Abstract

A multivariate optical computer has been constructed consisting of a spectrograph, digital micromirror device, and photomultiplier tube that is capable of determining absolute concentrations of individual components of a multivariate spectral model. We present experimental results on ternary mixtures, showing accurate quantification of chemical concentrations based on integrated intensities of fluorescence and Raman spectra measured with a single point detector. We additionally show in simulation that point measurements based on principal component spectra retain the ability to classify cancerous from noncancerous T cells.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. A. Lieber, S. K. Majumder, D. Billheimer, D. L. Ellis, and A. Mahadevan-Jansen, “Raman microspectroscopy for skin cancer detection in vitro,” J. Biomed. Opt. 13, 024013 (2008).
    [CrossRef] [PubMed]
  2. W.-C. Lin, S. A. Toms, M. Johnson, E. D. Jansen, and A. Mahadevan-Jansen, “In vivo brain tumor demarcation using optical spectroscopy,” Photochem. Photobiol. 73, 396–402 (2001).
    [CrossRef] [PubMed]
  3. Y. Sun, J. Phipps, D. S. Elson, H. Stoy, S. Tinling, J. Meier, B. Poirier, F. S. Chuang, D. G. Farwell, and L. Marcu, “Fluorescence lifetime imaging microscopy: in vivo application to diagnosis of oral carcinoma,” Opt.Lett. 34, 2081–2083 (2009).
    [CrossRef] [PubMed]
  4. B. D. Beier, R. G. Quivey, and A. J. Berger, “Identification of different bacterial species in biofilms using confocal Raman microscopy,” J. Biomed. Opt. 15, 066001 (2010).
    [CrossRef]
  5. M. Krause, P. Räsch, B. Radt, and J. Popp, “Localizing and identifying living bacteria in an abiotic environment by a combination of Raman and fluorescence microscopy,” Anal. Chem. 80, 8568–8575 (2008).
    [CrossRef] [PubMed]
  6. P. Rösch, M. Harz, M. Schmitt, K.-D. Peschke, O. Ronneberger, H. Burkhardt, H.-W. Motzkus, M. Lankers, S. Hofer, H. Thiele, and J. Pöpp, “Chemotaxonomic identification of single bacteria by micro-Raman spectroscopy: application to clean-room-relevant biological contaminations,” Appl. Environ. Microbiol. 71, 1626–1637 (2005).
    [CrossRef] [PubMed]
  7. W. F. J. Vermaas, J. A. Timlin, H. D. T. Jones, M. B. Sinclair, L. T. Nieman, S. W. Hamad, D. K. Melgaard, and D. M. Haaland, “In vivo hyperspectral confocal fluorescence imaging to determine pigment localization and distribution in cyanobacterial cells,” Proc. Natl. Acad. Sci. U.S.A. 105, 4050–4055 (2008).
    [CrossRef] [PubMed]
  8. S. Patwardhan, S. Bloch, S. Achilefu, and J. Culver, “Time-dependent whole-body fluorescence tomography of probe bio-distributions in mice,” Opt. Express 13, 2564–2577 (2005).
    [CrossRef] [PubMed]
  9. M. V. Schulmerich, J. H. Cole, K. A. Dooley, M. D. Morris, J. M. Kreider, S. A. Goldstein, S. Srinivasan, and B. W. Pogue, “Noninvasive Raman tomographic imaging of canine bone tissue,” J. Biomed. Opt. 13, 020506 (2008).
    [CrossRef] [PubMed]
  10. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
    [CrossRef]
  11. K. M. Weinberger, E. Wiedenmann, S. Böhm, and W. Jilg, “Sensitive and accurate quantitation of hepatitis B virus DNA using a kinetic fluorescence detection system (TaqMan PCR),” J. Virol. Methods 85, 75–82 (2000).
    [CrossRef] [PubMed]
  12. H. Cho, B. R. Baker, S. Wachsmann-Hogiu, C. V. Pagba, T. A. Laurence, S. M. Lane, L. P. Lee, and J. B.-H. Tok, “Aptamer-based serrs sensor for thrombin detection,” Nano Lett. 8, 4386–4390 (2008).
    [CrossRef]
  13. J. W. Chan, D. S. Taylor, S. M. Lane, T. Zwerdling, J. Tuscano, and T. Huser, “Nondestructive identification of individual leukemia cells by laser trapping Raman spectroscopy,” Anal. Chem. 80, 2180–2187 (2008).
    [CrossRef] [PubMed]
  14. T. Chernenko, C. Matthäus, L. Milane, L. Quintero, M. Amiji, and M. Diem, “Label-free Raman spectral imaging of intracellular delivery and degradation of polymeric nanoparticle systems,” ACS Nano 3, 3552–3559 (2009).
    [CrossRef] [PubMed]
  15. J. R. Mourant, K. W. Short, S. Carpenter, N. Kunapareddy, L. Coburn, T. M. Powers, and J. P. Freyer, “Biochemical differences in tumorigenic and nontumorigenic cells measured by Raman and infrared spectroscopy,” J. Biomed. Opt. 10, 031106 (2005).
    [CrossRef] [PubMed]
  16. M. P. Nelson, J. F. Aust, J. A. Dobrowolski, P. G. Verly, and M. L. Myrick, “Multivariate optical computation for predictive spectroscopy,” Anal. Chem. 70, 73–82 (1998).
    [CrossRef] [PubMed]
  17. O. Soyemi, D. Eastwood, L. Zhang, H. Li, J. Karunamuni, P. Gemperline, R. A. Synowicki, and M. L. Myrick, “Design and testing of a multivariate optical element: the first demonstration of multivariate optical computing for predictive spectroscopy,” Anal. Chem. 73, 1069–1079 (2001).
    [CrossRef]
  18. F. G. Haibach, A. E. Greer, M. V. Schiza, R. J. Priore, O. O. Soyemi, and M. L. Myrick, “On-line reoptimization of filter designs for multivariate optical elements,” Appl. Opt. 42, 1833–1838 (2003).
    [CrossRef] [PubMed]
  19. F. G. Haibach and M. L. Myrick, “Precision in multivariate optical computing,” Appl. Opt. 43, 2130–2140 (2004).
    [CrossRef] [PubMed]
  20. N. Uzunbajakava, P. de Peinder, G. W. ’t Hooft, and A. T. M. van Gogh, “Low-cost spectroscopy with a variable multivariate optical element,” Anal. Chem. 78, 7302–7308 (2006).
    [CrossRef] [PubMed]
  21. B. M. Davis, A. J. Hemphill, D. Cebeci Maltaş, M. A. Zipper, P. Wang, and D. Ben-Amotz, “Multivariate hyper-spectral Raman imaging using compressive detection,” Anal. Chem. 0 (2011).
  22. N. T. Quyen, E. D. Silva, N. Q. Dao, and M. D. Jouan, “New Raman spectrometer using a digital micromirror device and a photomultiplier tube detector for rapid on-line industrial analysis. Part I: Description of the prototype and preliminary results,” Appl. Spectrosc. 62, 273–278 (2008).
    [CrossRef] [PubMed]
  23. P. H. C. Eilers, “A perfect smoother,” Anal. Chem. 75, 3631–3636 (2003).
    [CrossRef] [PubMed]
  24. J. W. Chan, D. S. Taylor, T. Zwerdling, S. M. Lane, K. Ihara, and T. Huser, “Micro-Raman spectroscopy detects individual neoplastic and normal hematopoietic cells,” Biophys. J. 90, 648–656 (2006).
    [CrossRef]

2011 (1)

B. M. Davis, A. J. Hemphill, D. Cebeci Maltaş, M. A. Zipper, P. Wang, and D. Ben-Amotz, “Multivariate hyper-spectral Raman imaging using compressive detection,” Anal. Chem. 0 (2011).

2010 (1)

B. D. Beier, R. G. Quivey, and A. J. Berger, “Identification of different bacterial species in biofilms using confocal Raman microscopy,” J. Biomed. Opt. 15, 066001 (2010).
[CrossRef]

2009 (2)

Y. Sun, J. Phipps, D. S. Elson, H. Stoy, S. Tinling, J. Meier, B. Poirier, F. S. Chuang, D. G. Farwell, and L. Marcu, “Fluorescence lifetime imaging microscopy: in vivo application to diagnosis of oral carcinoma,” Opt.Lett. 34, 2081–2083 (2009).
[CrossRef] [PubMed]

T. Chernenko, C. Matthäus, L. Milane, L. Quintero, M. Amiji, and M. Diem, “Label-free Raman spectral imaging of intracellular delivery and degradation of polymeric nanoparticle systems,” ACS Nano 3, 3552–3559 (2009).
[CrossRef] [PubMed]

2008 (7)

H. Cho, B. R. Baker, S. Wachsmann-Hogiu, C. V. Pagba, T. A. Laurence, S. M. Lane, L. P. Lee, and J. B.-H. Tok, “Aptamer-based serrs sensor for thrombin detection,” Nano Lett. 8, 4386–4390 (2008).
[CrossRef]

J. W. Chan, D. S. Taylor, S. M. Lane, T. Zwerdling, J. Tuscano, and T. Huser, “Nondestructive identification of individual leukemia cells by laser trapping Raman spectroscopy,” Anal. Chem. 80, 2180–2187 (2008).
[CrossRef] [PubMed]

W. F. J. Vermaas, J. A. Timlin, H. D. T. Jones, M. B. Sinclair, L. T. Nieman, S. W. Hamad, D. K. Melgaard, and D. M. Haaland, “In vivo hyperspectral confocal fluorescence imaging to determine pigment localization and distribution in cyanobacterial cells,” Proc. Natl. Acad. Sci. U.S.A. 105, 4050–4055 (2008).
[CrossRef] [PubMed]

M. V. Schulmerich, J. H. Cole, K. A. Dooley, M. D. Morris, J. M. Kreider, S. A. Goldstein, S. Srinivasan, and B. W. Pogue, “Noninvasive Raman tomographic imaging of canine bone tissue,” J. Biomed. Opt. 13, 020506 (2008).
[CrossRef] [PubMed]

M. Krause, P. Räsch, B. Radt, and J. Popp, “Localizing and identifying living bacteria in an abiotic environment by a combination of Raman and fluorescence microscopy,” Anal. Chem. 80, 8568–8575 (2008).
[CrossRef] [PubMed]

C. A. Lieber, S. K. Majumder, D. Billheimer, D. L. Ellis, and A. Mahadevan-Jansen, “Raman microspectroscopy for skin cancer detection in vitro,” J. Biomed. Opt. 13, 024013 (2008).
[CrossRef] [PubMed]

N. T. Quyen, E. D. Silva, N. Q. Dao, and M. D. Jouan, “New Raman spectrometer using a digital micromirror device and a photomultiplier tube detector for rapid on-line industrial analysis. Part I: Description of the prototype and preliminary results,” Appl. Spectrosc. 62, 273–278 (2008).
[CrossRef] [PubMed]

2006 (2)

J. W. Chan, D. S. Taylor, T. Zwerdling, S. M. Lane, K. Ihara, and T. Huser, “Micro-Raman spectroscopy detects individual neoplastic and normal hematopoietic cells,” Biophys. J. 90, 648–656 (2006).
[CrossRef]

N. Uzunbajakava, P. de Peinder, G. W. ’t Hooft, and A. T. M. van Gogh, “Low-cost spectroscopy with a variable multivariate optical element,” Anal. Chem. 78, 7302–7308 (2006).
[CrossRef] [PubMed]

2005 (3)

J. R. Mourant, K. W. Short, S. Carpenter, N. Kunapareddy, L. Coburn, T. M. Powers, and J. P. Freyer, “Biochemical differences in tumorigenic and nontumorigenic cells measured by Raman and infrared spectroscopy,” J. Biomed. Opt. 10, 031106 (2005).
[CrossRef] [PubMed]

P. Rösch, M. Harz, M. Schmitt, K.-D. Peschke, O. Ronneberger, H. Burkhardt, H.-W. Motzkus, M. Lankers, S. Hofer, H. Thiele, and J. Pöpp, “Chemotaxonomic identification of single bacteria by micro-Raman spectroscopy: application to clean-room-relevant biological contaminations,” Appl. Environ. Microbiol. 71, 1626–1637 (2005).
[CrossRef] [PubMed]

S. Patwardhan, S. Bloch, S. Achilefu, and J. Culver, “Time-dependent whole-body fluorescence tomography of probe bio-distributions in mice,” Opt. Express 13, 2564–2577 (2005).
[CrossRef] [PubMed]

2004 (1)

2003 (2)

2001 (2)

O. Soyemi, D. Eastwood, L. Zhang, H. Li, J. Karunamuni, P. Gemperline, R. A. Synowicki, and M. L. Myrick, “Design and testing of a multivariate optical element: the first demonstration of multivariate optical computing for predictive spectroscopy,” Anal. Chem. 73, 1069–1079 (2001).
[CrossRef]

W.-C. Lin, S. A. Toms, M. Johnson, E. D. Jansen, and A. Mahadevan-Jansen, “In vivo brain tumor demarcation using optical spectroscopy,” Photochem. Photobiol. 73, 396–402 (2001).
[CrossRef] [PubMed]

2000 (1)

K. M. Weinberger, E. Wiedenmann, S. Böhm, and W. Jilg, “Sensitive and accurate quantitation of hepatitis B virus DNA using a kinetic fluorescence detection system (TaqMan PCR),” J. Virol. Methods 85, 75–82 (2000).
[CrossRef] [PubMed]

1998 (1)

M. P. Nelson, J. F. Aust, J. A. Dobrowolski, P. G. Verly, and M. L. Myrick, “Multivariate optical computation for predictive spectroscopy,” Anal. Chem. 70, 73–82 (1998).
[CrossRef] [PubMed]

1997 (1)

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
[CrossRef]

’t Hooft, G. W.

N. Uzunbajakava, P. de Peinder, G. W. ’t Hooft, and A. T. M. van Gogh, “Low-cost spectroscopy with a variable multivariate optical element,” Anal. Chem. 78, 7302–7308 (2006).
[CrossRef] [PubMed]

Achilefu, S.

Amiji, M.

T. Chernenko, C. Matthäus, L. Milane, L. Quintero, M. Amiji, and M. Diem, “Label-free Raman spectral imaging of intracellular delivery and degradation of polymeric nanoparticle systems,” ACS Nano 3, 3552–3559 (2009).
[CrossRef] [PubMed]

Aust, J. F.

M. P. Nelson, J. F. Aust, J. A. Dobrowolski, P. G. Verly, and M. L. Myrick, “Multivariate optical computation for predictive spectroscopy,” Anal. Chem. 70, 73–82 (1998).
[CrossRef] [PubMed]

Baker, B. R.

H. Cho, B. R. Baker, S. Wachsmann-Hogiu, C. V. Pagba, T. A. Laurence, S. M. Lane, L. P. Lee, and J. B.-H. Tok, “Aptamer-based serrs sensor for thrombin detection,” Nano Lett. 8, 4386–4390 (2008).
[CrossRef]

Beier, B. D.

B. D. Beier, R. G. Quivey, and A. J. Berger, “Identification of different bacterial species in biofilms using confocal Raman microscopy,” J. Biomed. Opt. 15, 066001 (2010).
[CrossRef]

Ben-Amotz, D.

B. M. Davis, A. J. Hemphill, D. Cebeci Maltaş, M. A. Zipper, P. Wang, and D. Ben-Amotz, “Multivariate hyper-spectral Raman imaging using compressive detection,” Anal. Chem. 0 (2011).

Berger, A. J.

B. D. Beier, R. G. Quivey, and A. J. Berger, “Identification of different bacterial species in biofilms using confocal Raman microscopy,” J. Biomed. Opt. 15, 066001 (2010).
[CrossRef]

Billheimer, D.

C. A. Lieber, S. K. Majumder, D. Billheimer, D. L. Ellis, and A. Mahadevan-Jansen, “Raman microspectroscopy for skin cancer detection in vitro,” J. Biomed. Opt. 13, 024013 (2008).
[CrossRef] [PubMed]

Bloch, S.

Böhm, S.

K. M. Weinberger, E. Wiedenmann, S. Böhm, and W. Jilg, “Sensitive and accurate quantitation of hepatitis B virus DNA using a kinetic fluorescence detection system (TaqMan PCR),” J. Virol. Methods 85, 75–82 (2000).
[CrossRef] [PubMed]

Burkhardt, H.

P. Rösch, M. Harz, M. Schmitt, K.-D. Peschke, O. Ronneberger, H. Burkhardt, H.-W. Motzkus, M. Lankers, S. Hofer, H. Thiele, and J. Pöpp, “Chemotaxonomic identification of single bacteria by micro-Raman spectroscopy: application to clean-room-relevant biological contaminations,” Appl. Environ. Microbiol. 71, 1626–1637 (2005).
[CrossRef] [PubMed]

Carpenter, S.

J. R. Mourant, K. W. Short, S. Carpenter, N. Kunapareddy, L. Coburn, T. M. Powers, and J. P. Freyer, “Biochemical differences in tumorigenic and nontumorigenic cells measured by Raman and infrared spectroscopy,” J. Biomed. Opt. 10, 031106 (2005).
[CrossRef] [PubMed]

Cebeci Maltas, D.

B. M. Davis, A. J. Hemphill, D. Cebeci Maltaş, M. A. Zipper, P. Wang, and D. Ben-Amotz, “Multivariate hyper-spectral Raman imaging using compressive detection,” Anal. Chem. 0 (2011).

Chan, J. W.

J. W. Chan, D. S. Taylor, S. M. Lane, T. Zwerdling, J. Tuscano, and T. Huser, “Nondestructive identification of individual leukemia cells by laser trapping Raman spectroscopy,” Anal. Chem. 80, 2180–2187 (2008).
[CrossRef] [PubMed]

J. W. Chan, D. S. Taylor, T. Zwerdling, S. M. Lane, K. Ihara, and T. Huser, “Micro-Raman spectroscopy detects individual neoplastic and normal hematopoietic cells,” Biophys. J. 90, 648–656 (2006).
[CrossRef]

Chernenko, T.

T. Chernenko, C. Matthäus, L. Milane, L. Quintero, M. Amiji, and M. Diem, “Label-free Raman spectral imaging of intracellular delivery and degradation of polymeric nanoparticle systems,” ACS Nano 3, 3552–3559 (2009).
[CrossRef] [PubMed]

Cho, H.

H. Cho, B. R. Baker, S. Wachsmann-Hogiu, C. V. Pagba, T. A. Laurence, S. M. Lane, L. P. Lee, and J. B.-H. Tok, “Aptamer-based serrs sensor for thrombin detection,” Nano Lett. 8, 4386–4390 (2008).
[CrossRef]

Chuang, F. S.

Y. Sun, J. Phipps, D. S. Elson, H. Stoy, S. Tinling, J. Meier, B. Poirier, F. S. Chuang, D. G. Farwell, and L. Marcu, “Fluorescence lifetime imaging microscopy: in vivo application to diagnosis of oral carcinoma,” Opt.Lett. 34, 2081–2083 (2009).
[CrossRef] [PubMed]

Coburn, L.

J. R. Mourant, K. W. Short, S. Carpenter, N. Kunapareddy, L. Coburn, T. M. Powers, and J. P. Freyer, “Biochemical differences in tumorigenic and nontumorigenic cells measured by Raman and infrared spectroscopy,” J. Biomed. Opt. 10, 031106 (2005).
[CrossRef] [PubMed]

Cole, J. H.

M. V. Schulmerich, J. H. Cole, K. A. Dooley, M. D. Morris, J. M. Kreider, S. A. Goldstein, S. Srinivasan, and B. W. Pogue, “Noninvasive Raman tomographic imaging of canine bone tissue,” J. Biomed. Opt. 13, 020506 (2008).
[CrossRef] [PubMed]

Culver, J.

Dao, N. Q.

Dasari, R. R.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
[CrossRef]

Davis, B. M.

B. M. Davis, A. J. Hemphill, D. Cebeci Maltaş, M. A. Zipper, P. Wang, and D. Ben-Amotz, “Multivariate hyper-spectral Raman imaging using compressive detection,” Anal. Chem. 0 (2011).

de Peinder, P.

N. Uzunbajakava, P. de Peinder, G. W. ’t Hooft, and A. T. M. van Gogh, “Low-cost spectroscopy with a variable multivariate optical element,” Anal. Chem. 78, 7302–7308 (2006).
[CrossRef] [PubMed]

Diem, M.

T. Chernenko, C. Matthäus, L. Milane, L. Quintero, M. Amiji, and M. Diem, “Label-free Raman spectral imaging of intracellular delivery and degradation of polymeric nanoparticle systems,” ACS Nano 3, 3552–3559 (2009).
[CrossRef] [PubMed]

Dobrowolski, J. A.

M. P. Nelson, J. F. Aust, J. A. Dobrowolski, P. G. Verly, and M. L. Myrick, “Multivariate optical computation for predictive spectroscopy,” Anal. Chem. 70, 73–82 (1998).
[CrossRef] [PubMed]

Dooley, K. A.

M. V. Schulmerich, J. H. Cole, K. A. Dooley, M. D. Morris, J. M. Kreider, S. A. Goldstein, S. Srinivasan, and B. W. Pogue, “Noninvasive Raman tomographic imaging of canine bone tissue,” J. Biomed. Opt. 13, 020506 (2008).
[CrossRef] [PubMed]

Eastwood, D.

O. Soyemi, D. Eastwood, L. Zhang, H. Li, J. Karunamuni, P. Gemperline, R. A. Synowicki, and M. L. Myrick, “Design and testing of a multivariate optical element: the first demonstration of multivariate optical computing for predictive spectroscopy,” Anal. Chem. 73, 1069–1079 (2001).
[CrossRef]

Eilers, P. H. C.

P. H. C. Eilers, “A perfect smoother,” Anal. Chem. 75, 3631–3636 (2003).
[CrossRef] [PubMed]

Ellis, D. L.

C. A. Lieber, S. K. Majumder, D. Billheimer, D. L. Ellis, and A. Mahadevan-Jansen, “Raman microspectroscopy for skin cancer detection in vitro,” J. Biomed. Opt. 13, 024013 (2008).
[CrossRef] [PubMed]

Elson, D. S.

Y. Sun, J. Phipps, D. S. Elson, H. Stoy, S. Tinling, J. Meier, B. Poirier, F. S. Chuang, D. G. Farwell, and L. Marcu, “Fluorescence lifetime imaging microscopy: in vivo application to diagnosis of oral carcinoma,” Opt.Lett. 34, 2081–2083 (2009).
[CrossRef] [PubMed]

Farwell, D. G.

Y. Sun, J. Phipps, D. S. Elson, H. Stoy, S. Tinling, J. Meier, B. Poirier, F. S. Chuang, D. G. Farwell, and L. Marcu, “Fluorescence lifetime imaging microscopy: in vivo application to diagnosis of oral carcinoma,” Opt.Lett. 34, 2081–2083 (2009).
[CrossRef] [PubMed]

Feld, M. S.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
[CrossRef]

Freyer, J. P.

J. R. Mourant, K. W. Short, S. Carpenter, N. Kunapareddy, L. Coburn, T. M. Powers, and J. P. Freyer, “Biochemical differences in tumorigenic and nontumorigenic cells measured by Raman and infrared spectroscopy,” J. Biomed. Opt. 10, 031106 (2005).
[CrossRef] [PubMed]

Gemperline, P.

O. Soyemi, D. Eastwood, L. Zhang, H. Li, J. Karunamuni, P. Gemperline, R. A. Synowicki, and M. L. Myrick, “Design and testing of a multivariate optical element: the first demonstration of multivariate optical computing for predictive spectroscopy,” Anal. Chem. 73, 1069–1079 (2001).
[CrossRef]

Goldstein, S. A.

M. V. Schulmerich, J. H. Cole, K. A. Dooley, M. D. Morris, J. M. Kreider, S. A. Goldstein, S. Srinivasan, and B. W. Pogue, “Noninvasive Raman tomographic imaging of canine bone tissue,” J. Biomed. Opt. 13, 020506 (2008).
[CrossRef] [PubMed]

Greer, A. E.

Haaland, D. M.

W. F. J. Vermaas, J. A. Timlin, H. D. T. Jones, M. B. Sinclair, L. T. Nieman, S. W. Hamad, D. K. Melgaard, and D. M. Haaland, “In vivo hyperspectral confocal fluorescence imaging to determine pigment localization and distribution in cyanobacterial cells,” Proc. Natl. Acad. Sci. U.S.A. 105, 4050–4055 (2008).
[CrossRef] [PubMed]

Haibach, F. G.

Hamad, S. W.

W. F. J. Vermaas, J. A. Timlin, H. D. T. Jones, M. B. Sinclair, L. T. Nieman, S. W. Hamad, D. K. Melgaard, and D. M. Haaland, “In vivo hyperspectral confocal fluorescence imaging to determine pigment localization and distribution in cyanobacterial cells,” Proc. Natl. Acad. Sci. U.S.A. 105, 4050–4055 (2008).
[CrossRef] [PubMed]

Harz, M.

P. Rösch, M. Harz, M. Schmitt, K.-D. Peschke, O. Ronneberger, H. Burkhardt, H.-W. Motzkus, M. Lankers, S. Hofer, H. Thiele, and J. Pöpp, “Chemotaxonomic identification of single bacteria by micro-Raman spectroscopy: application to clean-room-relevant biological contaminations,” Appl. Environ. Microbiol. 71, 1626–1637 (2005).
[CrossRef] [PubMed]

Hemphill, A. J.

B. M. Davis, A. J. Hemphill, D. Cebeci Maltaş, M. A. Zipper, P. Wang, and D. Ben-Amotz, “Multivariate hyper-spectral Raman imaging using compressive detection,” Anal. Chem. 0 (2011).

Hofer, S.

P. Rösch, M. Harz, M. Schmitt, K.-D. Peschke, O. Ronneberger, H. Burkhardt, H.-W. Motzkus, M. Lankers, S. Hofer, H. Thiele, and J. Pöpp, “Chemotaxonomic identification of single bacteria by micro-Raman spectroscopy: application to clean-room-relevant biological contaminations,” Appl. Environ. Microbiol. 71, 1626–1637 (2005).
[CrossRef] [PubMed]

Huser, T.

J. W. Chan, D. S. Taylor, S. M. Lane, T. Zwerdling, J. Tuscano, and T. Huser, “Nondestructive identification of individual leukemia cells by laser trapping Raman spectroscopy,” Anal. Chem. 80, 2180–2187 (2008).
[CrossRef] [PubMed]

J. W. Chan, D. S. Taylor, T. Zwerdling, S. M. Lane, K. Ihara, and T. Huser, “Micro-Raman spectroscopy detects individual neoplastic and normal hematopoietic cells,” Biophys. J. 90, 648–656 (2006).
[CrossRef]

Ihara, K.

J. W. Chan, D. S. Taylor, T. Zwerdling, S. M. Lane, K. Ihara, and T. Huser, “Micro-Raman spectroscopy detects individual neoplastic and normal hematopoietic cells,” Biophys. J. 90, 648–656 (2006).
[CrossRef]

Itzkan, I.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
[CrossRef]

Jansen, E. D.

W.-C. Lin, S. A. Toms, M. Johnson, E. D. Jansen, and A. Mahadevan-Jansen, “In vivo brain tumor demarcation using optical spectroscopy,” Photochem. Photobiol. 73, 396–402 (2001).
[CrossRef] [PubMed]

Jilg, W.

K. M. Weinberger, E. Wiedenmann, S. Böhm, and W. Jilg, “Sensitive and accurate quantitation of hepatitis B virus DNA using a kinetic fluorescence detection system (TaqMan PCR),” J. Virol. Methods 85, 75–82 (2000).
[CrossRef] [PubMed]

Johnson, M.

W.-C. Lin, S. A. Toms, M. Johnson, E. D. Jansen, and A. Mahadevan-Jansen, “In vivo brain tumor demarcation using optical spectroscopy,” Photochem. Photobiol. 73, 396–402 (2001).
[CrossRef] [PubMed]

Jones, H. D. T.

W. F. J. Vermaas, J. A. Timlin, H. D. T. Jones, M. B. Sinclair, L. T. Nieman, S. W. Hamad, D. K. Melgaard, and D. M. Haaland, “In vivo hyperspectral confocal fluorescence imaging to determine pigment localization and distribution in cyanobacterial cells,” Proc. Natl. Acad. Sci. U.S.A. 105, 4050–4055 (2008).
[CrossRef] [PubMed]

Jouan, M. D.

Karunamuni, J.

O. Soyemi, D. Eastwood, L. Zhang, H. Li, J. Karunamuni, P. Gemperline, R. A. Synowicki, and M. L. Myrick, “Design and testing of a multivariate optical element: the first demonstration of multivariate optical computing for predictive spectroscopy,” Anal. Chem. 73, 1069–1079 (2001).
[CrossRef]

Kneipp, H.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
[CrossRef]

Kneipp, K.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
[CrossRef]

Krause, M.

M. Krause, P. Räsch, B. Radt, and J. Popp, “Localizing and identifying living bacteria in an abiotic environment by a combination of Raman and fluorescence microscopy,” Anal. Chem. 80, 8568–8575 (2008).
[CrossRef] [PubMed]

Kreider, J. M.

M. V. Schulmerich, J. H. Cole, K. A. Dooley, M. D. Morris, J. M. Kreider, S. A. Goldstein, S. Srinivasan, and B. W. Pogue, “Noninvasive Raman tomographic imaging of canine bone tissue,” J. Biomed. Opt. 13, 020506 (2008).
[CrossRef] [PubMed]

Kunapareddy, N.

J. R. Mourant, K. W. Short, S. Carpenter, N. Kunapareddy, L. Coburn, T. M. Powers, and J. P. Freyer, “Biochemical differences in tumorigenic and nontumorigenic cells measured by Raman and infrared spectroscopy,” J. Biomed. Opt. 10, 031106 (2005).
[CrossRef] [PubMed]

Lane, S. M.

J. W. Chan, D. S. Taylor, S. M. Lane, T. Zwerdling, J. Tuscano, and T. Huser, “Nondestructive identification of individual leukemia cells by laser trapping Raman spectroscopy,” Anal. Chem. 80, 2180–2187 (2008).
[CrossRef] [PubMed]

H. Cho, B. R. Baker, S. Wachsmann-Hogiu, C. V. Pagba, T. A. Laurence, S. M. Lane, L. P. Lee, and J. B.-H. Tok, “Aptamer-based serrs sensor for thrombin detection,” Nano Lett. 8, 4386–4390 (2008).
[CrossRef]

J. W. Chan, D. S. Taylor, T. Zwerdling, S. M. Lane, K. Ihara, and T. Huser, “Micro-Raman spectroscopy detects individual neoplastic and normal hematopoietic cells,” Biophys. J. 90, 648–656 (2006).
[CrossRef]

Lankers, M.

P. Rösch, M. Harz, M. Schmitt, K.-D. Peschke, O. Ronneberger, H. Burkhardt, H.-W. Motzkus, M. Lankers, S. Hofer, H. Thiele, and J. Pöpp, “Chemotaxonomic identification of single bacteria by micro-Raman spectroscopy: application to clean-room-relevant biological contaminations,” Appl. Environ. Microbiol. 71, 1626–1637 (2005).
[CrossRef] [PubMed]

Laurence, T. A.

H. Cho, B. R. Baker, S. Wachsmann-Hogiu, C. V. Pagba, T. A. Laurence, S. M. Lane, L. P. Lee, and J. B.-H. Tok, “Aptamer-based serrs sensor for thrombin detection,” Nano Lett. 8, 4386–4390 (2008).
[CrossRef]

Lee, L. P.

H. Cho, B. R. Baker, S. Wachsmann-Hogiu, C. V. Pagba, T. A. Laurence, S. M. Lane, L. P. Lee, and J. B.-H. Tok, “Aptamer-based serrs sensor for thrombin detection,” Nano Lett. 8, 4386–4390 (2008).
[CrossRef]

Li, H.

O. Soyemi, D. Eastwood, L. Zhang, H. Li, J. Karunamuni, P. Gemperline, R. A. Synowicki, and M. L. Myrick, “Design and testing of a multivariate optical element: the first demonstration of multivariate optical computing for predictive spectroscopy,” Anal. Chem. 73, 1069–1079 (2001).
[CrossRef]

Lieber, C. A.

C. A. Lieber, S. K. Majumder, D. Billheimer, D. L. Ellis, and A. Mahadevan-Jansen, “Raman microspectroscopy for skin cancer detection in vitro,” J. Biomed. Opt. 13, 024013 (2008).
[CrossRef] [PubMed]

Lin, W.-C.

W.-C. Lin, S. A. Toms, M. Johnson, E. D. Jansen, and A. Mahadevan-Jansen, “In vivo brain tumor demarcation using optical spectroscopy,” Photochem. Photobiol. 73, 396–402 (2001).
[CrossRef] [PubMed]

Mahadevan-Jansen, A.

C. A. Lieber, S. K. Majumder, D. Billheimer, D. L. Ellis, and A. Mahadevan-Jansen, “Raman microspectroscopy for skin cancer detection in vitro,” J. Biomed. Opt. 13, 024013 (2008).
[CrossRef] [PubMed]

W.-C. Lin, S. A. Toms, M. Johnson, E. D. Jansen, and A. Mahadevan-Jansen, “In vivo brain tumor demarcation using optical spectroscopy,” Photochem. Photobiol. 73, 396–402 (2001).
[CrossRef] [PubMed]

Majumder, S. K.

C. A. Lieber, S. K. Majumder, D. Billheimer, D. L. Ellis, and A. Mahadevan-Jansen, “Raman microspectroscopy for skin cancer detection in vitro,” J. Biomed. Opt. 13, 024013 (2008).
[CrossRef] [PubMed]

Marcu, L.

Y. Sun, J. Phipps, D. S. Elson, H. Stoy, S. Tinling, J. Meier, B. Poirier, F. S. Chuang, D. G. Farwell, and L. Marcu, “Fluorescence lifetime imaging microscopy: in vivo application to diagnosis of oral carcinoma,” Opt.Lett. 34, 2081–2083 (2009).
[CrossRef] [PubMed]

Matthäus, C.

T. Chernenko, C. Matthäus, L. Milane, L. Quintero, M. Amiji, and M. Diem, “Label-free Raman spectral imaging of intracellular delivery and degradation of polymeric nanoparticle systems,” ACS Nano 3, 3552–3559 (2009).
[CrossRef] [PubMed]

Meier, J.

Y. Sun, J. Phipps, D. S. Elson, H. Stoy, S. Tinling, J. Meier, B. Poirier, F. S. Chuang, D. G. Farwell, and L. Marcu, “Fluorescence lifetime imaging microscopy: in vivo application to diagnosis of oral carcinoma,” Opt.Lett. 34, 2081–2083 (2009).
[CrossRef] [PubMed]

Melgaard, D. K.

W. F. J. Vermaas, J. A. Timlin, H. D. T. Jones, M. B. Sinclair, L. T. Nieman, S. W. Hamad, D. K. Melgaard, and D. M. Haaland, “In vivo hyperspectral confocal fluorescence imaging to determine pigment localization and distribution in cyanobacterial cells,” Proc. Natl. Acad. Sci. U.S.A. 105, 4050–4055 (2008).
[CrossRef] [PubMed]

Milane, L.

T. Chernenko, C. Matthäus, L. Milane, L. Quintero, M. Amiji, and M. Diem, “Label-free Raman spectral imaging of intracellular delivery and degradation of polymeric nanoparticle systems,” ACS Nano 3, 3552–3559 (2009).
[CrossRef] [PubMed]

Morris, M. D.

M. V. Schulmerich, J. H. Cole, K. A. Dooley, M. D. Morris, J. M. Kreider, S. A. Goldstein, S. Srinivasan, and B. W. Pogue, “Noninvasive Raman tomographic imaging of canine bone tissue,” J. Biomed. Opt. 13, 020506 (2008).
[CrossRef] [PubMed]

Motzkus, H.-W.

P. Rösch, M. Harz, M. Schmitt, K.-D. Peschke, O. Ronneberger, H. Burkhardt, H.-W. Motzkus, M. Lankers, S. Hofer, H. Thiele, and J. Pöpp, “Chemotaxonomic identification of single bacteria by micro-Raman spectroscopy: application to clean-room-relevant biological contaminations,” Appl. Environ. Microbiol. 71, 1626–1637 (2005).
[CrossRef] [PubMed]

Mourant, J. R.

J. R. Mourant, K. W. Short, S. Carpenter, N. Kunapareddy, L. Coburn, T. M. Powers, and J. P. Freyer, “Biochemical differences in tumorigenic and nontumorigenic cells measured by Raman and infrared spectroscopy,” J. Biomed. Opt. 10, 031106 (2005).
[CrossRef] [PubMed]

Myrick, M. L.

F. G. Haibach and M. L. Myrick, “Precision in multivariate optical computing,” Appl. Opt. 43, 2130–2140 (2004).
[CrossRef] [PubMed]

F. G. Haibach, A. E. Greer, M. V. Schiza, R. J. Priore, O. O. Soyemi, and M. L. Myrick, “On-line reoptimization of filter designs for multivariate optical elements,” Appl. Opt. 42, 1833–1838 (2003).
[CrossRef] [PubMed]

O. Soyemi, D. Eastwood, L. Zhang, H. Li, J. Karunamuni, P. Gemperline, R. A. Synowicki, and M. L. Myrick, “Design and testing of a multivariate optical element: the first demonstration of multivariate optical computing for predictive spectroscopy,” Anal. Chem. 73, 1069–1079 (2001).
[CrossRef]

M. P. Nelson, J. F. Aust, J. A. Dobrowolski, P. G. Verly, and M. L. Myrick, “Multivariate optical computation for predictive spectroscopy,” Anal. Chem. 70, 73–82 (1998).
[CrossRef] [PubMed]

Nelson, M. P.

M. P. Nelson, J. F. Aust, J. A. Dobrowolski, P. G. Verly, and M. L. Myrick, “Multivariate optical computation for predictive spectroscopy,” Anal. Chem. 70, 73–82 (1998).
[CrossRef] [PubMed]

Nieman, L. T.

W. F. J. Vermaas, J. A. Timlin, H. D. T. Jones, M. B. Sinclair, L. T. Nieman, S. W. Hamad, D. K. Melgaard, and D. M. Haaland, “In vivo hyperspectral confocal fluorescence imaging to determine pigment localization and distribution in cyanobacterial cells,” Proc. Natl. Acad. Sci. U.S.A. 105, 4050–4055 (2008).
[CrossRef] [PubMed]

Pagba, C. V.

H. Cho, B. R. Baker, S. Wachsmann-Hogiu, C. V. Pagba, T. A. Laurence, S. M. Lane, L. P. Lee, and J. B.-H. Tok, “Aptamer-based serrs sensor for thrombin detection,” Nano Lett. 8, 4386–4390 (2008).
[CrossRef]

Patwardhan, S.

Perelman, L. T.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
[CrossRef]

Peschke, K.-D.

P. Rösch, M. Harz, M. Schmitt, K.-D. Peschke, O. Ronneberger, H. Burkhardt, H.-W. Motzkus, M. Lankers, S. Hofer, H. Thiele, and J. Pöpp, “Chemotaxonomic identification of single bacteria by micro-Raman spectroscopy: application to clean-room-relevant biological contaminations,” Appl. Environ. Microbiol. 71, 1626–1637 (2005).
[CrossRef] [PubMed]

Phipps, J.

Y. Sun, J. Phipps, D. S. Elson, H. Stoy, S. Tinling, J. Meier, B. Poirier, F. S. Chuang, D. G. Farwell, and L. Marcu, “Fluorescence lifetime imaging microscopy: in vivo application to diagnosis of oral carcinoma,” Opt.Lett. 34, 2081–2083 (2009).
[CrossRef] [PubMed]

Pogue, B. W.

M. V. Schulmerich, J. H. Cole, K. A. Dooley, M. D. Morris, J. M. Kreider, S. A. Goldstein, S. Srinivasan, and B. W. Pogue, “Noninvasive Raman tomographic imaging of canine bone tissue,” J. Biomed. Opt. 13, 020506 (2008).
[CrossRef] [PubMed]

Poirier, B.

Y. Sun, J. Phipps, D. S. Elson, H. Stoy, S. Tinling, J. Meier, B. Poirier, F. S. Chuang, D. G. Farwell, and L. Marcu, “Fluorescence lifetime imaging microscopy: in vivo application to diagnosis of oral carcinoma,” Opt.Lett. 34, 2081–2083 (2009).
[CrossRef] [PubMed]

Popp, J.

M. Krause, P. Räsch, B. Radt, and J. Popp, “Localizing and identifying living bacteria in an abiotic environment by a combination of Raman and fluorescence microscopy,” Anal. Chem. 80, 8568–8575 (2008).
[CrossRef] [PubMed]

Pöpp, J.

P. Rösch, M. Harz, M. Schmitt, K.-D. Peschke, O. Ronneberger, H. Burkhardt, H.-W. Motzkus, M. Lankers, S. Hofer, H. Thiele, and J. Pöpp, “Chemotaxonomic identification of single bacteria by micro-Raman spectroscopy: application to clean-room-relevant biological contaminations,” Appl. Environ. Microbiol. 71, 1626–1637 (2005).
[CrossRef] [PubMed]

Powers, T. M.

J. R. Mourant, K. W. Short, S. Carpenter, N. Kunapareddy, L. Coburn, T. M. Powers, and J. P. Freyer, “Biochemical differences in tumorigenic and nontumorigenic cells measured by Raman and infrared spectroscopy,” J. Biomed. Opt. 10, 031106 (2005).
[CrossRef] [PubMed]

Priore, R. J.

Quintero, L.

T. Chernenko, C. Matthäus, L. Milane, L. Quintero, M. Amiji, and M. Diem, “Label-free Raman spectral imaging of intracellular delivery and degradation of polymeric nanoparticle systems,” ACS Nano 3, 3552–3559 (2009).
[CrossRef] [PubMed]

Quivey, R. G.

B. D. Beier, R. G. Quivey, and A. J. Berger, “Identification of different bacterial species in biofilms using confocal Raman microscopy,” J. Biomed. Opt. 15, 066001 (2010).
[CrossRef]

Quyen, N. T.

Radt, B.

M. Krause, P. Räsch, B. Radt, and J. Popp, “Localizing and identifying living bacteria in an abiotic environment by a combination of Raman and fluorescence microscopy,” Anal. Chem. 80, 8568–8575 (2008).
[CrossRef] [PubMed]

Räsch, P.

M. Krause, P. Räsch, B. Radt, and J. Popp, “Localizing and identifying living bacteria in an abiotic environment by a combination of Raman and fluorescence microscopy,” Anal. Chem. 80, 8568–8575 (2008).
[CrossRef] [PubMed]

Ronneberger, O.

P. Rösch, M. Harz, M. Schmitt, K.-D. Peschke, O. Ronneberger, H. Burkhardt, H.-W. Motzkus, M. Lankers, S. Hofer, H. Thiele, and J. Pöpp, “Chemotaxonomic identification of single bacteria by micro-Raman spectroscopy: application to clean-room-relevant biological contaminations,” Appl. Environ. Microbiol. 71, 1626–1637 (2005).
[CrossRef] [PubMed]

Rösch, P.

P. Rösch, M. Harz, M. Schmitt, K.-D. Peschke, O. Ronneberger, H. Burkhardt, H.-W. Motzkus, M. Lankers, S. Hofer, H. Thiele, and J. Pöpp, “Chemotaxonomic identification of single bacteria by micro-Raman spectroscopy: application to clean-room-relevant biological contaminations,” Appl. Environ. Microbiol. 71, 1626–1637 (2005).
[CrossRef] [PubMed]

Schiza, M. V.

Schmitt, M.

P. Rösch, M. Harz, M. Schmitt, K.-D. Peschke, O. Ronneberger, H. Burkhardt, H.-W. Motzkus, M. Lankers, S. Hofer, H. Thiele, and J. Pöpp, “Chemotaxonomic identification of single bacteria by micro-Raman spectroscopy: application to clean-room-relevant biological contaminations,” Appl. Environ. Microbiol. 71, 1626–1637 (2005).
[CrossRef] [PubMed]

Schulmerich, M. V.

M. V. Schulmerich, J. H. Cole, K. A. Dooley, M. D. Morris, J. M. Kreider, S. A. Goldstein, S. Srinivasan, and B. W. Pogue, “Noninvasive Raman tomographic imaging of canine bone tissue,” J. Biomed. Opt. 13, 020506 (2008).
[CrossRef] [PubMed]

Short, K. W.

J. R. Mourant, K. W. Short, S. Carpenter, N. Kunapareddy, L. Coburn, T. M. Powers, and J. P. Freyer, “Biochemical differences in tumorigenic and nontumorigenic cells measured by Raman and infrared spectroscopy,” J. Biomed. Opt. 10, 031106 (2005).
[CrossRef] [PubMed]

Silva, E. D.

Sinclair, M. B.

W. F. J. Vermaas, J. A. Timlin, H. D. T. Jones, M. B. Sinclair, L. T. Nieman, S. W. Hamad, D. K. Melgaard, and D. M. Haaland, “In vivo hyperspectral confocal fluorescence imaging to determine pigment localization and distribution in cyanobacterial cells,” Proc. Natl. Acad. Sci. U.S.A. 105, 4050–4055 (2008).
[CrossRef] [PubMed]

Soyemi, O.

O. Soyemi, D. Eastwood, L. Zhang, H. Li, J. Karunamuni, P. Gemperline, R. A. Synowicki, and M. L. Myrick, “Design and testing of a multivariate optical element: the first demonstration of multivariate optical computing for predictive spectroscopy,” Anal. Chem. 73, 1069–1079 (2001).
[CrossRef]

Soyemi, O. O.

Srinivasan, S.

M. V. Schulmerich, J. H. Cole, K. A. Dooley, M. D. Morris, J. M. Kreider, S. A. Goldstein, S. Srinivasan, and B. W. Pogue, “Noninvasive Raman tomographic imaging of canine bone tissue,” J. Biomed. Opt. 13, 020506 (2008).
[CrossRef] [PubMed]

Stoy, H.

Y. Sun, J. Phipps, D. S. Elson, H. Stoy, S. Tinling, J. Meier, B. Poirier, F. S. Chuang, D. G. Farwell, and L. Marcu, “Fluorescence lifetime imaging microscopy: in vivo application to diagnosis of oral carcinoma,” Opt.Lett. 34, 2081–2083 (2009).
[CrossRef] [PubMed]

Sun, Y.

Y. Sun, J. Phipps, D. S. Elson, H. Stoy, S. Tinling, J. Meier, B. Poirier, F. S. Chuang, D. G. Farwell, and L. Marcu, “Fluorescence lifetime imaging microscopy: in vivo application to diagnosis of oral carcinoma,” Opt.Lett. 34, 2081–2083 (2009).
[CrossRef] [PubMed]

Synowicki, R. A.

O. Soyemi, D. Eastwood, L. Zhang, H. Li, J. Karunamuni, P. Gemperline, R. A. Synowicki, and M. L. Myrick, “Design and testing of a multivariate optical element: the first demonstration of multivariate optical computing for predictive spectroscopy,” Anal. Chem. 73, 1069–1079 (2001).
[CrossRef]

Taylor, D. S.

J. W. Chan, D. S. Taylor, S. M. Lane, T. Zwerdling, J. Tuscano, and T. Huser, “Nondestructive identification of individual leukemia cells by laser trapping Raman spectroscopy,” Anal. Chem. 80, 2180–2187 (2008).
[CrossRef] [PubMed]

J. W. Chan, D. S. Taylor, T. Zwerdling, S. M. Lane, K. Ihara, and T. Huser, “Micro-Raman spectroscopy detects individual neoplastic and normal hematopoietic cells,” Biophys. J. 90, 648–656 (2006).
[CrossRef]

Thiele, H.

P. Rösch, M. Harz, M. Schmitt, K.-D. Peschke, O. Ronneberger, H. Burkhardt, H.-W. Motzkus, M. Lankers, S. Hofer, H. Thiele, and J. Pöpp, “Chemotaxonomic identification of single bacteria by micro-Raman spectroscopy: application to clean-room-relevant biological contaminations,” Appl. Environ. Microbiol. 71, 1626–1637 (2005).
[CrossRef] [PubMed]

Timlin, J. A.

W. F. J. Vermaas, J. A. Timlin, H. D. T. Jones, M. B. Sinclair, L. T. Nieman, S. W. Hamad, D. K. Melgaard, and D. M. Haaland, “In vivo hyperspectral confocal fluorescence imaging to determine pigment localization and distribution in cyanobacterial cells,” Proc. Natl. Acad. Sci. U.S.A. 105, 4050–4055 (2008).
[CrossRef] [PubMed]

Tinling, S.

Y. Sun, J. Phipps, D. S. Elson, H. Stoy, S. Tinling, J. Meier, B. Poirier, F. S. Chuang, D. G. Farwell, and L. Marcu, “Fluorescence lifetime imaging microscopy: in vivo application to diagnosis of oral carcinoma,” Opt.Lett. 34, 2081–2083 (2009).
[CrossRef] [PubMed]

Tok, J. B.-H.

H. Cho, B. R. Baker, S. Wachsmann-Hogiu, C. V. Pagba, T. A. Laurence, S. M. Lane, L. P. Lee, and J. B.-H. Tok, “Aptamer-based serrs sensor for thrombin detection,” Nano Lett. 8, 4386–4390 (2008).
[CrossRef]

Toms, S. A.

W.-C. Lin, S. A. Toms, M. Johnson, E. D. Jansen, and A. Mahadevan-Jansen, “In vivo brain tumor demarcation using optical spectroscopy,” Photochem. Photobiol. 73, 396–402 (2001).
[CrossRef] [PubMed]

Tuscano, J.

J. W. Chan, D. S. Taylor, S. M. Lane, T. Zwerdling, J. Tuscano, and T. Huser, “Nondestructive identification of individual leukemia cells by laser trapping Raman spectroscopy,” Anal. Chem. 80, 2180–2187 (2008).
[CrossRef] [PubMed]

Uzunbajakava, N.

N. Uzunbajakava, P. de Peinder, G. W. ’t Hooft, and A. T. M. van Gogh, “Low-cost spectroscopy with a variable multivariate optical element,” Anal. Chem. 78, 7302–7308 (2006).
[CrossRef] [PubMed]

van Gogh, A. T. M.

N. Uzunbajakava, P. de Peinder, G. W. ’t Hooft, and A. T. M. van Gogh, “Low-cost spectroscopy with a variable multivariate optical element,” Anal. Chem. 78, 7302–7308 (2006).
[CrossRef] [PubMed]

Verly, P. G.

M. P. Nelson, J. F. Aust, J. A. Dobrowolski, P. G. Verly, and M. L. Myrick, “Multivariate optical computation for predictive spectroscopy,” Anal. Chem. 70, 73–82 (1998).
[CrossRef] [PubMed]

Vermaas, W. F. J.

W. F. J. Vermaas, J. A. Timlin, H. D. T. Jones, M. B. Sinclair, L. T. Nieman, S. W. Hamad, D. K. Melgaard, and D. M. Haaland, “In vivo hyperspectral confocal fluorescence imaging to determine pigment localization and distribution in cyanobacterial cells,” Proc. Natl. Acad. Sci. U.S.A. 105, 4050–4055 (2008).
[CrossRef] [PubMed]

Wachsmann-Hogiu, S.

H. Cho, B. R. Baker, S. Wachsmann-Hogiu, C. V. Pagba, T. A. Laurence, S. M. Lane, L. P. Lee, and J. B.-H. Tok, “Aptamer-based serrs sensor for thrombin detection,” Nano Lett. 8, 4386–4390 (2008).
[CrossRef]

Wang, P.

B. M. Davis, A. J. Hemphill, D. Cebeci Maltaş, M. A. Zipper, P. Wang, and D. Ben-Amotz, “Multivariate hyper-spectral Raman imaging using compressive detection,” Anal. Chem. 0 (2011).

Wang, Y.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
[CrossRef]

Weinberger, K. M.

K. M. Weinberger, E. Wiedenmann, S. Böhm, and W. Jilg, “Sensitive and accurate quantitation of hepatitis B virus DNA using a kinetic fluorescence detection system (TaqMan PCR),” J. Virol. Methods 85, 75–82 (2000).
[CrossRef] [PubMed]

Wiedenmann, E.

K. M. Weinberger, E. Wiedenmann, S. Böhm, and W. Jilg, “Sensitive and accurate quantitation of hepatitis B virus DNA using a kinetic fluorescence detection system (TaqMan PCR),” J. Virol. Methods 85, 75–82 (2000).
[CrossRef] [PubMed]

Zhang, L.

O. Soyemi, D. Eastwood, L. Zhang, H. Li, J. Karunamuni, P. Gemperline, R. A. Synowicki, and M. L. Myrick, “Design and testing of a multivariate optical element: the first demonstration of multivariate optical computing for predictive spectroscopy,” Anal. Chem. 73, 1069–1079 (2001).
[CrossRef]

Zipper, M. A.

B. M. Davis, A. J. Hemphill, D. Cebeci Maltaş, M. A. Zipper, P. Wang, and D. Ben-Amotz, “Multivariate hyper-spectral Raman imaging using compressive detection,” Anal. Chem. 0 (2011).

Zwerdling, T.

J. W. Chan, D. S. Taylor, S. M. Lane, T. Zwerdling, J. Tuscano, and T. Huser, “Nondestructive identification of individual leukemia cells by laser trapping Raman spectroscopy,” Anal. Chem. 80, 2180–2187 (2008).
[CrossRef] [PubMed]

J. W. Chan, D. S. Taylor, T. Zwerdling, S. M. Lane, K. Ihara, and T. Huser, “Micro-Raman spectroscopy detects individual neoplastic and normal hematopoietic cells,” Biophys. J. 90, 648–656 (2006).
[CrossRef]

ACS Nano (1)

T. Chernenko, C. Matthäus, L. Milane, L. Quintero, M. Amiji, and M. Diem, “Label-free Raman spectral imaging of intracellular delivery and degradation of polymeric nanoparticle systems,” ACS Nano 3, 3552–3559 (2009).
[CrossRef] [PubMed]

Anal. Chem. (7)

M. P. Nelson, J. F. Aust, J. A. Dobrowolski, P. G. Verly, and M. L. Myrick, “Multivariate optical computation for predictive spectroscopy,” Anal. Chem. 70, 73–82 (1998).
[CrossRef] [PubMed]

O. Soyemi, D. Eastwood, L. Zhang, H. Li, J. Karunamuni, P. Gemperline, R. A. Synowicki, and M. L. Myrick, “Design and testing of a multivariate optical element: the first demonstration of multivariate optical computing for predictive spectroscopy,” Anal. Chem. 73, 1069–1079 (2001).
[CrossRef]

N. Uzunbajakava, P. de Peinder, G. W. ’t Hooft, and A. T. M. van Gogh, “Low-cost spectroscopy with a variable multivariate optical element,” Anal. Chem. 78, 7302–7308 (2006).
[CrossRef] [PubMed]

B. M. Davis, A. J. Hemphill, D. Cebeci Maltaş, M. A. Zipper, P. Wang, and D. Ben-Amotz, “Multivariate hyper-spectral Raman imaging using compressive detection,” Anal. Chem. 0 (2011).

P. H. C. Eilers, “A perfect smoother,” Anal. Chem. 75, 3631–3636 (2003).
[CrossRef] [PubMed]

M. Krause, P. Räsch, B. Radt, and J. Popp, “Localizing and identifying living bacteria in an abiotic environment by a combination of Raman and fluorescence microscopy,” Anal. Chem. 80, 8568–8575 (2008).
[CrossRef] [PubMed]

J. W. Chan, D. S. Taylor, S. M. Lane, T. Zwerdling, J. Tuscano, and T. Huser, “Nondestructive identification of individual leukemia cells by laser trapping Raman spectroscopy,” Anal. Chem. 80, 2180–2187 (2008).
[CrossRef] [PubMed]

Appl. Environ. Microbiol. (1)

P. Rösch, M. Harz, M. Schmitt, K.-D. Peschke, O. Ronneberger, H. Burkhardt, H.-W. Motzkus, M. Lankers, S. Hofer, H. Thiele, and J. Pöpp, “Chemotaxonomic identification of single bacteria by micro-Raman spectroscopy: application to clean-room-relevant biological contaminations,” Appl. Environ. Microbiol. 71, 1626–1637 (2005).
[CrossRef] [PubMed]

Appl. Opt. (2)

Appl. Spectrosc. (1)

Biophys. J. (1)

J. W. Chan, D. S. Taylor, T. Zwerdling, S. M. Lane, K. Ihara, and T. Huser, “Micro-Raman spectroscopy detects individual neoplastic and normal hematopoietic cells,” Biophys. J. 90, 648–656 (2006).
[CrossRef]

J. Biomed. Opt. (4)

J. R. Mourant, K. W. Short, S. Carpenter, N. Kunapareddy, L. Coburn, T. M. Powers, and J. P. Freyer, “Biochemical differences in tumorigenic and nontumorigenic cells measured by Raman and infrared spectroscopy,” J. Biomed. Opt. 10, 031106 (2005).
[CrossRef] [PubMed]

M. V. Schulmerich, J. H. Cole, K. A. Dooley, M. D. Morris, J. M. Kreider, S. A. Goldstein, S. Srinivasan, and B. W. Pogue, “Noninvasive Raman tomographic imaging of canine bone tissue,” J. Biomed. Opt. 13, 020506 (2008).
[CrossRef] [PubMed]

C. A. Lieber, S. K. Majumder, D. Billheimer, D. L. Ellis, and A. Mahadevan-Jansen, “Raman microspectroscopy for skin cancer detection in vitro,” J. Biomed. Opt. 13, 024013 (2008).
[CrossRef] [PubMed]

B. D. Beier, R. G. Quivey, and A. J. Berger, “Identification of different bacterial species in biofilms using confocal Raman microscopy,” J. Biomed. Opt. 15, 066001 (2010).
[CrossRef]

J. Virol. Methods (1)

K. M. Weinberger, E. Wiedenmann, S. Böhm, and W. Jilg, “Sensitive and accurate quantitation of hepatitis B virus DNA using a kinetic fluorescence detection system (TaqMan PCR),” J. Virol. Methods 85, 75–82 (2000).
[CrossRef] [PubMed]

Nano Lett. (1)

H. Cho, B. R. Baker, S. Wachsmann-Hogiu, C. V. Pagba, T. A. Laurence, S. M. Lane, L. P. Lee, and J. B.-H. Tok, “Aptamer-based serrs sensor for thrombin detection,” Nano Lett. 8, 4386–4390 (2008).
[CrossRef]

Opt. Express (1)

Opt.Lett. (1)

Y. Sun, J. Phipps, D. S. Elson, H. Stoy, S. Tinling, J. Meier, B. Poirier, F. S. Chuang, D. G. Farwell, and L. Marcu, “Fluorescence lifetime imaging microscopy: in vivo application to diagnosis of oral carcinoma,” Opt.Lett. 34, 2081–2083 (2009).
[CrossRef] [PubMed]

Photochem. Photobiol. (1)

W.-C. Lin, S. A. Toms, M. Johnson, E. D. Jansen, and A. Mahadevan-Jansen, “In vivo brain tumor demarcation using optical spectroscopy,” Photochem. Photobiol. 73, 396–402 (2001).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A. (1)

W. F. J. Vermaas, J. A. Timlin, H. D. T. Jones, M. B. Sinclair, L. T. Nieman, S. W. Hamad, D. K. Melgaard, and D. M. Haaland, “In vivo hyperspectral confocal fluorescence imaging to determine pigment localization and distribution in cyanobacterial cells,” Proc. Natl. Acad. Sci. U.S.A. 105, 4050–4055 (2008).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1:
Fig. 1:

Schematic diagram of the MOC system. The excitation path is a light green line while the emission path is shown in dark green. Abbreviations as follows: BPF, band pass filter; DMD, digital micromirror device; L, lens; LBF, laser bandpass filter; PMT, photomultiplier tube.

Fig. 2:
Fig. 2:

(a) Fluorescence spectra of perylene (blue), coumarin 1 (red) and coumarin 30 (magenta) dissolved in ethanol, taken with the DMD operating in scanning monochromator mode. (b) Raman spectra of toluene (blue), tetrahydrofuran (red), and benzene (magenta), taken with the DMD operating in scanning monochromator mode.

Fig. 3:
Fig. 3:

Concentration predictions for a 3 component mixture of fluorophores, measured with an multivariate optical computer. Individual points represent mean MOC measurements, solid lines represent the nominal concentration of each analyte within each sample, and dashed lines represent error due to accuracy of pipettes used to create samples.

Fig. 4:
Fig. 4:

Concentration predictions for a 3 component mixture of Raman scatterers, measured with an multivariate optical computer. Individual points represent mean MOC measurements, solid lines represent the nominal concentration of each analyte within each sample, and dashed lines represent error due to accuracy of pipettes used to create samples.

Fig. 5:
Fig. 5:

Simulation of measuring principal component scores using a multivariate optical computer. Upper left: a representative raw spectrum measured by a traditional CCD-based spectrometer (blue) and that spectrum corrupted with 10 times larger Poisson noise (red). Upper right: the first two rows of matrix B, calculated from the dataset in [24]. Lower panel: Stars represent measurements on normal cells, while circles represent measurements on Jurkat T-cells. Magenta and green points are scores computed in software using full spectra. Red and blue points are simulated results obtained by projecting spectra onto the first two rows of the pseudoinverse matrix using data that would correspond to the red curve in the upper left panel if measured using a traditional spectrometer.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

x = cP ,
c = x P T ( P P T ) 1 ,
m = x D T ,
c = m ( P P T ) 1 .
c true = x S T ( S S T ) 1 ,
c true = n × c ,
x m c = cP ,
c = x m c B T = x B T x ¯ B T .
m = x B T = c + x ¯ B T .

Metrics