Abstract

We report on a direct measurement method for acquiring highly precise reflectance spectra of gain elements for semiconductor disk lasers under optical pumping. The gain element acts as an active mirror, and the active mirror reflectance (AMR) was measured with a weak and tunable probe beam coincident on the gain element with a high-power pump beam. In particular, we measured the spectral AMR of a gain element designed to have a broad and flat AMR spectrum by being anti-resonant at the center wavelength and employing a parametrically optimized anti-reflection structure. We were able to confirm that this sophisticated gain element performs according to design, with an almost constant AMR of ∼103% over a wavelength range of nearly 35 nm, very well matching the simulated behavior. Such gain characteristics are useful for optically pumped semiconductor disk lasers (OP-SDLs) designed for broadband tuning and short-pulse generation through mode-locking. The measurement technique was also applied to a conventional resonant periodic gain element designed for fixed wavelength OP-SDL operation; its AMR spectrum is markedly different with a narrow peak, again in good agreement with the simulations.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Rudin, A. Rutz, M. Hoffmann, D. J. H. C. Maas, A.-R. Bellancourt, E. Gini, T. Südmeyer, and U. Keller, “Highly efficient optically pumped vertical-emitting semiconductor laser with more than 20 W average output power in a fundamental transverse mode,” Opt. Lett. 33, 2719–2721 (2008).
    [CrossRef] [PubMed]
  2. T.-L. Wang, Y. Kaneda, J. M. Yarborough, J. Hader, J. V. Moloney, A. Chernikov, S. Chatterjee, S. W. Koch, B. Kunert, and W. Stolz, “High-power optically pumped semiconductor laser at 1040 nm,” IEEE Photon. Technol. Lett. 22, 661–663 (2010).
    [CrossRef]
  3. A. Wojcik-Jedlinska, K. Pierscinski, A. Jasik, J. Muszalski, and M. Bugajski, “Optical characterisation of vertical-external-cavity surface-emitting lasers (VECSELs),” Opt. Appl. 37, 449–457 (2007).
  4. C. Borgentun, J. Bengtsson, A. Larsson, F. Demaria, A. Hein, and P. Unger, “Optimization of a broadband gain element for a widely tunable high-power semiconductor disk laser,” IEEE Photon. Technol. Lett. 22, 978–980 (2010).
    [CrossRef]
  5. J. Paajaste, S. Suomalainen, R. Koskinen, A. Härkönen, M. Guina, and M. Pessa, “High-power and broadly tunable GaSb-based optically pumped VECSELs emitting near 2 μm,” J. Cryst. Growth 311, 1917–1919 (2009).
    [CrossRef]
  6. A.-R. Bellancourt, Y. Barbarin, D. J. H. C. Maas, M. Shafiei, M. Hoffmann, M. Golling, T. Südmeyer, and U. Keller, “Low saturation fluence antiresonant quantum dot SESAMs for MIXSEL integration,” Opt. Express 17, 9704–9711 (2009).
    [CrossRef] [PubMed]
  7. L. Coldren and S. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, 1995).

2010 (2)

T.-L. Wang, Y. Kaneda, J. M. Yarborough, J. Hader, J. V. Moloney, A. Chernikov, S. Chatterjee, S. W. Koch, B. Kunert, and W. Stolz, “High-power optically pumped semiconductor laser at 1040 nm,” IEEE Photon. Technol. Lett. 22, 661–663 (2010).
[CrossRef]

C. Borgentun, J. Bengtsson, A. Larsson, F. Demaria, A. Hein, and P. Unger, “Optimization of a broadband gain element for a widely tunable high-power semiconductor disk laser,” IEEE Photon. Technol. Lett. 22, 978–980 (2010).
[CrossRef]

2009 (2)

J. Paajaste, S. Suomalainen, R. Koskinen, A. Härkönen, M. Guina, and M. Pessa, “High-power and broadly tunable GaSb-based optically pumped VECSELs emitting near 2 μm,” J. Cryst. Growth 311, 1917–1919 (2009).
[CrossRef]

A.-R. Bellancourt, Y. Barbarin, D. J. H. C. Maas, M. Shafiei, M. Hoffmann, M. Golling, T. Südmeyer, and U. Keller, “Low saturation fluence antiresonant quantum dot SESAMs for MIXSEL integration,” Opt. Express 17, 9704–9711 (2009).
[CrossRef] [PubMed]

2008 (1)

2007 (1)

A. Wojcik-Jedlinska, K. Pierscinski, A. Jasik, J. Muszalski, and M. Bugajski, “Optical characterisation of vertical-external-cavity surface-emitting lasers (VECSELs),” Opt. Appl. 37, 449–457 (2007).

Barbarin, Y.

Bellancourt, A.-R.

Bengtsson, J.

C. Borgentun, J. Bengtsson, A. Larsson, F. Demaria, A. Hein, and P. Unger, “Optimization of a broadband gain element for a widely tunable high-power semiconductor disk laser,” IEEE Photon. Technol. Lett. 22, 978–980 (2010).
[CrossRef]

Borgentun, C.

C. Borgentun, J. Bengtsson, A. Larsson, F. Demaria, A. Hein, and P. Unger, “Optimization of a broadband gain element for a widely tunable high-power semiconductor disk laser,” IEEE Photon. Technol. Lett. 22, 978–980 (2010).
[CrossRef]

Bugajski, M.

A. Wojcik-Jedlinska, K. Pierscinski, A. Jasik, J. Muszalski, and M. Bugajski, “Optical characterisation of vertical-external-cavity surface-emitting lasers (VECSELs),” Opt. Appl. 37, 449–457 (2007).

Chatterjee, S.

T.-L. Wang, Y. Kaneda, J. M. Yarborough, J. Hader, J. V. Moloney, A. Chernikov, S. Chatterjee, S. W. Koch, B. Kunert, and W. Stolz, “High-power optically pumped semiconductor laser at 1040 nm,” IEEE Photon. Technol. Lett. 22, 661–663 (2010).
[CrossRef]

Chernikov, A.

T.-L. Wang, Y. Kaneda, J. M. Yarborough, J. Hader, J. V. Moloney, A. Chernikov, S. Chatterjee, S. W. Koch, B. Kunert, and W. Stolz, “High-power optically pumped semiconductor laser at 1040 nm,” IEEE Photon. Technol. Lett. 22, 661–663 (2010).
[CrossRef]

Coldren, L.

L. Coldren and S. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, 1995).

Corzine, S.

L. Coldren and S. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, 1995).

Demaria, F.

C. Borgentun, J. Bengtsson, A. Larsson, F. Demaria, A. Hein, and P. Unger, “Optimization of a broadband gain element for a widely tunable high-power semiconductor disk laser,” IEEE Photon. Technol. Lett. 22, 978–980 (2010).
[CrossRef]

Gini, E.

Golling, M.

Guina, M.

J. Paajaste, S. Suomalainen, R. Koskinen, A. Härkönen, M. Guina, and M. Pessa, “High-power and broadly tunable GaSb-based optically pumped VECSELs emitting near 2 μm,” J. Cryst. Growth 311, 1917–1919 (2009).
[CrossRef]

Hader, J.

T.-L. Wang, Y. Kaneda, J. M. Yarborough, J. Hader, J. V. Moloney, A. Chernikov, S. Chatterjee, S. W. Koch, B. Kunert, and W. Stolz, “High-power optically pumped semiconductor laser at 1040 nm,” IEEE Photon. Technol. Lett. 22, 661–663 (2010).
[CrossRef]

Härkönen, A.

J. Paajaste, S. Suomalainen, R. Koskinen, A. Härkönen, M. Guina, and M. Pessa, “High-power and broadly tunable GaSb-based optically pumped VECSELs emitting near 2 μm,” J. Cryst. Growth 311, 1917–1919 (2009).
[CrossRef]

Hein, A.

C. Borgentun, J. Bengtsson, A. Larsson, F. Demaria, A. Hein, and P. Unger, “Optimization of a broadband gain element for a widely tunable high-power semiconductor disk laser,” IEEE Photon. Technol. Lett. 22, 978–980 (2010).
[CrossRef]

Hoffmann, M.

Jasik, A.

A. Wojcik-Jedlinska, K. Pierscinski, A. Jasik, J. Muszalski, and M. Bugajski, “Optical characterisation of vertical-external-cavity surface-emitting lasers (VECSELs),” Opt. Appl. 37, 449–457 (2007).

Kaneda, Y.

T.-L. Wang, Y. Kaneda, J. M. Yarborough, J. Hader, J. V. Moloney, A. Chernikov, S. Chatterjee, S. W. Koch, B. Kunert, and W. Stolz, “High-power optically pumped semiconductor laser at 1040 nm,” IEEE Photon. Technol. Lett. 22, 661–663 (2010).
[CrossRef]

Keller, U.

Koch, S. W.

T.-L. Wang, Y. Kaneda, J. M. Yarborough, J. Hader, J. V. Moloney, A. Chernikov, S. Chatterjee, S. W. Koch, B. Kunert, and W. Stolz, “High-power optically pumped semiconductor laser at 1040 nm,” IEEE Photon. Technol. Lett. 22, 661–663 (2010).
[CrossRef]

Koskinen, R.

J. Paajaste, S. Suomalainen, R. Koskinen, A. Härkönen, M. Guina, and M. Pessa, “High-power and broadly tunable GaSb-based optically pumped VECSELs emitting near 2 μm,” J. Cryst. Growth 311, 1917–1919 (2009).
[CrossRef]

Kunert, B.

T.-L. Wang, Y. Kaneda, J. M. Yarborough, J. Hader, J. V. Moloney, A. Chernikov, S. Chatterjee, S. W. Koch, B. Kunert, and W. Stolz, “High-power optically pumped semiconductor laser at 1040 nm,” IEEE Photon. Technol. Lett. 22, 661–663 (2010).
[CrossRef]

Larsson, A.

C. Borgentun, J. Bengtsson, A. Larsson, F. Demaria, A. Hein, and P. Unger, “Optimization of a broadband gain element for a widely tunable high-power semiconductor disk laser,” IEEE Photon. Technol. Lett. 22, 978–980 (2010).
[CrossRef]

Maas, D. J. H. C.

Moloney, J. V.

T.-L. Wang, Y. Kaneda, J. M. Yarborough, J. Hader, J. V. Moloney, A. Chernikov, S. Chatterjee, S. W. Koch, B. Kunert, and W. Stolz, “High-power optically pumped semiconductor laser at 1040 nm,” IEEE Photon. Technol. Lett. 22, 661–663 (2010).
[CrossRef]

Muszalski, J.

A. Wojcik-Jedlinska, K. Pierscinski, A. Jasik, J. Muszalski, and M. Bugajski, “Optical characterisation of vertical-external-cavity surface-emitting lasers (VECSELs),” Opt. Appl. 37, 449–457 (2007).

Paajaste, J.

J. Paajaste, S. Suomalainen, R. Koskinen, A. Härkönen, M. Guina, and M. Pessa, “High-power and broadly tunable GaSb-based optically pumped VECSELs emitting near 2 μm,” J. Cryst. Growth 311, 1917–1919 (2009).
[CrossRef]

Pessa, M.

J. Paajaste, S. Suomalainen, R. Koskinen, A. Härkönen, M. Guina, and M. Pessa, “High-power and broadly tunable GaSb-based optically pumped VECSELs emitting near 2 μm,” J. Cryst. Growth 311, 1917–1919 (2009).
[CrossRef]

Pierscinski, K.

A. Wojcik-Jedlinska, K. Pierscinski, A. Jasik, J. Muszalski, and M. Bugajski, “Optical characterisation of vertical-external-cavity surface-emitting lasers (VECSELs),” Opt. Appl. 37, 449–457 (2007).

Rudin, B.

Rutz, A.

Shafiei, M.

Stolz, W.

T.-L. Wang, Y. Kaneda, J. M. Yarborough, J. Hader, J. V. Moloney, A. Chernikov, S. Chatterjee, S. W. Koch, B. Kunert, and W. Stolz, “High-power optically pumped semiconductor laser at 1040 nm,” IEEE Photon. Technol. Lett. 22, 661–663 (2010).
[CrossRef]

Südmeyer, T.

Suomalainen, S.

J. Paajaste, S. Suomalainen, R. Koskinen, A. Härkönen, M. Guina, and M. Pessa, “High-power and broadly tunable GaSb-based optically pumped VECSELs emitting near 2 μm,” J. Cryst. Growth 311, 1917–1919 (2009).
[CrossRef]

Unger, P.

C. Borgentun, J. Bengtsson, A. Larsson, F. Demaria, A. Hein, and P. Unger, “Optimization of a broadband gain element for a widely tunable high-power semiconductor disk laser,” IEEE Photon. Technol. Lett. 22, 978–980 (2010).
[CrossRef]

Wang, T.-L.

T.-L. Wang, Y. Kaneda, J. M. Yarborough, J. Hader, J. V. Moloney, A. Chernikov, S. Chatterjee, S. W. Koch, B. Kunert, and W. Stolz, “High-power optically pumped semiconductor laser at 1040 nm,” IEEE Photon. Technol. Lett. 22, 661–663 (2010).
[CrossRef]

Wojcik-Jedlinska, A.

A. Wojcik-Jedlinska, K. Pierscinski, A. Jasik, J. Muszalski, and M. Bugajski, “Optical characterisation of vertical-external-cavity surface-emitting lasers (VECSELs),” Opt. Appl. 37, 449–457 (2007).

Yarborough, J. M.

T.-L. Wang, Y. Kaneda, J. M. Yarborough, J. Hader, J. V. Moloney, A. Chernikov, S. Chatterjee, S. W. Koch, B. Kunert, and W. Stolz, “High-power optically pumped semiconductor laser at 1040 nm,” IEEE Photon. Technol. Lett. 22, 661–663 (2010).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

T.-L. Wang, Y. Kaneda, J. M. Yarborough, J. Hader, J. V. Moloney, A. Chernikov, S. Chatterjee, S. W. Koch, B. Kunert, and W. Stolz, “High-power optically pumped semiconductor laser at 1040 nm,” IEEE Photon. Technol. Lett. 22, 661–663 (2010).
[CrossRef]

C. Borgentun, J. Bengtsson, A. Larsson, F. Demaria, A. Hein, and P. Unger, “Optimization of a broadband gain element for a widely tunable high-power semiconductor disk laser,” IEEE Photon. Technol. Lett. 22, 978–980 (2010).
[CrossRef]

J. Cryst. Growth (1)

J. Paajaste, S. Suomalainen, R. Koskinen, A. Härkönen, M. Guina, and M. Pessa, “High-power and broadly tunable GaSb-based optically pumped VECSELs emitting near 2 μm,” J. Cryst. Growth 311, 1917–1919 (2009).
[CrossRef]

Opt. Appl. (1)

A. Wojcik-Jedlinska, K. Pierscinski, A. Jasik, J. Muszalski, and M. Bugajski, “Optical characterisation of vertical-external-cavity surface-emitting lasers (VECSELs),” Opt. Appl. 37, 449–457 (2007).

Opt. Express (1)

Opt. Lett. (1)

Other (1)

L. Coldren and S. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(Color online) Schematic overview of the measurement setup (BS50: Wedged 50-50 beam-splitter). When aligning the spots from the probe and pump lasers, the top detector is removed in order to image the GE surface with a lens and a CCD camera.

Fig. 2
Fig. 2

(Color online) The output power dependence on emission wavelength for the tunable probe laser. Also shown are the signals from the two power detectors for a typical AMR measurement of an unpumped broadband GE. The inset shows the beam intensity cross-sections at the GE from the pump (blue and wider) and probe (red) laser.

Fig. 3
Fig. 3

(Color online) Layer structure of the broadband GE. The QW positions are marked with vertical dotted lines. Also shown is the standing wave of the optical field at two wavelengths: the center wavelength (980 nm) and one of the resonant wavelengths (960 nm).

Fig. 4
Fig. 4

(Color online) Variation of the average optical intensity in the QWs with wavelength for the broadband GE. The curves with markers are calculated material gain spectra of a single QW for a selection of carrier densities.

Fig. 5
Fig. 5

(Color online) Simulated AMR spectra: the target AMR spectrum (a flat-top spectrum with an AMR of 103% over a wavelength interval of 40 nm), the AMR spectrum for the broadband GE, and for comparison, the AMR spectrum for a standard GE for a fixed-wavelength OP-SDL at the same pump intensity.

Fig. 6
Fig. 6

(Color online) (a) AMR measurements of a conventional GE for different incident pump powers. (b) AMR simulations of the same conventional GE for different incident pump intensities.

Fig. 7
Fig. 7

(Color online) (a) AMR measurements of a broadband GE for different incident pump powers. (b) Zoom-in of above figure. The markers represent data points and the curves are smooth curve fits to the data points. (c) AMR simulations of the same broadband GE for different incident pump intensities. (d) Zoom-in of above figure.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

P 2 ( λ ) = κ ( λ ) R s a m p l e ( λ ) P 1 ( λ ) ,
A M R ( λ ) = 1 κ ( λ ) P 2 ( λ ) P 1 ( λ ) = R c a l ( λ ) P 1 c a l ( λ ) P 2 c a l ( λ ) P 2 ( λ ) P 1 ( λ ) ,

Metrics