Abstract

We developed a comprehensive detailed balance model of intermediate band solar cell (IBSC). The key feature of our model is based on the conservation of photons in solar spectrum. Together with parametric analysis of carrier partition, we calculated the power conversion efficiency and found an enhancement of 1.5 times in wide band gap material IBSC (such as GaN). On the other hand, this model can also explain the inferior performance of GaAs-based IBSC through the degradation of open-circuit voltages, which can be attributed to the strong non-radiative recombination and the increased photo-generated carriers. The resulting maximum efficiency is complied with the classical Shockley-Queisser limit, and should be considered for the future IBSC design.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32(3), 510–519 (1961).
    [CrossRef]
  2. A. Luque and A. Marti, “Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels,” Phys. Rev. Lett. 78(26), 5014–5017 (1997).
    [CrossRef]
  3. T. Sugaya, S. Furue, H. Komaki, T. Amano, M. Mori, K. Komori, S. Niki, O. Numakami, and Y. Okano, “Highly stacked and well-aligned In0.4Ga0.6As quantum dot solar cells with In0.2Ga0.8As cap layer,” Appl. Phys. Lett. 97(18), 183104 (2010).
    [CrossRef]
  4. T. Sugaya, S. Furue, O. Numakami, T. Amano, M. Mori, K. Komori, Y. Okano, and S. Niki, “Characteristics of highly stacked quantum dot solar cells fabricated by intermittent deposition of InGaAs,” in 2010 35th IEEE Photovoltaic Specialist Conference (PVSC) (IEEE, 2010), pp.1863–1867.
  5. R. Oshima, A. Takata, Y. Shoji, K. Akahane, and Y. Okada, “InAs/GaNAs strain-compensated quantum dots stacked up to 50 layers for use in high-efficiency solar cell,” Physica E 42(10), 2757–2760 (2010).
    [CrossRef]
  6. G. D. Wei, K.-T. Shiu, N. C. Giebink, and S. R. Forrest, “Thermodynamic limits of quantum photo-voltaic cell efficiency,” Appl. Phys. Lett. 91(22), 223507 (2007).
    [CrossRef]
  7. W. G. Hu, T. Inoue, O. Kojima, and T. Kita, “Effects of absorption coefficients and intermediate-band filling in InAs/GaAs quantum dot solar cells,” Appl. Phys. Lett. 97(19), 193106 (2010).
    [CrossRef]
  8. K. Yoshida, Y. Okada, and N. Sano, “Self-consistent simulation of intermediate band solar cells: Effect of occupation rates on device characteristics,” Appl. Phys. Lett. 97(13), 133503 (2010).
    [CrossRef]
  9. M. Ley, J. Boudaden, and Z. T. Kuznicki, “Thermodynamic efficiency of an intermediate band photovoltaic cell with low threshold Auger generation,” J. Appl. Phys. 98(4), 044905 (2005).
    [CrossRef]
  10. D. M. Chapin, C. S. Fuller, and G. L. Pearson, “A new silicon p-n junction photocell for converting solar radiation into electrical power,” J. Appl. Phys. 25(5), 676–677 (1954).
    [CrossRef]
  11. S. M. Hubbard, C. Plourde, Z. Bittner, C. G. Bailey, M. Harris, T. Bald, M. Bennett, D. V. Forbes, and R. Raffaelle, “InAs quantum dot enhancement of GaAs solar cells,” 2010 35th IEEE Photovoltaic Specialists Conference (PVSC) (IEEE, 2010), pp. 1217–1222.
  12. S. Hubbard and R. Raffaelle, Boosting solar-cell efficiency with quantum-dot-based nanotechnology,” SPIE Newsroom, Feb. 8, 2010, http://spie.org/x39022.xml?highlight=x2358&ArticleID=x39022 .

2010

T. Sugaya, S. Furue, H. Komaki, T. Amano, M. Mori, K. Komori, S. Niki, O. Numakami, and Y. Okano, “Highly stacked and well-aligned In0.4Ga0.6As quantum dot solar cells with In0.2Ga0.8As cap layer,” Appl. Phys. Lett. 97(18), 183104 (2010).
[CrossRef]

R. Oshima, A. Takata, Y. Shoji, K. Akahane, and Y. Okada, “InAs/GaNAs strain-compensated quantum dots stacked up to 50 layers for use in high-efficiency solar cell,” Physica E 42(10), 2757–2760 (2010).
[CrossRef]

W. G. Hu, T. Inoue, O. Kojima, and T. Kita, “Effects of absorption coefficients and intermediate-band filling in InAs/GaAs quantum dot solar cells,” Appl. Phys. Lett. 97(19), 193106 (2010).
[CrossRef]

K. Yoshida, Y. Okada, and N. Sano, “Self-consistent simulation of intermediate band solar cells: Effect of occupation rates on device characteristics,” Appl. Phys. Lett. 97(13), 133503 (2010).
[CrossRef]

2007

G. D. Wei, K.-T. Shiu, N. C. Giebink, and S. R. Forrest, “Thermodynamic limits of quantum photo-voltaic cell efficiency,” Appl. Phys. Lett. 91(22), 223507 (2007).
[CrossRef]

2005

M. Ley, J. Boudaden, and Z. T. Kuznicki, “Thermodynamic efficiency of an intermediate band photovoltaic cell with low threshold Auger generation,” J. Appl. Phys. 98(4), 044905 (2005).
[CrossRef]

1997

A. Luque and A. Marti, “Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels,” Phys. Rev. Lett. 78(26), 5014–5017 (1997).
[CrossRef]

1961

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32(3), 510–519 (1961).
[CrossRef]

1954

D. M. Chapin, C. S. Fuller, and G. L. Pearson, “A new silicon p-n junction photocell for converting solar radiation into electrical power,” J. Appl. Phys. 25(5), 676–677 (1954).
[CrossRef]

Akahane, K.

R. Oshima, A. Takata, Y. Shoji, K. Akahane, and Y. Okada, “InAs/GaNAs strain-compensated quantum dots stacked up to 50 layers for use in high-efficiency solar cell,” Physica E 42(10), 2757–2760 (2010).
[CrossRef]

Amano, T.

T. Sugaya, S. Furue, H. Komaki, T. Amano, M. Mori, K. Komori, S. Niki, O. Numakami, and Y. Okano, “Highly stacked and well-aligned In0.4Ga0.6As quantum dot solar cells with In0.2Ga0.8As cap layer,” Appl. Phys. Lett. 97(18), 183104 (2010).
[CrossRef]

Boudaden, J.

M. Ley, J. Boudaden, and Z. T. Kuznicki, “Thermodynamic efficiency of an intermediate band photovoltaic cell with low threshold Auger generation,” J. Appl. Phys. 98(4), 044905 (2005).
[CrossRef]

Chapin, D. M.

D. M. Chapin, C. S. Fuller, and G. L. Pearson, “A new silicon p-n junction photocell for converting solar radiation into electrical power,” J. Appl. Phys. 25(5), 676–677 (1954).
[CrossRef]

Forrest, S. R.

G. D. Wei, K.-T. Shiu, N. C. Giebink, and S. R. Forrest, “Thermodynamic limits of quantum photo-voltaic cell efficiency,” Appl. Phys. Lett. 91(22), 223507 (2007).
[CrossRef]

Fuller, C. S.

D. M. Chapin, C. S. Fuller, and G. L. Pearson, “A new silicon p-n junction photocell for converting solar radiation into electrical power,” J. Appl. Phys. 25(5), 676–677 (1954).
[CrossRef]

Furue, S.

T. Sugaya, S. Furue, H. Komaki, T. Amano, M. Mori, K. Komori, S. Niki, O. Numakami, and Y. Okano, “Highly stacked and well-aligned In0.4Ga0.6As quantum dot solar cells with In0.2Ga0.8As cap layer,” Appl. Phys. Lett. 97(18), 183104 (2010).
[CrossRef]

Giebink, N. C.

G. D. Wei, K.-T. Shiu, N. C. Giebink, and S. R. Forrest, “Thermodynamic limits of quantum photo-voltaic cell efficiency,” Appl. Phys. Lett. 91(22), 223507 (2007).
[CrossRef]

Hu, W. G.

W. G. Hu, T. Inoue, O. Kojima, and T. Kita, “Effects of absorption coefficients and intermediate-band filling in InAs/GaAs quantum dot solar cells,” Appl. Phys. Lett. 97(19), 193106 (2010).
[CrossRef]

Inoue, T.

W. G. Hu, T. Inoue, O. Kojima, and T. Kita, “Effects of absorption coefficients and intermediate-band filling in InAs/GaAs quantum dot solar cells,” Appl. Phys. Lett. 97(19), 193106 (2010).
[CrossRef]

Kita, T.

W. G. Hu, T. Inoue, O. Kojima, and T. Kita, “Effects of absorption coefficients and intermediate-band filling in InAs/GaAs quantum dot solar cells,” Appl. Phys. Lett. 97(19), 193106 (2010).
[CrossRef]

Kojima, O.

W. G. Hu, T. Inoue, O. Kojima, and T. Kita, “Effects of absorption coefficients and intermediate-band filling in InAs/GaAs quantum dot solar cells,” Appl. Phys. Lett. 97(19), 193106 (2010).
[CrossRef]

Komaki, H.

T. Sugaya, S. Furue, H. Komaki, T. Amano, M. Mori, K. Komori, S. Niki, O. Numakami, and Y. Okano, “Highly stacked and well-aligned In0.4Ga0.6As quantum dot solar cells with In0.2Ga0.8As cap layer,” Appl. Phys. Lett. 97(18), 183104 (2010).
[CrossRef]

Komori, K.

T. Sugaya, S. Furue, H. Komaki, T. Amano, M. Mori, K. Komori, S. Niki, O. Numakami, and Y. Okano, “Highly stacked and well-aligned In0.4Ga0.6As quantum dot solar cells with In0.2Ga0.8As cap layer,” Appl. Phys. Lett. 97(18), 183104 (2010).
[CrossRef]

Kuznicki, Z. T.

M. Ley, J. Boudaden, and Z. T. Kuznicki, “Thermodynamic efficiency of an intermediate band photovoltaic cell with low threshold Auger generation,” J. Appl. Phys. 98(4), 044905 (2005).
[CrossRef]

Ley, M.

M. Ley, J. Boudaden, and Z. T. Kuznicki, “Thermodynamic efficiency of an intermediate band photovoltaic cell with low threshold Auger generation,” J. Appl. Phys. 98(4), 044905 (2005).
[CrossRef]

Luque, A.

A. Luque and A. Marti, “Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels,” Phys. Rev. Lett. 78(26), 5014–5017 (1997).
[CrossRef]

Marti, A.

A. Luque and A. Marti, “Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels,” Phys. Rev. Lett. 78(26), 5014–5017 (1997).
[CrossRef]

Mori, M.

T. Sugaya, S. Furue, H. Komaki, T. Amano, M. Mori, K. Komori, S. Niki, O. Numakami, and Y. Okano, “Highly stacked and well-aligned In0.4Ga0.6As quantum dot solar cells with In0.2Ga0.8As cap layer,” Appl. Phys. Lett. 97(18), 183104 (2010).
[CrossRef]

Niki, S.

T. Sugaya, S. Furue, H. Komaki, T. Amano, M. Mori, K. Komori, S. Niki, O. Numakami, and Y. Okano, “Highly stacked and well-aligned In0.4Ga0.6As quantum dot solar cells with In0.2Ga0.8As cap layer,” Appl. Phys. Lett. 97(18), 183104 (2010).
[CrossRef]

Numakami, O.

T. Sugaya, S. Furue, H. Komaki, T. Amano, M. Mori, K. Komori, S. Niki, O. Numakami, and Y. Okano, “Highly stacked and well-aligned In0.4Ga0.6As quantum dot solar cells with In0.2Ga0.8As cap layer,” Appl. Phys. Lett. 97(18), 183104 (2010).
[CrossRef]

Okada, Y.

R. Oshima, A. Takata, Y. Shoji, K. Akahane, and Y. Okada, “InAs/GaNAs strain-compensated quantum dots stacked up to 50 layers for use in high-efficiency solar cell,” Physica E 42(10), 2757–2760 (2010).
[CrossRef]

K. Yoshida, Y. Okada, and N. Sano, “Self-consistent simulation of intermediate band solar cells: Effect of occupation rates on device characteristics,” Appl. Phys. Lett. 97(13), 133503 (2010).
[CrossRef]

Okano, Y.

T. Sugaya, S. Furue, H. Komaki, T. Amano, M. Mori, K. Komori, S. Niki, O. Numakami, and Y. Okano, “Highly stacked and well-aligned In0.4Ga0.6As quantum dot solar cells with In0.2Ga0.8As cap layer,” Appl. Phys. Lett. 97(18), 183104 (2010).
[CrossRef]

Oshima, R.

R. Oshima, A. Takata, Y. Shoji, K. Akahane, and Y. Okada, “InAs/GaNAs strain-compensated quantum dots stacked up to 50 layers for use in high-efficiency solar cell,” Physica E 42(10), 2757–2760 (2010).
[CrossRef]

Pearson, G. L.

D. M. Chapin, C. S. Fuller, and G. L. Pearson, “A new silicon p-n junction photocell for converting solar radiation into electrical power,” J. Appl. Phys. 25(5), 676–677 (1954).
[CrossRef]

Queisser, H. J.

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32(3), 510–519 (1961).
[CrossRef]

Sano, N.

K. Yoshida, Y. Okada, and N. Sano, “Self-consistent simulation of intermediate band solar cells: Effect of occupation rates on device characteristics,” Appl. Phys. Lett. 97(13), 133503 (2010).
[CrossRef]

Shiu, K.-T.

G. D. Wei, K.-T. Shiu, N. C. Giebink, and S. R. Forrest, “Thermodynamic limits of quantum photo-voltaic cell efficiency,” Appl. Phys. Lett. 91(22), 223507 (2007).
[CrossRef]

Shockley, W.

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32(3), 510–519 (1961).
[CrossRef]

Shoji, Y.

R. Oshima, A. Takata, Y. Shoji, K. Akahane, and Y. Okada, “InAs/GaNAs strain-compensated quantum dots stacked up to 50 layers for use in high-efficiency solar cell,” Physica E 42(10), 2757–2760 (2010).
[CrossRef]

Sugaya, T.

T. Sugaya, S. Furue, H. Komaki, T. Amano, M. Mori, K. Komori, S. Niki, O. Numakami, and Y. Okano, “Highly stacked and well-aligned In0.4Ga0.6As quantum dot solar cells with In0.2Ga0.8As cap layer,” Appl. Phys. Lett. 97(18), 183104 (2010).
[CrossRef]

Takata, A.

R. Oshima, A. Takata, Y. Shoji, K. Akahane, and Y. Okada, “InAs/GaNAs strain-compensated quantum dots stacked up to 50 layers for use in high-efficiency solar cell,” Physica E 42(10), 2757–2760 (2010).
[CrossRef]

Wei, G. D.

G. D. Wei, K.-T. Shiu, N. C. Giebink, and S. R. Forrest, “Thermodynamic limits of quantum photo-voltaic cell efficiency,” Appl. Phys. Lett. 91(22), 223507 (2007).
[CrossRef]

Yoshida, K.

K. Yoshida, Y. Okada, and N. Sano, “Self-consistent simulation of intermediate band solar cells: Effect of occupation rates on device characteristics,” Appl. Phys. Lett. 97(13), 133503 (2010).
[CrossRef]

Appl. Phys. Lett.

T. Sugaya, S. Furue, H. Komaki, T. Amano, M. Mori, K. Komori, S. Niki, O. Numakami, and Y. Okano, “Highly stacked and well-aligned In0.4Ga0.6As quantum dot solar cells with In0.2Ga0.8As cap layer,” Appl. Phys. Lett. 97(18), 183104 (2010).
[CrossRef]

G. D. Wei, K.-T. Shiu, N. C. Giebink, and S. R. Forrest, “Thermodynamic limits of quantum photo-voltaic cell efficiency,” Appl. Phys. Lett. 91(22), 223507 (2007).
[CrossRef]

W. G. Hu, T. Inoue, O. Kojima, and T. Kita, “Effects of absorption coefficients and intermediate-band filling in InAs/GaAs quantum dot solar cells,” Appl. Phys. Lett. 97(19), 193106 (2010).
[CrossRef]

K. Yoshida, Y. Okada, and N. Sano, “Self-consistent simulation of intermediate band solar cells: Effect of occupation rates on device characteristics,” Appl. Phys. Lett. 97(13), 133503 (2010).
[CrossRef]

J. Appl. Phys.

M. Ley, J. Boudaden, and Z. T. Kuznicki, “Thermodynamic efficiency of an intermediate band photovoltaic cell with low threshold Auger generation,” J. Appl. Phys. 98(4), 044905 (2005).
[CrossRef]

D. M. Chapin, C. S. Fuller, and G. L. Pearson, “A new silicon p-n junction photocell for converting solar radiation into electrical power,” J. Appl. Phys. 25(5), 676–677 (1954).
[CrossRef]

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32(3), 510–519 (1961).
[CrossRef]

Phys. Rev. Lett.

A. Luque and A. Marti, “Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels,” Phys. Rev. Lett. 78(26), 5014–5017 (1997).
[CrossRef]

Physica E

R. Oshima, A. Takata, Y. Shoji, K. Akahane, and Y. Okada, “InAs/GaNAs strain-compensated quantum dots stacked up to 50 layers for use in high-efficiency solar cell,” Physica E 42(10), 2757–2760 (2010).
[CrossRef]

Other

T. Sugaya, S. Furue, O. Numakami, T. Amano, M. Mori, K. Komori, Y. Okano, and S. Niki, “Characteristics of highly stacked quantum dot solar cells fabricated by intermittent deposition of InGaAs,” in 2010 35th IEEE Photovoltaic Specialist Conference (PVSC) (IEEE, 2010), pp.1863–1867.

S. M. Hubbard, C. Plourde, Z. Bittner, C. G. Bailey, M. Harris, T. Bald, M. Bennett, D. V. Forbes, and R. Raffaelle, “InAs quantum dot enhancement of GaAs solar cells,” 2010 35th IEEE Photovoltaic Specialists Conference (PVSC) (IEEE, 2010), pp. 1217–1222.

S. Hubbard and R. Raffaelle, Boosting solar-cell efficiency with quantum-dot-based nanotechnology,” SPIE Newsroom, Feb. 8, 2010, http://spie.org/x39022.xml?highlight=x2358&ArticleID=x39022 .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic diagram of an IBSC.

Fig. 2
Fig. 2

Illustration of the photon-conserved detailed balance model: (a) The original concept of IBSC; (b) The concept of photo-generated carriers assignment and photon partition; (c) The concept of photon quanta conservation of blackbody radiation

Fig. 3
Fig. 3

The PCE of GaAs and GaN system, using partition of carriers and IB band gap size as variables. The highest x axis value is 1, which means 100%.

Fig. 4
Fig. 4

Normalized Voc versus percentage of direct transition through Eg1, and the data points are from [5,11,12]. Calculation based on our model can be fitted well with different values of factor f.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

N ( ε 1 , ε 2 , T , μ ) = 2 h 3 c 2 ε 1 ε 2 ε 2 d ε e ( ε μ ) / k T 1 ,
I s h = q × ( photons from the sun - photons emitted by cell ) q × ( # of photons from the sun ) = A × E ε 2 d ε exp ( ε / k T s ) 1 ,
V o c = k T c q ln ( f E g ε 2 d ε exp ( ε / k T s ) 1 / E g ε 2 d ε exp ( ε / k T c ) 1 ) ,
N i ( E g i , , T s , 0 ) = C i N ( E g i , , T s , 0 ) = 2 C i h 3 c 2 E g i ε 2 d ε e ε / k T s 1 ,
i N i ( E g 1 , , T s , 0 ) = N ( E g 1 , , T s , 0 ) [ i C i ] N ( E g 1 , , T s , 0 ) = N ( E g 1 , , T s , 0 ) i C i = 1.
C 2 N ( E g 2 , , T s , 0 ) = C 3 N ( E g 3 , , T s , 0 ) .
u ( x g ) = [ C 1 x g 1 x g 1 x 2 d x ( e x 1 ) + C 3 x g 3 x g 3 x 2 d x ( e x 1 ) ] / 0 x 3 d x ( e x 1 ) .

Metrics