,” Appl. Surf. Sci. 127–129(1-2), 697–702 (1998).
[CrossRef]

Ma, Q.

Q. Ma and P. J. Dagdigian, “Kinetic model of atomic and molecular emissions in laser-induced breakdown spectroscopy of organic compounds,” Anal. Bioanal. Chem. 400(10), 3193–3205 (2011).
[CrossRef] [PubMed]

Malek, S.

S. Abdelli-Messaci, T. Kerdja, A. Bendib, and S. Malek, “CN emission spectroscopy study of carbon plasma in nitrogen environment,” Spectrochim. Acta, B At. Spectrosc. 60(7-8), 955–959 (2005).
[CrossRef]

Mao, S. S.

M. Boueri, M. Baudelet, J. Yu, X. L. Mao, S. S. Mao, and R. Russo, “Early stage expansion and time-resolved spectral emission of laser-induced plasma from polymer,” Appl. Surf. Sci. 255(24), 9566–9571 (2009).
[CrossRef]

M. Baudelet, M. Boueri, J. Yu, S. S. Mao, V. Piscitelli, X. L. Mao, and R. E. Russo, “Time-resolved ultraviolet laser-induced breakdown spectroscopy for organic material analysis,” Spectrochim. Acta, B At. Spectrosc. 62(12), 1329–1334 (2007).
[CrossRef]

Mao, X. L.

M. Boueri, M. Baudelet, J. Yu, X. L. Mao, S. S. Mao, and R. Russo, “Early stage expansion and time-resolved spectral emission of laser-induced plasma from polymer,” Appl. Surf. Sci. 255(24), 9566–9571 (2009).
[CrossRef]

M. Baudelet, M. Boueri, J. Yu, S. S. Mao, V. Piscitelli, X. L. Mao, and R. E. Russo, “Time-resolved ultraviolet laser-induced breakdown spectroscopy for organic material analysis,” Spectrochim. Acta, B At. Spectrosc. 62(12), 1329–1334 (2007).
[CrossRef]

Mavromanolakis, A.

Miguel, R.

Miziolek, A.

V. Babushok, F. Deluciajr, P. Dagdigian, and A. Miziolek, “Experimental and kinetic modeling study of the laser-induced breakdown spectroscopy plume from metallic lead in argon,” Spectrochim. Acta, B At. Spectrosc. 60(7-8), 926–934 (2005).
[CrossRef]

Monch, I.

Musset, O.

J. Goujon, A. Giakoumaki, V. Piñon, O. Musset, D. Anglos, E. Georgiou, and J. P. Boquillon, “A compact and portable laser-induced breakdown spectroscopy instrument for single and double pulse applications,” Spectrochim. Acta, B At. Spectrosc. 63(10), 1091–1096 (2008).
[CrossRef]

Noll, R.

Novotny, M.

Z. Zelinger, M. Novotny, J. Bulir, J. Lancok, P. Kubat, and M. Jelinek, “Laser plasma plume kinetic spectroscopy of the nitrogen and carbon species,” Contrib. Plasma Phys. 43(7), 426–432 (2003).
[CrossRef]

Palanco, S.

C. López-Moreno, S. Palanco, and J. J. Laserna, “Stand-off analysis of moving targets using laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 22(1), 84–87 (2007).
[CrossRef]

Pelascini, F.

S. Grégoire, M. Boudinet, F. Pelascini, F. Surma, V. Detalle, and Y. Holl, “Laser-induced breakdown spectroscopy for polymer identification,” Anal. Bioanal. Chem. 400(10), 3331–3340 (2011).
[CrossRef] [PubMed]

Perrone, A.

G. Dinescu, E. Aldea, M. L. De Giorgi, A. Luches, A. Perrone, and A. Zocco, “Optical emission spectroscopy of molecular species in plasma induced by laser ablation of carbon in nitrogen,” Appl. Surf. Sci. 127–129(1-2), 697–702 (1998).
[CrossRef]

C. Vivien, J. Hermann, A. Perrone, C. Boulmer-Leborgne, and A. Luches, “A study of molecule formation during laser ablation of graphite in low-pressure nitrogen,” J. Phys. D 31(10), 1263–1272 (1998).
[CrossRef]

Piñon, V.

J. Goujon, A. Giakoumaki, V. Piñon, O. Musset, D. Anglos, E. Georgiou, and J. P. Boquillon, “A compact and portable laser-induced breakdown spectroscopy instrument for single and double pulse applications,” Spectrochim. Acta, B At. Spectrosc. 63(10), 1091–1096 (2008).
[CrossRef]

Piscitelli, V.

M. Baudelet, M. Boueri, J. Yu, S. S. Mao, V. Piscitelli, X. L. Mao, and R. E. Russo, “Time-resolved ultraviolet laser-induced breakdown spectroscopy for organic material analysis,” Spectrochim. Acta, B At. Spectrosc. 62(12), 1329–1334 (2007).
[CrossRef]

Reyes, R. F.

Russo, R.

M. Boueri, M. Baudelet, J. Yu, X. L. Mao, S. S. Mao, and R. Russo, “Early stage expansion and time-resolved spectral emission of laser-induced plasma from polymer,” Appl. Surf. Sci. 255(24), 9566–9571 (2009).
[CrossRef]

Russo, R. E.

M. Baudelet, M. Boueri, J. Yu, S. S. Mao, V. Piscitelli, X. L. Mao, and R. E. Russo, “Time-resolved ultraviolet laser-induced breakdown spectroscopy for organic material analysis,” Spectrochim. Acta, B At. Spectrosc. 62(12), 1329–1334 (2007).
[CrossRef]

Sabsabi, M.

L. St-Onge, R. Sing, S. Bechard, and M. Sabsabi, “Carbon emissions following 1.064 μm laser ablation of graphite and organic samples in ambient air,” Appl. Phys. A 69, S913–S916 (1999).

Sattmann, R.

Schechter, I.

R. Krasniker, V. Bulatov, and I. Schechter, “Study of matrix effects in laser plasma spectroscopy by shock wave propagation,” Spectrochim. Acta, B At. Spectrosc. 56(6), 609–618 (2001).
[CrossRef]

Sing, R.

L. St-Onge, R. Sing, S. Bechard, and M. Sabsabi, “Carbon emissions following 1.064 μm laser ablation of graphite and organic samples in ambient air,” Appl. Phys. A 69, S913–S916 (1999).

Smith, B. W.

M. Tran, Q. Sun, B. W. Smith, and J. D. Winefordner, “Determination of C: H: O: N ratios in solid organic compounds by laser-induced plasma spectroscopy,” J. Anal. At. Spectrom. 16(6), 628–632 (2001).
[CrossRef]

St-Onge, L.

L. St-Onge, R. Sing, S. Bechard, and M. Sabsabi, “Carbon emissions following 1.064 μm laser ablation of graphite and organic samples in ambient air,” Appl. Phys. A 69, S913–S916 (1999).

Sun, Q.

M. Tran, Q. Sun, B. W. Smith, and J. D. Winefordner, “Determination of C: H: O: N ratios in solid organic compounds by laser-induced plasma spectroscopy,” J. Anal. At. Spectrom. 16(6), 628–632 (2001).
[CrossRef]

Surma, F.

S. Grégoire, M. Boudinet, F. Pelascini, F. Surma, V. Detalle, and Y. Holl, “Laser-induced breakdown spectroscopy for polymer identification,” Anal. Bioanal. Chem. 400(10), 3331–3340 (2011).
[CrossRef] [PubMed]

Tobaria, L.

Tobaria, L. M.

P. Lucena, A. Dona, L. M. Tobaria, and J. J. Laserna, “New challenges and insights in the detection and spectral identification of organic explosives by laser induced breakdown spectroscopy,” Spectrochim. Acta, B At. Spectrosc. 66(1), 12–20 (2011).
[CrossRef]

Tran, M.

M. Tran, Q. Sun, B. W. Smith, and J. D. Winefordner, “Determination of C: H: O: N ratios in solid organic compounds by laser-induced plasma spectroscopy,” J. Anal. At. Spectrom. 16(6), 628–632 (2001).
[CrossRef]

Vivien, C.

C. Vivien, J. Hermann, A. Perrone, C. Boulmer-Leborgne, and A. Luches, “A study of molecule formation during laser ablation of graphite in low-pressure nitrogen,” J. Phys. D 31(10), 1263–1272 (1998).
[CrossRef]

Winefordner, J. D.

M. Tran, Q. Sun, B. W. Smith, and J. D. Winefordner, “Determination of C: H: O: N ratios in solid organic compounds by laser-induced plasma spectroscopy,” J. Anal. At. Spectrom. 16(6), 628–632 (2001).
[CrossRef]

Wolf, J. P.

M. Baudelet, L. Guyon, J. Yu, J. P. Wolf, T. Amodeo, E. Frejafon, and P. Laloi, “Spectral signature of native CN bonds for bacterium detection and identification using femtosecond laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 88(6), 063901 (2006).
[CrossRef]

M. Baudelet, L. Guyon, J. Yu, J. P. Wolf, T. Amodeo, E. Frejafon, and P. Laloi, “Femtosecond time-resolved laserinduced breakdown spectroscopy for detection and identification of bacteria: A comparison to the nanosecond regime,” J. Appl. Phys. 99(8), 084701 (2006).
[CrossRef]

Yu, J.

M. Boueri, M. Baudelet, J. Yu, X. L. Mao, S. S. Mao, and R. Russo, “Early stage expansion and time-resolved spectral emission of laser-induced plasma from polymer,” Appl. Surf. Sci. 255(24), 9566–9571 (2009).
[CrossRef]

M. Baudelet, M. Boueri, J. Yu, S. S. Mao, V. Piscitelli, X. L. Mao, and R. E. Russo, “Time-resolved ultraviolet laser-induced breakdown spectroscopy for organic material analysis,” Spectrochim. Acta, B At. Spectrosc. 62(12), 1329–1334 (2007).
[CrossRef]

M. Baudelet, L. Guyon, J. Yu, J. P. Wolf, T. Amodeo, E. Frejafon, and P. Laloi, “Spectral signature of native CN bonds for bacterium detection and identification using femtosecond laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 88(6), 063901 (2006).
[CrossRef]

M. Baudelet, L. Guyon, J. Yu, J. P. Wolf, T. Amodeo, E. Frejafon, and P. Laloi, “Femtosecond time-resolved laserinduced breakdown spectroscopy for detection and identification of bacteria: A comparison to the nanosecond regime,” J. Appl. Phys. 99(8), 084701 (2006).
[CrossRef]

Zelinger, Z.

Z. Zelinger, M. Novotny, J. Bulir, J. Lancok, P. Kubat, and M. Jelinek, “Laser plasma plume kinetic spectroscopy of the nitrogen and carbon species,” Contrib. Plasma Phys. 43(7), 426–432 (2003).
[CrossRef]

Zocco, A.

G. Dinescu, E. Aldea, M. L. De Giorgi, A. Luches, A. Perrone, and A. Zocco, “Optical emission spectroscopy of molecular species in plasma induced by laser ablation of carbon in nitrogen,” Appl. Surf. Sci. 127–129(1-2), 697–702 (1998).
[CrossRef]

Anal. Bioanal. Chem. (2)

S. Grégoire, M. Boudinet, F. Pelascini, F. Surma, V. Detalle, and Y. Holl, “Laser-induced breakdown spectroscopy for polymer identification,” Anal. Bioanal. Chem. 400(10), 3331–3340 (2011).
[CrossRef] [PubMed]

Q. Ma and P. J. Dagdigian, “Kinetic model of atomic and molecular emissions in laser-induced breakdown spectroscopy of organic compounds,” Anal. Bioanal. Chem. 400(10), 3193–3205 (2011).
[CrossRef] [PubMed]

Anal. Chim. Acta (1)

J. Cuñat, F. J. Fortes, and J. J. Laserna, “Real time and in situ determination of lead in road sediments using a man-portable laser-induced breakdown spectroscopy analyzer,” Anal. Chim. Acta 633(1), 38–42 (2009).
[CrossRef] [PubMed]

Appl. Phys. A (1)

L. St-Onge, R. Sing, S. Bechard, and M. Sabsabi, “Carbon emissions following 1.064 μm laser ablation of graphite and organic samples in ambient air,” Appl. Phys. A 69, S913–S916 (1999).

Appl. Phys. Lett. (1)

M. Baudelet, L. Guyon, J. Yu, J. P. Wolf, T. Amodeo, E. Frejafon, and P. Laloi, “Spectral signature of native CN bonds for bacterium detection and identification using femtosecond laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 88(6), 063901 (2006).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (1)

J. A. Aguilera and C. Aragon, “A comparison of the temperatures and electron densities of laser-produced plasma obtained in air, argon, and helium at atmospheric pressure,” Appl. Phys., A Mater. Sci. Process. 69(7), S475–S478 (1999).
[CrossRef]

Appl. Spectrosc. (1)

Appl. Surf. Sci. (3)

J. A. Aguilera and C. Aragon, “Temperature and electron density distributions of laser-induced plasmas generated with an iron sample at different ambient gas pressures,” Appl. Surf. Sci. 197–198, 273–280 (2002).
[CrossRef]

G. Dinescu, E. Aldea, M. L. De Giorgi, A. Luches, A. Perrone, and A. Zocco, “Optical emission spectroscopy of molecular species in plasma induced by laser ablation of carbon in nitrogen,” Appl. Surf. Sci. 127–129(1-2), 697–702 (1998).
[CrossRef]

M. Boueri, M. Baudelet, J. Yu, X. L. Mao, S. S. Mao, and R. Russo, “Early stage expansion and time-resolved spectral emission of laser-induced plasma from polymer,” Appl. Surf. Sci. 255(24), 9566–9571 (2009).
[CrossRef]

Contrib. Plasma Phys. (1)

Z. Zelinger, M. Novotny, J. Bulir, J. Lancok, P. Kubat, and M. Jelinek, “Laser plasma plume kinetic spectroscopy of the nitrogen and carbon species,” Contrib. Plasma Phys. 43(7), 426–432 (2003).
[CrossRef]

J. Anal. At. Spectrom. (2)

C. López-Moreno, S. Palanco, and J. J. Laserna, “Stand-off analysis of moving targets using laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 22(1), 84–87 (2007).
[CrossRef]

M. Tran, Q. Sun, B. W. Smith, and J. D. Winefordner, “Determination of C: H: O: N ratios in solid organic compounds by laser-induced plasma spectroscopy,” J. Anal. At. Spectrom. 16(6), 628–632 (2001).
[CrossRef]

J. Appl. Phys. (1)

M. Baudelet, L. Guyon, J. Yu, J. P. Wolf, T. Amodeo, E. Frejafon, and P. Laloi, “Femtosecond time-resolved laserinduced breakdown spectroscopy for detection and identification of bacteria: A comparison to the nanosecond regime,” J. Appl. Phys. 99(8), 084701 (2006).
[CrossRef]

J. Phys. D (1)

C. Vivien, J. Hermann, A. Perrone, C. Boulmer-Leborgne, and A. Luches, “A study of molecule formation during laser ablation of graphite in low-pressure nitrogen,” J. Phys. D 31(10), 1263–1272 (1998).
[CrossRef]

Opt. Express (1)

Polym. Test. (1)

J. Anzano, R. J. Lasheras, B. Bonilla, and J. Casas, ““Classification of polymers by determining of C1:C2: CN: H: N: O ratios by laser-induced plasma spectroscopy (LIPS), ” J. Casas,” Polym. Test. 27(6), 705–710 (2008).
[CrossRef]

Spectrochim. Acta A Mol. Biomol. Spectrosc. (1)

S. Acquaviva, “Simulation of emission molecular spectra by a semi-automatic programme package: the case of C2 and CN diatomic molecules emitting during laser ablation of a graphite target in nitrogen environment,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 60(8-9), 2079–2086 (2004).
[CrossRef] [PubMed]

Spectrochim. Acta, B At. Spectrosc. (6)

S. Abdelli-Messaci, T. Kerdja, A. Bendib, and S. Malek, “CN emission spectroscopy study of carbon plasma in nitrogen environment,” Spectrochim. Acta, B At. Spectrosc. 60(7-8), 955–959 (2005).
[CrossRef]

J. Goujon, A. Giakoumaki, V. Piñon, O. Musset, D. Anglos, E. Georgiou, and J. P. Boquillon, “A compact and portable laser-induced breakdown spectroscopy instrument for single and double pulse applications,” Spectrochim. Acta, B At. Spectrosc. 63(10), 1091–1096 (2008).
[CrossRef]

R. Krasniker, V. Bulatov, and I. Schechter, “Study of matrix effects in laser plasma spectroscopy by shock wave propagation,” Spectrochim. Acta, B At. Spectrosc. 56(6), 609–618 (2001).
[CrossRef]

V. Babushok, F. Deluciajr, P. Dagdigian, and A. Miziolek, “Experimental and kinetic modeling study of the laser-induced breakdown spectroscopy plume from metallic lead in argon,” Spectrochim. Acta, B At. Spectrosc. 60(7-8), 926–934 (2005).
[CrossRef]

M. Baudelet, M. Boueri, J. Yu, S. S. Mao, V. Piscitelli, X. L. Mao, and R. E. Russo, “Time-resolved ultraviolet laser-induced breakdown spectroscopy for organic material analysis,” Spectrochim. Acta, B At. Spectrosc. 62(12), 1329–1334 (2007).
[CrossRef]

P. Lucena, A. Dona, L. M. Tobaria, and J. J. Laserna, “New challenges and insights in the detection and spectral identification of organic explosives by laser induced breakdown spectroscopy,” Spectrochim. Acta, B At. Spectrosc. 66(1), 12–20 (2011).
[CrossRef]

Other (6)

K. C. Xie, Coal Structure and Its Reactivity (Science Press, Beijing, 2002) (in Chinese).

F. Y. Wang and Z. Y. Wu, The Manual of the Using of Coal Fly Ash (China Electric Power Press, Beijing, 1997) (in Chinese).

Fertilizer and Soil Conditioner National Standardization Technical Committee, “Determination of potassium content for compound fertilizers potassium tetraphenylborate gravimetric method,”·GB/T8574[S] (2002) (in Chinese).

“NIST: Atomic Spectra Database Lines Form,” http://physics.nist.gov/PhysRefData/ASD/lines_form.html .

D. A. Cremers and L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy (Wiley, Chichester, 2006).

J. P. Singh and S. N. Thakur, Laser-Induced Breakdown Spectroscopy (Elsevier Science, Amsterdam, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic diagram of LIBS experimental system.

Fig. 2
Fig. 2

Molecular formula and chemical structure for the investigated solid materials: (a) graphite, C-C bonds (b) P-Aminobenzene sulfonic acid anhydrous C-C, C = C, C-N bonds (c) Urea, C-N bonds (d) Coal chemical structure model proposed by Wiser [19], C-C,C = C,C-N bonds

Fig. 3
Fig. 3

C2 Molecular emission spectroscopy of (a) graphite, (b) P-Aminobenzene sulfonic acid anhydrous, (c) urea, (d) coal in the range of 462–518nm.

Fig. 4
Fig. 4

Carbon atomic emission spectroscopy of coal sample in the range of 192–249nm.

Fig. 5
Fig. 5

CN Molecular emission spectroscopy of (a) graphite, (b) P-Aminobenzene sulfonic acid anhydrous, (c) urea, (d) coal in the range of 355–390nm.

Fig. 6
Fig. 6

Comparison of intensity rations of the strongest emission line CN 388.3nm between air and argon flow condition.

Fig. 7
Fig. 7

Comparison of CN Molecular emission spectroscopy of graphite, ammonium dihydrogen phosphate and the mixture of both under the argon condition

Tables (2)

Tables Icon

Table 1 Peak wavelength of neutral atomic carbon emission lines

Tables Icon

Table 2 Peak wavelength of molecular bands of the emission lines

Metrics