Abstract

A master-oscillator power-amplifier with stimulated Brillouin scattering (SBS) beam cleanup or wavefront reversal typically incorporates a Faraday isolator to outcouple the Stokes light, limiting the power scalability. Volume Bragg gratings (VBGs) have the potential for scaling to higher powers. We report here the results of tests on a VBG designed to resolve wavelengths 0.060 nm apart, corresponding to the 16 GHz frequency shift for SBS backscattering at 1064 nm in fused silica. Such an element may also find use in between stages of fiber amplifiers, for blocking the Stokes wave.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Boyd, Nonlinear Optics Third Edition, (Elsevier Science & Technology Books, New York 2008).
  2. L. Lombard, A. Brignon, J. P. Huignard, E. Lallier, and P. Georges, “Beam cleanup in a self-aligned gradient-index Brillouin cavity for high-power multimode fiber amplifiers,” Opt. Lett. 31(2), 158–160 (2006).
    [CrossRef] [PubMed]
  3. L. B. Glebov, V. I. Smirnov, C. M. Stickley, and I. V. Ciapurin, “New approach to robust optics for HEL systems,” in Laser Weapons Technology III, W.E. Thompson and P.H. Merritt, Editors. Proc. of SPIE4724, 101–109 (2002).
  4. L. B. Glebov, “High brightness laser design based on volume Bragg gratings,” Proc. SPIE 6216, 621601, 621601-10 (2006).
    [CrossRef]
  5. J. E. Hellström, B. Jacobsson, V. Pasiskevicius, and F. Laurell, “Quasi-two-level Yb:KYW laser with a volume Bragg grating,” Opt. Express 15(21), 13930–13935 (2007).
    [CrossRef] [PubMed]
  6. A. Gourevitch, G. Venus, V. Smirnov, D. A. Hostutler, and L. Glebov, “Continuous wave, 30 W laser-diode bar with 10 GHz linewidth for Rb laser pumping,” Opt. Lett. 33(7), 702–704 (2008).
    [CrossRef] [PubMed]
  7. N. Ter-Gabrielyan, L. D. Merkle, A. Ikesue, and M. Dubinskii, “Ultralow quantum-defect eye-safe Er:Sc2O3 laser,” Opt. Lett. 33(13), 1524–1526 (2008).
    [CrossRef] [PubMed]
  8. New Focus, 3635 Peterson Way, Santa Clara, CA 95054, model TLB-6300.
  9. S. V. Mokhov, L. B. Glebov, V. I. Smirnov, and B. Ya. Zeldovich, “Propagation of Electromagnetic Waves in Non-uniform Volume Bragg Gratings,” presented at Frontiers in Optics, Rochester, NY, Oct. 19–23 2008.
  10. H. Shu, S. Mokhov, B. Ya. Zeldovich, and M. Bass, “More on analyzing the reflection of a laser beam by a deformed highly reflective volume Bragg grating using iteration of the beam propagation method,” Appl. Opt. 48(1), 22–27 (2009).
    [CrossRef] [PubMed]
  11. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2945 (1969).
  12. Innovative Photonics, www.innovativephotonics.com , 4250 U.S. Rt. 1, Monmouth Junction, NJ 08852.
  13. Nufern, www.nufern.com , 7 Airport Park Rd, E. Granby, CT 06026.
  14. D. P. M. Photonics, www.dpmphotonics.com , P.O. Box 3002, Vernon, CT 06066.
  15. O. F. S. Optics, www.osfoptics.com , 2000 Northeast Expressway, Norcross, GA 30071.

2009

2008

2007

2006

1969

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2945 (1969).

Bass, M.

Brignon, A.

Dubinskii, M.

Georges, P.

Glebov, L.

Glebov, L. B.

L. B. Glebov, “High brightness laser design based on volume Bragg gratings,” Proc. SPIE 6216, 621601, 621601-10 (2006).
[CrossRef]

Gourevitch, A.

Hellström, J. E.

Hostutler, D. A.

Huignard, J. P.

Ikesue, A.

Jacobsson, B.

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2945 (1969).

Lallier, E.

Laurell, F.

Lombard, L.

Merkle, L. D.

Mokhov, S.

Pasiskevicius, V.

Shu, H.

Smirnov, V.

Ter-Gabrielyan, N.

Venus, G.

Zeldovich, B. Ya.

Appl. Opt.

Bell Syst. Tech. J.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2945 (1969).

Opt. Express

Opt. Lett.

Proc. SPIE

L. B. Glebov, “High brightness laser design based on volume Bragg gratings,” Proc. SPIE 6216, 621601, 621601-10 (2006).
[CrossRef]

Other

R. Boyd, Nonlinear Optics Third Edition, (Elsevier Science & Technology Books, New York 2008).

L. B. Glebov, V. I. Smirnov, C. M. Stickley, and I. V. Ciapurin, “New approach to robust optics for HEL systems,” in Laser Weapons Technology III, W.E. Thompson and P.H. Merritt, Editors. Proc. of SPIE4724, 101–109 (2002).

New Focus, 3635 Peterson Way, Santa Clara, CA 95054, model TLB-6300.

S. V. Mokhov, L. B. Glebov, V. I. Smirnov, and B. Ya. Zeldovich, “Propagation of Electromagnetic Waves in Non-uniform Volume Bragg Gratings,” presented at Frontiers in Optics, Rochester, NY, Oct. 19–23 2008.

Innovative Photonics, www.innovativephotonics.com , 4250 U.S. Rt. 1, Monmouth Junction, NJ 08852.

Nufern, www.nufern.com , 7 Airport Park Rd, E. Granby, CT 06026.

D. P. M. Photonics, www.dpmphotonics.com , P.O. Box 3002, Vernon, CT 06066.

O. F. S. Optics, www.osfoptics.com , 2000 Northeast Expressway, Norcross, GA 30071.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

The preferred configuration using a VBG to outcouple in the wavefront reversal geometry.

Fig. 2
Fig. 2

A possible configuration to outcouple in the beam cleanup geometry.

Fig. 3
Fig. 3

Calculated (line) and measured (circles) reflection of a 12 mm-thick reflection volume Bragg grating.

Fig. 4
Fig. 4

The VBG transmittance at λL (blue), VBG reflectance at λS (red), and SBS reflectance (black).

Fig. 5
Fig. 5

Cross section of the steady state temperature profile inside an 8 × 10 × 12 mm3 piece of PTR glass, with 0.12 W of heat deposited in a cylinder of the same length and 6 mm in diameter.

Fig. 6
Fig. 6

Steady State VBG temperature vs distance along y from center of Fig. 5.

Fig. 7
Fig. 7

Transient VBG temperature on axis, same conditions as Fig. 5.

Metrics