Abstract

We report record-high fundamental mode output power of 8 mW at 0 °C and 1.5 mW at 100°C achieved with wafer-fused InAlGaAs-InP/AlGaAs-GaAs 1550 nm VCSELs incorporating a re-grown tunnel junction and un-doped AlGaAs/GaAs distributed Bragg reflectors. A broad wavelength tuning range of 15 nm by current variation and wavelength setting in a spectral range of 40 nm on the same VCSEL wafer are demonstrated as well. This performance positions wafer-fused VCSELs as prime candidates for many applications in low power consumption, “green” photonics.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Kapon and A. Sirbu, “Long-wavelength VCSELs: Power-efficient answer,” Nat. Photonics 3(1), 27–29 (2009).
    [CrossRef]
  2. R. Nabiev, http//archives.sensorsmag com/articles (2003).
  3. N. Nishiyama, C. Caneau, J. D. Downie, M. Sauer, and C.-E. Zah, “10-Gbps 1.3 and 1.55-μm InP- based VCSELs: 85°C 10-km error-free transmission and room temperature 40-km transmission at 1.55- μm with EDC,” in Proceedings of OFC (2006), paper PDP 23.
  4. W. Hofmann, N. H. Zhu, M. Ortsiefer, G. Bohm, J. Rosskopf, L. Chao, S. Zhang, M. Maute, and M.-C. Amann, “10-Gb/s data transmission using BSB passivated 1.55- μm InGaAlAs-InP VCSELs,” IEEE Photon. Technol. Lett. 18(2), 424–426 (2006).
    [CrossRef]
  5. J. P. Debray, N. Bouche, R. Le Roux, R. Raj, and M. Quillec, “Monolithic vertical cavity device lasing at 1.55 μm in InGaAlAs system,” Electron. Lett. 33(10), 868–869 (1997).
    [CrossRef]
  6. M.-C. Amann, “Progress in 1550 nm VCSELs,” in Proceedings of ECOC (2007), paper Wd 8.1.1.
  7. M.-R. Park, O.-K. Kwon, W.-S. Han, K.-H. Lee, S.-J. Park, and B.-S. Yoo, “All-epitaxial InAlGaAs-InP VCSELs in the 1.3–1.6-/spl μ /m wavelength range for CWDM band applications,” IEEE Photon. Technol. Lett. 18(16), 1717–1719 (2006).
    [CrossRef]
  8. A. Syrbu, Mereuta, V. Iakovlev, A. Caliman, P.Royo, E.Kapon, “10 Gbps VCSELs with High Single Mode Output in 1310 nm and 1550 nm Wavelength Bands,” Paper OThS2, OFC-2008, San-Diego, 2008.
  9. A. Mereuta, G. Suruceanu, A. Caliman, V. Iacovlev, A. Sirbu, and E. Kapon, “10-Gb/s and 10-km error-free transmission up to 100°C with 1.3-μm wavelength wafer-fused VCSELs,” Opt. Express 17(15), 12981–12986 (2009).
    [CrossRef] [PubMed]
  10. V. Jayaraman, M. Mehta, A. W. Jackson, S. Wu, Y. Okuno, J. Piprek, and J. E. Bowers, “High power 1320 nm wafer bonded VCSELs with tunnel junctions,” IEEE Photon. Technol. Lett. 15(11), 1495–1497 (2003).
    [CrossRef]
  11. A. Mircea, A. Caliman, V. Iakovlev, A. Mereuta, G. Suruceanu, C.-A. Berseth, P. Royo, A. Syrbu, and E. Kapon, “Cavity mode—gain peak tradeoff for 1320-nm wafer-fused VCSELs with 3-mW single-mode emission power and 10-Gb/s modulation speed up to 70°C,” IEEE Photon. Technol. Lett. 19(2), 121–123 (2007).
    [CrossRef]
  12. T. Gruendl, M. Mueller, K. Geiger, C. Grasse, G. Boehm, R. Meyer, and M. C. Amann, “High-Power BCB Encapsulated VCSELs based on InP,” in Proceedings of CLEO: Science and Innovations (2011), paper CTuP1.
  13. A. Syrbu, A. Mircea, A. Mereuta, A. Caliman, C.-A. Berseth, G. Suruceanu, V. Iakovlev, M. Achtenhagen, A. Rudra, and E. Kapon, “1.5 mW single-mode operation of wafer-fused 1550 nm VCSELs,” IEEE Photon. Technol. Lett. 16(5), 1230–1232 (2004).
    [CrossRef]
  14. V. Iakovlev, G. Suruceanu, A. Caliman, A. Mereuta, A. Mircea, C.-A. Berseth, A. Syrbu, A. Rudra, and E. Kapon, “High-performance single-mode VCSELs in the 1310-nm waveband,” IEEE Photon. Technol. Lett. 17(5), 947–949 (2005).
    [CrossRef]
  15. A. Mereuta, A. Sirbu, V. Iakovelv, A. Rudra, A. Caliman, G. Suruceanu, C.-A. Berseth, E. Deichsel, and E. Kapon, “1.5 μm VCSEL structure optimization for high-power and high-temperature operation,” Journal of Crystal Growth, Volume 272,” Issues 1–4(10), 520–525 (2004).
  16. A. Sirbu, V. Iakovelv, A. Mereuta, A. Caliman, G. Suruceanu, and E. Kapon, “Wafer-fused heterostructures: application to vertical cavity surface-emitting lasers emitting in the 1310 nm band,” Semicond. Sci. Technol. 26(1), 014016 (2011).
    [CrossRef]

2011 (1)

A. Sirbu, V. Iakovelv, A. Mereuta, A. Caliman, G. Suruceanu, and E. Kapon, “Wafer-fused heterostructures: application to vertical cavity surface-emitting lasers emitting in the 1310 nm band,” Semicond. Sci. Technol. 26(1), 014016 (2011).
[CrossRef]

2009 (2)

2007 (1)

A. Mircea, A. Caliman, V. Iakovlev, A. Mereuta, G. Suruceanu, C.-A. Berseth, P. Royo, A. Syrbu, and E. Kapon, “Cavity mode—gain peak tradeoff for 1320-nm wafer-fused VCSELs with 3-mW single-mode emission power and 10-Gb/s modulation speed up to 70°C,” IEEE Photon. Technol. Lett. 19(2), 121–123 (2007).
[CrossRef]

2006 (2)

W. Hofmann, N. H. Zhu, M. Ortsiefer, G. Bohm, J. Rosskopf, L. Chao, S. Zhang, M. Maute, and M.-C. Amann, “10-Gb/s data transmission using BSB passivated 1.55- μm InGaAlAs-InP VCSELs,” IEEE Photon. Technol. Lett. 18(2), 424–426 (2006).
[CrossRef]

M.-R. Park, O.-K. Kwon, W.-S. Han, K.-H. Lee, S.-J. Park, and B.-S. Yoo, “All-epitaxial InAlGaAs-InP VCSELs in the 1.3–1.6-/spl μ /m wavelength range for CWDM band applications,” IEEE Photon. Technol. Lett. 18(16), 1717–1719 (2006).
[CrossRef]

2005 (1)

V. Iakovlev, G. Suruceanu, A. Caliman, A. Mereuta, A. Mircea, C.-A. Berseth, A. Syrbu, A. Rudra, and E. Kapon, “High-performance single-mode VCSELs in the 1310-nm waveband,” IEEE Photon. Technol. Lett. 17(5), 947–949 (2005).
[CrossRef]

2004 (2)

A. Mereuta, A. Sirbu, V. Iakovelv, A. Rudra, A. Caliman, G. Suruceanu, C.-A. Berseth, E. Deichsel, and E. Kapon, “1.5 μm VCSEL structure optimization for high-power and high-temperature operation,” Journal of Crystal Growth, Volume 272,” Issues 1–4(10), 520–525 (2004).

A. Syrbu, A. Mircea, A. Mereuta, A. Caliman, C.-A. Berseth, G. Suruceanu, V. Iakovlev, M. Achtenhagen, A. Rudra, and E. Kapon, “1.5 mW single-mode operation of wafer-fused 1550 nm VCSELs,” IEEE Photon. Technol. Lett. 16(5), 1230–1232 (2004).
[CrossRef]

2003 (1)

V. Jayaraman, M. Mehta, A. W. Jackson, S. Wu, Y. Okuno, J. Piprek, and J. E. Bowers, “High power 1320 nm wafer bonded VCSELs with tunnel junctions,” IEEE Photon. Technol. Lett. 15(11), 1495–1497 (2003).
[CrossRef]

1997 (1)

J. P. Debray, N. Bouche, R. Le Roux, R. Raj, and M. Quillec, “Monolithic vertical cavity device lasing at 1.55 μm in InGaAlAs system,” Electron. Lett. 33(10), 868–869 (1997).
[CrossRef]

Achtenhagen, M.

A. Syrbu, A. Mircea, A. Mereuta, A. Caliman, C.-A. Berseth, G. Suruceanu, V. Iakovlev, M. Achtenhagen, A. Rudra, and E. Kapon, “1.5 mW single-mode operation of wafer-fused 1550 nm VCSELs,” IEEE Photon. Technol. Lett. 16(5), 1230–1232 (2004).
[CrossRef]

Amann, M.-C.

W. Hofmann, N. H. Zhu, M. Ortsiefer, G. Bohm, J. Rosskopf, L. Chao, S. Zhang, M. Maute, and M.-C. Amann, “10-Gb/s data transmission using BSB passivated 1.55- μm InGaAlAs-InP VCSELs,” IEEE Photon. Technol. Lett. 18(2), 424–426 (2006).
[CrossRef]

Berseth, C.-A.

A. Mircea, A. Caliman, V. Iakovlev, A. Mereuta, G. Suruceanu, C.-A. Berseth, P. Royo, A. Syrbu, and E. Kapon, “Cavity mode—gain peak tradeoff for 1320-nm wafer-fused VCSELs with 3-mW single-mode emission power and 10-Gb/s modulation speed up to 70°C,” IEEE Photon. Technol. Lett. 19(2), 121–123 (2007).
[CrossRef]

V. Iakovlev, G. Suruceanu, A. Caliman, A. Mereuta, A. Mircea, C.-A. Berseth, A. Syrbu, A. Rudra, and E. Kapon, “High-performance single-mode VCSELs in the 1310-nm waveband,” IEEE Photon. Technol. Lett. 17(5), 947–949 (2005).
[CrossRef]

A. Syrbu, A. Mircea, A. Mereuta, A. Caliman, C.-A. Berseth, G. Suruceanu, V. Iakovlev, M. Achtenhagen, A. Rudra, and E. Kapon, “1.5 mW single-mode operation of wafer-fused 1550 nm VCSELs,” IEEE Photon. Technol. Lett. 16(5), 1230–1232 (2004).
[CrossRef]

A. Mereuta, A. Sirbu, V. Iakovelv, A. Rudra, A. Caliman, G. Suruceanu, C.-A. Berseth, E. Deichsel, and E. Kapon, “1.5 μm VCSEL structure optimization for high-power and high-temperature operation,” Journal of Crystal Growth, Volume 272,” Issues 1–4(10), 520–525 (2004).

Bohm, G.

W. Hofmann, N. H. Zhu, M. Ortsiefer, G. Bohm, J. Rosskopf, L. Chao, S. Zhang, M. Maute, and M.-C. Amann, “10-Gb/s data transmission using BSB passivated 1.55- μm InGaAlAs-InP VCSELs,” IEEE Photon. Technol. Lett. 18(2), 424–426 (2006).
[CrossRef]

Bouche, N.

J. P. Debray, N. Bouche, R. Le Roux, R. Raj, and M. Quillec, “Monolithic vertical cavity device lasing at 1.55 μm in InGaAlAs system,” Electron. Lett. 33(10), 868–869 (1997).
[CrossRef]

Bowers, J. E.

V. Jayaraman, M. Mehta, A. W. Jackson, S. Wu, Y. Okuno, J. Piprek, and J. E. Bowers, “High power 1320 nm wafer bonded VCSELs with tunnel junctions,” IEEE Photon. Technol. Lett. 15(11), 1495–1497 (2003).
[CrossRef]

Caliman, A.

A. Sirbu, V. Iakovelv, A. Mereuta, A. Caliman, G. Suruceanu, and E. Kapon, “Wafer-fused heterostructures: application to vertical cavity surface-emitting lasers emitting in the 1310 nm band,” Semicond. Sci. Technol. 26(1), 014016 (2011).
[CrossRef]

A. Mereuta, G. Suruceanu, A. Caliman, V. Iacovlev, A. Sirbu, and E. Kapon, “10-Gb/s and 10-km error-free transmission up to 100°C with 1.3-μm wavelength wafer-fused VCSELs,” Opt. Express 17(15), 12981–12986 (2009).
[CrossRef] [PubMed]

A. Mircea, A. Caliman, V. Iakovlev, A. Mereuta, G. Suruceanu, C.-A. Berseth, P. Royo, A. Syrbu, and E. Kapon, “Cavity mode—gain peak tradeoff for 1320-nm wafer-fused VCSELs with 3-mW single-mode emission power and 10-Gb/s modulation speed up to 70°C,” IEEE Photon. Technol. Lett. 19(2), 121–123 (2007).
[CrossRef]

V. Iakovlev, G. Suruceanu, A. Caliman, A. Mereuta, A. Mircea, C.-A. Berseth, A. Syrbu, A. Rudra, and E. Kapon, “High-performance single-mode VCSELs in the 1310-nm waveband,” IEEE Photon. Technol. Lett. 17(5), 947–949 (2005).
[CrossRef]

A. Mereuta, A. Sirbu, V. Iakovelv, A. Rudra, A. Caliman, G. Suruceanu, C.-A. Berseth, E. Deichsel, and E. Kapon, “1.5 μm VCSEL structure optimization for high-power and high-temperature operation,” Journal of Crystal Growth, Volume 272,” Issues 1–4(10), 520–525 (2004).

A. Syrbu, A. Mircea, A. Mereuta, A. Caliman, C.-A. Berseth, G. Suruceanu, V. Iakovlev, M. Achtenhagen, A. Rudra, and E. Kapon, “1.5 mW single-mode operation of wafer-fused 1550 nm VCSELs,” IEEE Photon. Technol. Lett. 16(5), 1230–1232 (2004).
[CrossRef]

Chao, L.

W. Hofmann, N. H. Zhu, M. Ortsiefer, G. Bohm, J. Rosskopf, L. Chao, S. Zhang, M. Maute, and M.-C. Amann, “10-Gb/s data transmission using BSB passivated 1.55- μm InGaAlAs-InP VCSELs,” IEEE Photon. Technol. Lett. 18(2), 424–426 (2006).
[CrossRef]

Debray, J. P.

J. P. Debray, N. Bouche, R. Le Roux, R. Raj, and M. Quillec, “Monolithic vertical cavity device lasing at 1.55 μm in InGaAlAs system,” Electron. Lett. 33(10), 868–869 (1997).
[CrossRef]

Deichsel, E.

A. Mereuta, A. Sirbu, V. Iakovelv, A. Rudra, A. Caliman, G. Suruceanu, C.-A. Berseth, E. Deichsel, and E. Kapon, “1.5 μm VCSEL structure optimization for high-power and high-temperature operation,” Journal of Crystal Growth, Volume 272,” Issues 1–4(10), 520–525 (2004).

Han, W.-S.

M.-R. Park, O.-K. Kwon, W.-S. Han, K.-H. Lee, S.-J. Park, and B.-S. Yoo, “All-epitaxial InAlGaAs-InP VCSELs in the 1.3–1.6-/spl μ /m wavelength range for CWDM band applications,” IEEE Photon. Technol. Lett. 18(16), 1717–1719 (2006).
[CrossRef]

Hofmann, W.

W. Hofmann, N. H. Zhu, M. Ortsiefer, G. Bohm, J. Rosskopf, L. Chao, S. Zhang, M. Maute, and M.-C. Amann, “10-Gb/s data transmission using BSB passivated 1.55- μm InGaAlAs-InP VCSELs,” IEEE Photon. Technol. Lett. 18(2), 424–426 (2006).
[CrossRef]

Iacovlev, V.

Iakovelv, V.

A. Sirbu, V. Iakovelv, A. Mereuta, A. Caliman, G. Suruceanu, and E. Kapon, “Wafer-fused heterostructures: application to vertical cavity surface-emitting lasers emitting in the 1310 nm band,” Semicond. Sci. Technol. 26(1), 014016 (2011).
[CrossRef]

A. Mereuta, A. Sirbu, V. Iakovelv, A. Rudra, A. Caliman, G. Suruceanu, C.-A. Berseth, E. Deichsel, and E. Kapon, “1.5 μm VCSEL structure optimization for high-power and high-temperature operation,” Journal of Crystal Growth, Volume 272,” Issues 1–4(10), 520–525 (2004).

Iakovlev, V.

A. Mircea, A. Caliman, V. Iakovlev, A. Mereuta, G. Suruceanu, C.-A. Berseth, P. Royo, A. Syrbu, and E. Kapon, “Cavity mode—gain peak tradeoff for 1320-nm wafer-fused VCSELs with 3-mW single-mode emission power and 10-Gb/s modulation speed up to 70°C,” IEEE Photon. Technol. Lett. 19(2), 121–123 (2007).
[CrossRef]

V. Iakovlev, G. Suruceanu, A. Caliman, A. Mereuta, A. Mircea, C.-A. Berseth, A. Syrbu, A. Rudra, and E. Kapon, “High-performance single-mode VCSELs in the 1310-nm waveband,” IEEE Photon. Technol. Lett. 17(5), 947–949 (2005).
[CrossRef]

A. Syrbu, A. Mircea, A. Mereuta, A. Caliman, C.-A. Berseth, G. Suruceanu, V. Iakovlev, M. Achtenhagen, A. Rudra, and E. Kapon, “1.5 mW single-mode operation of wafer-fused 1550 nm VCSELs,” IEEE Photon. Technol. Lett. 16(5), 1230–1232 (2004).
[CrossRef]

Jackson, A. W.

V. Jayaraman, M. Mehta, A. W. Jackson, S. Wu, Y. Okuno, J. Piprek, and J. E. Bowers, “High power 1320 nm wafer bonded VCSELs with tunnel junctions,” IEEE Photon. Technol. Lett. 15(11), 1495–1497 (2003).
[CrossRef]

Jayaraman, V.

V. Jayaraman, M. Mehta, A. W. Jackson, S. Wu, Y. Okuno, J. Piprek, and J. E. Bowers, “High power 1320 nm wafer bonded VCSELs with tunnel junctions,” IEEE Photon. Technol. Lett. 15(11), 1495–1497 (2003).
[CrossRef]

Kapon, E.

A. Sirbu, V. Iakovelv, A. Mereuta, A. Caliman, G. Suruceanu, and E. Kapon, “Wafer-fused heterostructures: application to vertical cavity surface-emitting lasers emitting in the 1310 nm band,” Semicond. Sci. Technol. 26(1), 014016 (2011).
[CrossRef]

A. Mereuta, G. Suruceanu, A. Caliman, V. Iacovlev, A. Sirbu, and E. Kapon, “10-Gb/s and 10-km error-free transmission up to 100°C with 1.3-μm wavelength wafer-fused VCSELs,” Opt. Express 17(15), 12981–12986 (2009).
[CrossRef] [PubMed]

E. Kapon and A. Sirbu, “Long-wavelength VCSELs: Power-efficient answer,” Nat. Photonics 3(1), 27–29 (2009).
[CrossRef]

A. Mircea, A. Caliman, V. Iakovlev, A. Mereuta, G. Suruceanu, C.-A. Berseth, P. Royo, A. Syrbu, and E. Kapon, “Cavity mode—gain peak tradeoff for 1320-nm wafer-fused VCSELs with 3-mW single-mode emission power and 10-Gb/s modulation speed up to 70°C,” IEEE Photon. Technol. Lett. 19(2), 121–123 (2007).
[CrossRef]

V. Iakovlev, G. Suruceanu, A. Caliman, A. Mereuta, A. Mircea, C.-A. Berseth, A. Syrbu, A. Rudra, and E. Kapon, “High-performance single-mode VCSELs in the 1310-nm waveband,” IEEE Photon. Technol. Lett. 17(5), 947–949 (2005).
[CrossRef]

A. Syrbu, A. Mircea, A. Mereuta, A. Caliman, C.-A. Berseth, G. Suruceanu, V. Iakovlev, M. Achtenhagen, A. Rudra, and E. Kapon, “1.5 mW single-mode operation of wafer-fused 1550 nm VCSELs,” IEEE Photon. Technol. Lett. 16(5), 1230–1232 (2004).
[CrossRef]

A. Mereuta, A. Sirbu, V. Iakovelv, A. Rudra, A. Caliman, G. Suruceanu, C.-A. Berseth, E. Deichsel, and E. Kapon, “1.5 μm VCSEL structure optimization for high-power and high-temperature operation,” Journal of Crystal Growth, Volume 272,” Issues 1–4(10), 520–525 (2004).

Kwon, O.-K.

M.-R. Park, O.-K. Kwon, W.-S. Han, K.-H. Lee, S.-J. Park, and B.-S. Yoo, “All-epitaxial InAlGaAs-InP VCSELs in the 1.3–1.6-/spl μ /m wavelength range for CWDM band applications,” IEEE Photon. Technol. Lett. 18(16), 1717–1719 (2006).
[CrossRef]

Le Roux, R.

J. P. Debray, N. Bouche, R. Le Roux, R. Raj, and M. Quillec, “Monolithic vertical cavity device lasing at 1.55 μm in InGaAlAs system,” Electron. Lett. 33(10), 868–869 (1997).
[CrossRef]

Lee, K.-H.

M.-R. Park, O.-K. Kwon, W.-S. Han, K.-H. Lee, S.-J. Park, and B.-S. Yoo, “All-epitaxial InAlGaAs-InP VCSELs in the 1.3–1.6-/spl μ /m wavelength range for CWDM band applications,” IEEE Photon. Technol. Lett. 18(16), 1717–1719 (2006).
[CrossRef]

Maute, M.

W. Hofmann, N. H. Zhu, M. Ortsiefer, G. Bohm, J. Rosskopf, L. Chao, S. Zhang, M. Maute, and M.-C. Amann, “10-Gb/s data transmission using BSB passivated 1.55- μm InGaAlAs-InP VCSELs,” IEEE Photon. Technol. Lett. 18(2), 424–426 (2006).
[CrossRef]

Mehta, M.

V. Jayaraman, M. Mehta, A. W. Jackson, S. Wu, Y. Okuno, J. Piprek, and J. E. Bowers, “High power 1320 nm wafer bonded VCSELs with tunnel junctions,” IEEE Photon. Technol. Lett. 15(11), 1495–1497 (2003).
[CrossRef]

Mereuta, A.

A. Sirbu, V. Iakovelv, A. Mereuta, A. Caliman, G. Suruceanu, and E. Kapon, “Wafer-fused heterostructures: application to vertical cavity surface-emitting lasers emitting in the 1310 nm band,” Semicond. Sci. Technol. 26(1), 014016 (2011).
[CrossRef]

A. Mereuta, G. Suruceanu, A. Caliman, V. Iacovlev, A. Sirbu, and E. Kapon, “10-Gb/s and 10-km error-free transmission up to 100°C with 1.3-μm wavelength wafer-fused VCSELs,” Opt. Express 17(15), 12981–12986 (2009).
[CrossRef] [PubMed]

A. Mircea, A. Caliman, V. Iakovlev, A. Mereuta, G. Suruceanu, C.-A. Berseth, P. Royo, A. Syrbu, and E. Kapon, “Cavity mode—gain peak tradeoff for 1320-nm wafer-fused VCSELs with 3-mW single-mode emission power and 10-Gb/s modulation speed up to 70°C,” IEEE Photon. Technol. Lett. 19(2), 121–123 (2007).
[CrossRef]

V. Iakovlev, G. Suruceanu, A. Caliman, A. Mereuta, A. Mircea, C.-A. Berseth, A. Syrbu, A. Rudra, and E. Kapon, “High-performance single-mode VCSELs in the 1310-nm waveband,” IEEE Photon. Technol. Lett. 17(5), 947–949 (2005).
[CrossRef]

A. Mereuta, A. Sirbu, V. Iakovelv, A. Rudra, A. Caliman, G. Suruceanu, C.-A. Berseth, E. Deichsel, and E. Kapon, “1.5 μm VCSEL structure optimization for high-power and high-temperature operation,” Journal of Crystal Growth, Volume 272,” Issues 1–4(10), 520–525 (2004).

A. Syrbu, A. Mircea, A. Mereuta, A. Caliman, C.-A. Berseth, G. Suruceanu, V. Iakovlev, M. Achtenhagen, A. Rudra, and E. Kapon, “1.5 mW single-mode operation of wafer-fused 1550 nm VCSELs,” IEEE Photon. Technol. Lett. 16(5), 1230–1232 (2004).
[CrossRef]

Mircea, A.

A. Mircea, A. Caliman, V. Iakovlev, A. Mereuta, G. Suruceanu, C.-A. Berseth, P. Royo, A. Syrbu, and E. Kapon, “Cavity mode—gain peak tradeoff for 1320-nm wafer-fused VCSELs with 3-mW single-mode emission power and 10-Gb/s modulation speed up to 70°C,” IEEE Photon. Technol. Lett. 19(2), 121–123 (2007).
[CrossRef]

V. Iakovlev, G. Suruceanu, A. Caliman, A. Mereuta, A. Mircea, C.-A. Berseth, A. Syrbu, A. Rudra, and E. Kapon, “High-performance single-mode VCSELs in the 1310-nm waveband,” IEEE Photon. Technol. Lett. 17(5), 947–949 (2005).
[CrossRef]

A. Syrbu, A. Mircea, A. Mereuta, A. Caliman, C.-A. Berseth, G. Suruceanu, V. Iakovlev, M. Achtenhagen, A. Rudra, and E. Kapon, “1.5 mW single-mode operation of wafer-fused 1550 nm VCSELs,” IEEE Photon. Technol. Lett. 16(5), 1230–1232 (2004).
[CrossRef]

Okuno, Y.

V. Jayaraman, M. Mehta, A. W. Jackson, S. Wu, Y. Okuno, J. Piprek, and J. E. Bowers, “High power 1320 nm wafer bonded VCSELs with tunnel junctions,” IEEE Photon. Technol. Lett. 15(11), 1495–1497 (2003).
[CrossRef]

Ortsiefer, M.

W. Hofmann, N. H. Zhu, M. Ortsiefer, G. Bohm, J. Rosskopf, L. Chao, S. Zhang, M. Maute, and M.-C. Amann, “10-Gb/s data transmission using BSB passivated 1.55- μm InGaAlAs-InP VCSELs,” IEEE Photon. Technol. Lett. 18(2), 424–426 (2006).
[CrossRef]

Park, M.-R.

M.-R. Park, O.-K. Kwon, W.-S. Han, K.-H. Lee, S.-J. Park, and B.-S. Yoo, “All-epitaxial InAlGaAs-InP VCSELs in the 1.3–1.6-/spl μ /m wavelength range for CWDM band applications,” IEEE Photon. Technol. Lett. 18(16), 1717–1719 (2006).
[CrossRef]

Park, S.-J.

M.-R. Park, O.-K. Kwon, W.-S. Han, K.-H. Lee, S.-J. Park, and B.-S. Yoo, “All-epitaxial InAlGaAs-InP VCSELs in the 1.3–1.6-/spl μ /m wavelength range for CWDM band applications,” IEEE Photon. Technol. Lett. 18(16), 1717–1719 (2006).
[CrossRef]

Piprek, J.

V. Jayaraman, M. Mehta, A. W. Jackson, S. Wu, Y. Okuno, J. Piprek, and J. E. Bowers, “High power 1320 nm wafer bonded VCSELs with tunnel junctions,” IEEE Photon. Technol. Lett. 15(11), 1495–1497 (2003).
[CrossRef]

Quillec, M.

J. P. Debray, N. Bouche, R. Le Roux, R. Raj, and M. Quillec, “Monolithic vertical cavity device lasing at 1.55 μm in InGaAlAs system,” Electron. Lett. 33(10), 868–869 (1997).
[CrossRef]

Raj, R.

J. P. Debray, N. Bouche, R. Le Roux, R. Raj, and M. Quillec, “Monolithic vertical cavity device lasing at 1.55 μm in InGaAlAs system,” Electron. Lett. 33(10), 868–869 (1997).
[CrossRef]

Rosskopf, J.

W. Hofmann, N. H. Zhu, M. Ortsiefer, G. Bohm, J. Rosskopf, L. Chao, S. Zhang, M. Maute, and M.-C. Amann, “10-Gb/s data transmission using BSB passivated 1.55- μm InGaAlAs-InP VCSELs,” IEEE Photon. Technol. Lett. 18(2), 424–426 (2006).
[CrossRef]

Royo, P.

A. Mircea, A. Caliman, V. Iakovlev, A. Mereuta, G. Suruceanu, C.-A. Berseth, P. Royo, A. Syrbu, and E. Kapon, “Cavity mode—gain peak tradeoff for 1320-nm wafer-fused VCSELs with 3-mW single-mode emission power and 10-Gb/s modulation speed up to 70°C,” IEEE Photon. Technol. Lett. 19(2), 121–123 (2007).
[CrossRef]

Rudra, A.

V. Iakovlev, G. Suruceanu, A. Caliman, A. Mereuta, A. Mircea, C.-A. Berseth, A. Syrbu, A. Rudra, and E. Kapon, “High-performance single-mode VCSELs in the 1310-nm waveband,” IEEE Photon. Technol. Lett. 17(5), 947–949 (2005).
[CrossRef]

A. Mereuta, A. Sirbu, V. Iakovelv, A. Rudra, A. Caliman, G. Suruceanu, C.-A. Berseth, E. Deichsel, and E. Kapon, “1.5 μm VCSEL structure optimization for high-power and high-temperature operation,” Journal of Crystal Growth, Volume 272,” Issues 1–4(10), 520–525 (2004).

A. Syrbu, A. Mircea, A. Mereuta, A. Caliman, C.-A. Berseth, G. Suruceanu, V. Iakovlev, M. Achtenhagen, A. Rudra, and E. Kapon, “1.5 mW single-mode operation of wafer-fused 1550 nm VCSELs,” IEEE Photon. Technol. Lett. 16(5), 1230–1232 (2004).
[CrossRef]

Sirbu, A.

A. Sirbu, V. Iakovelv, A. Mereuta, A. Caliman, G. Suruceanu, and E. Kapon, “Wafer-fused heterostructures: application to vertical cavity surface-emitting lasers emitting in the 1310 nm band,” Semicond. Sci. Technol. 26(1), 014016 (2011).
[CrossRef]

E. Kapon and A. Sirbu, “Long-wavelength VCSELs: Power-efficient answer,” Nat. Photonics 3(1), 27–29 (2009).
[CrossRef]

A. Mereuta, G. Suruceanu, A. Caliman, V. Iacovlev, A. Sirbu, and E. Kapon, “10-Gb/s and 10-km error-free transmission up to 100°C with 1.3-μm wavelength wafer-fused VCSELs,” Opt. Express 17(15), 12981–12986 (2009).
[CrossRef] [PubMed]

A. Mereuta, A. Sirbu, V. Iakovelv, A. Rudra, A. Caliman, G. Suruceanu, C.-A. Berseth, E. Deichsel, and E. Kapon, “1.5 μm VCSEL structure optimization for high-power and high-temperature operation,” Journal of Crystal Growth, Volume 272,” Issues 1–4(10), 520–525 (2004).

Suruceanu, G.

A. Sirbu, V. Iakovelv, A. Mereuta, A. Caliman, G. Suruceanu, and E. Kapon, “Wafer-fused heterostructures: application to vertical cavity surface-emitting lasers emitting in the 1310 nm band,” Semicond. Sci. Technol. 26(1), 014016 (2011).
[CrossRef]

A. Mereuta, G. Suruceanu, A. Caliman, V. Iacovlev, A. Sirbu, and E. Kapon, “10-Gb/s and 10-km error-free transmission up to 100°C with 1.3-μm wavelength wafer-fused VCSELs,” Opt. Express 17(15), 12981–12986 (2009).
[CrossRef] [PubMed]

A. Mircea, A. Caliman, V. Iakovlev, A. Mereuta, G. Suruceanu, C.-A. Berseth, P. Royo, A. Syrbu, and E. Kapon, “Cavity mode—gain peak tradeoff for 1320-nm wafer-fused VCSELs with 3-mW single-mode emission power and 10-Gb/s modulation speed up to 70°C,” IEEE Photon. Technol. Lett. 19(2), 121–123 (2007).
[CrossRef]

V. Iakovlev, G. Suruceanu, A. Caliman, A. Mereuta, A. Mircea, C.-A. Berseth, A. Syrbu, A. Rudra, and E. Kapon, “High-performance single-mode VCSELs in the 1310-nm waveband,” IEEE Photon. Technol. Lett. 17(5), 947–949 (2005).
[CrossRef]

A. Mereuta, A. Sirbu, V. Iakovelv, A. Rudra, A. Caliman, G. Suruceanu, C.-A. Berseth, E. Deichsel, and E. Kapon, “1.5 μm VCSEL structure optimization for high-power and high-temperature operation,” Journal of Crystal Growth, Volume 272,” Issues 1–4(10), 520–525 (2004).

A. Syrbu, A. Mircea, A. Mereuta, A. Caliman, C.-A. Berseth, G. Suruceanu, V. Iakovlev, M. Achtenhagen, A. Rudra, and E. Kapon, “1.5 mW single-mode operation of wafer-fused 1550 nm VCSELs,” IEEE Photon. Technol. Lett. 16(5), 1230–1232 (2004).
[CrossRef]

Syrbu, A.

A. Mircea, A. Caliman, V. Iakovlev, A. Mereuta, G. Suruceanu, C.-A. Berseth, P. Royo, A. Syrbu, and E. Kapon, “Cavity mode—gain peak tradeoff for 1320-nm wafer-fused VCSELs with 3-mW single-mode emission power and 10-Gb/s modulation speed up to 70°C,” IEEE Photon. Technol. Lett. 19(2), 121–123 (2007).
[CrossRef]

V. Iakovlev, G. Suruceanu, A. Caliman, A. Mereuta, A. Mircea, C.-A. Berseth, A. Syrbu, A. Rudra, and E. Kapon, “High-performance single-mode VCSELs in the 1310-nm waveband,” IEEE Photon. Technol. Lett. 17(5), 947–949 (2005).
[CrossRef]

A. Syrbu, A. Mircea, A. Mereuta, A. Caliman, C.-A. Berseth, G. Suruceanu, V. Iakovlev, M. Achtenhagen, A. Rudra, and E. Kapon, “1.5 mW single-mode operation of wafer-fused 1550 nm VCSELs,” IEEE Photon. Technol. Lett. 16(5), 1230–1232 (2004).
[CrossRef]

Wu, S.

V. Jayaraman, M. Mehta, A. W. Jackson, S. Wu, Y. Okuno, J. Piprek, and J. E. Bowers, “High power 1320 nm wafer bonded VCSELs with tunnel junctions,” IEEE Photon. Technol. Lett. 15(11), 1495–1497 (2003).
[CrossRef]

Yoo, B.-S.

M.-R. Park, O.-K. Kwon, W.-S. Han, K.-H. Lee, S.-J. Park, and B.-S. Yoo, “All-epitaxial InAlGaAs-InP VCSELs in the 1.3–1.6-/spl μ /m wavelength range for CWDM band applications,” IEEE Photon. Technol. Lett. 18(16), 1717–1719 (2006).
[CrossRef]

Zhang, S.

W. Hofmann, N. H. Zhu, M. Ortsiefer, G. Bohm, J. Rosskopf, L. Chao, S. Zhang, M. Maute, and M.-C. Amann, “10-Gb/s data transmission using BSB passivated 1.55- μm InGaAlAs-InP VCSELs,” IEEE Photon. Technol. Lett. 18(2), 424–426 (2006).
[CrossRef]

Zhu, N. H.

W. Hofmann, N. H. Zhu, M. Ortsiefer, G. Bohm, J. Rosskopf, L. Chao, S. Zhang, M. Maute, and M.-C. Amann, “10-Gb/s data transmission using BSB passivated 1.55- μm InGaAlAs-InP VCSELs,” IEEE Photon. Technol. Lett. 18(2), 424–426 (2006).
[CrossRef]

Electron. Lett. (1)

J. P. Debray, N. Bouche, R. Le Roux, R. Raj, and M. Quillec, “Monolithic vertical cavity device lasing at 1.55 μm in InGaAlAs system,” Electron. Lett. 33(10), 868–869 (1997).
[CrossRef]

IEEE Photon. Technol. Lett. (6)

M.-R. Park, O.-K. Kwon, W.-S. Han, K.-H. Lee, S.-J. Park, and B.-S. Yoo, “All-epitaxial InAlGaAs-InP VCSELs in the 1.3–1.6-/spl μ /m wavelength range for CWDM band applications,” IEEE Photon. Technol. Lett. 18(16), 1717–1719 (2006).
[CrossRef]

W. Hofmann, N. H. Zhu, M. Ortsiefer, G. Bohm, J. Rosskopf, L. Chao, S. Zhang, M. Maute, and M.-C. Amann, “10-Gb/s data transmission using BSB passivated 1.55- μm InGaAlAs-InP VCSELs,” IEEE Photon. Technol. Lett. 18(2), 424–426 (2006).
[CrossRef]

A. Syrbu, A. Mircea, A. Mereuta, A. Caliman, C.-A. Berseth, G. Suruceanu, V. Iakovlev, M. Achtenhagen, A. Rudra, and E. Kapon, “1.5 mW single-mode operation of wafer-fused 1550 nm VCSELs,” IEEE Photon. Technol. Lett. 16(5), 1230–1232 (2004).
[CrossRef]

V. Iakovlev, G. Suruceanu, A. Caliman, A. Mereuta, A. Mircea, C.-A. Berseth, A. Syrbu, A. Rudra, and E. Kapon, “High-performance single-mode VCSELs in the 1310-nm waveband,” IEEE Photon. Technol. Lett. 17(5), 947–949 (2005).
[CrossRef]

V. Jayaraman, M. Mehta, A. W. Jackson, S. Wu, Y. Okuno, J. Piprek, and J. E. Bowers, “High power 1320 nm wafer bonded VCSELs with tunnel junctions,” IEEE Photon. Technol. Lett. 15(11), 1495–1497 (2003).
[CrossRef]

A. Mircea, A. Caliman, V. Iakovlev, A. Mereuta, G. Suruceanu, C.-A. Berseth, P. Royo, A. Syrbu, and E. Kapon, “Cavity mode—gain peak tradeoff for 1320-nm wafer-fused VCSELs with 3-mW single-mode emission power and 10-Gb/s modulation speed up to 70°C,” IEEE Photon. Technol. Lett. 19(2), 121–123 (2007).
[CrossRef]

Issues (1)

A. Mereuta, A. Sirbu, V. Iakovelv, A. Rudra, A. Caliman, G. Suruceanu, C.-A. Berseth, E. Deichsel, and E. Kapon, “1.5 μm VCSEL structure optimization for high-power and high-temperature operation,” Journal of Crystal Growth, Volume 272,” Issues 1–4(10), 520–525 (2004).

Nat. Photonics (1)

E. Kapon and A. Sirbu, “Long-wavelength VCSELs: Power-efficient answer,” Nat. Photonics 3(1), 27–29 (2009).
[CrossRef]

Opt. Express (1)

Semicond. Sci. Technol. (1)

A. Sirbu, V. Iakovelv, A. Mereuta, A. Caliman, G. Suruceanu, and E. Kapon, “Wafer-fused heterostructures: application to vertical cavity surface-emitting lasers emitting in the 1310 nm band,” Semicond. Sci. Technol. 26(1), 014016 (2011).
[CrossRef]

Other (5)

T. Gruendl, M. Mueller, K. Geiger, C. Grasse, G. Boehm, R. Meyer, and M. C. Amann, “High-Power BCB Encapsulated VCSELs based on InP,” in Proceedings of CLEO: Science and Innovations (2011), paper CTuP1.

A. Syrbu, Mereuta, V. Iakovlev, A. Caliman, P.Royo, E.Kapon, “10 Gbps VCSELs with High Single Mode Output in 1310 nm and 1550 nm Wavelength Bands,” Paper OThS2, OFC-2008, San-Diego, 2008.

R. Nabiev, http//archives.sensorsmag com/articles (2003).

N. Nishiyama, C. Caneau, J. D. Downie, M. Sauer, and C.-E. Zah, “10-Gbps 1.3 and 1.55-μm InP- based VCSELs: 85°C 10-km error-free transmission and room temperature 40-km transmission at 1.55- μm with EDC,” in Proceedings of OFC (2006), paper PDP 23.

M.-C. Amann, “Progress in 1550 nm VCSELs,” in Proceedings of ECOC (2007), paper Wd 8.1.1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic cross section of the wafer fused 1550 nm VCSEL. Cavity adjustment layers of thickness d1 and d2 are indicated.

Fig. 2
Fig. 2

(a) Emission wavelength (cavity mode) mapping on a double fused wafer fabricated using the cavity adjustment procedure described in the text; and (b) PL spectra at different temperatures with dashed lines indicating lasing wavelengths that correspond to the 4 cavities depicted on Fig. 2a.

Fig. 3
Fig. 3

LIV characteristics of VCSELs emitting at 1560 nm with 18 pairs in the top DBR (a) and 1580 nm with 20 pairs in the top DBR (b) at different temperatures. Insets show the emission spectra at room temperature and 15mA.

Fig. 4
Fig. 4

(a) Evolution of the emission spectra of a 1560 nm VCSEL with current at different temperatures; (b) VCSEL spectral line shape for a 1565 nm, device at 20°C and 2 mW emission power.

Fig. 5
Fig. 5

Light- current characteristic at 0°C (a) and emission spectra (b) of a 1560 nm device at different currents.

Metrics