Abstract

We perform a theoretical study of the spectral and polarization threshold characteristics of Vertical-Cavity Surface-Emitting Lasers with Liquid Crystal overlay (LC-VCSEL) in three different configurations of the LC cell. Our model predicts the possibility of selecting between two orthogonal directions of linear polarization (LP) of the fundamental mode (x or y LP) by choosing appropriate LC length. It further predicts very strong polarization discrimination with LP mode threshold gain difference as large as several times the threshold gain of the lasing mode. We also numerically demonstrate an active control of light polarization by electro-optically tuning the LC director and show that either polarization switching between x and y LP modes or continuous change of the LP direction would be possible. Finally, we numerically demonstrate that LC-VCSEL would be capable of efficient wavelength tuning.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I.-C. Khoo, Liquid Crystals (Wiley, 2007).
    [CrossRef]
  2. S. M. Weiss, H. Ouyang, J. Zhang, and P. M. Fauchet, “Electrical and thermal modulation of silicon photonic bandgap microcavities containing liquid crystals,” Opt. Express 13, 1090–1097 (2005).
    [CrossRef] [PubMed]
  3. V. Y. Zyryanov, S. A. Myslivets, V. A. Gunyakov, A. M. Parshin, V. G. Arkhipkin, V. F. Shabanov, and W. Lee, “Magnetic-field tunable defect modes in a photonic-crystal/liquid-crystal cell,” Opt. Express 18, 1283–1288 (2010).
    [CrossRef] [PubMed]
  4. Ch. Schuller, F. Klopf, J. P. Reithmaier, M. Kamp, and A. Forchel, “Tunable photonic crystals fabricated in III–V semiconductor slab waveguides using infiltrated liquid crystals,” Appl. Phys. Lett. 82, 2767–2769 (2003).
    [CrossRef]
  5. T. T. Larsen, A. Bjarklev, D. S. Hermann, and J. Broeng, “Optical devices based on liquid crystal photonic bandgap fibres,” Opt. Express 11, 2589–2596 (2003).
    [CrossRef] [PubMed]
  6. F. Du, Y.-Q. Lu, and S.-T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett. 85, 2181–2183 (2004).
    [CrossRef]
  7. Y. Shimoda, M. Ozaki, and K. Yoshino, “Electric field tuning of a stop band in a reflection spectrum of synthetic opal infiltrated with nematic liquid crystal,” Appl. Phys. Lett. 79, 3627–3629 (2001).
    [CrossRef]
  8. I.-C. Khoo, A. Diaz, J. Liou, M. V. Stinger, J. Huang, and Y. Ma, “Liquid crystal tunable optical metamaterias,” IEEE J. Sel. Top. Quantum Electron. 16, 410–417 (2010).
    [CrossRef]
  9. J. R. Andrews, “Low voltage wavelength tuning of an external cavity diode laser using a nematic liquid crystal-containing birefringent filter,” IEEE Photon. Technol. Lett. 2, 334–336 (1990).
    [CrossRef]
  10. J. De Merlier, K. Mizutani, S. Sudo, K. Naniwae, Y. Furushima, S. Sato, K. Sato, and K. Kudo, “Full C-band external cavity wavelength tunable laser using a liquid-crystal-based tunable mirror,” IEEE Photon. Technol. Lett. 17, 681–683 (2005).
    [CrossRef]
  11. C. I. Wilkinson, J. Woodhead, J. E. F. Frost, J. S. Roberts, R. Wilson, and M. F. Lewis, “Electrical polarization control of vertical-cavity surface-emitting lasers using polarized feedback and a liquid crystal,” IEEE Photon Technol. Lett. 11, 155–157 (1999).
    [CrossRef]
  12. C. I. Wilkinson, J. Woodhead, J. E. F. Frost, J. S. Roberts, R. Wilson, and M. F. Lewis, “Enhancement of a liquid-crystal modulator using an external-cavity VCSEL,” IEEE Photon. Technol. Lett. 11, 940–942 (1999).
    [CrossRef]
  13. K. Panajotov, M. Arizaleta, M. Camarena, and H. Thienpont, “Polarization switching induced by phase change in extremely short external cavity vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 84, 2763–2765 (2004).
    [CrossRef]
  14. M. Arteaga, M. Lpez-Amo, H. Thienpont, and K. Panajotov, “Tailoring light polarization in vertical cavity surface emitting lasers by isotropic optical feedback from an extremely short external cavity,” Appl. Phys. Lett. 89, 091102 (2006).
    [CrossRef]
  15. M. A. Arteaga, M. Lopez-Amo, J. Hernandez, H. Thienpont, and K. Panajotov, “Spectral properties of edge-emitting semiconductor laser subject to optical feedback from extremely short external cavity,” Opt. Quantum Electron. 40, 69–81 (2008).
    [CrossRef]
  16. R. P. Stanley, R. Houdre, U. Oesterle, M. Illegems, and C. Wesbuch, “Coupeld semiconductor microcavities,” Appl. Phys. Lett. 65, 2093–2095 (1994).
    [CrossRef]
  17. P. Pellandini, R. P. Stanley, R. Houdre, U. Oesterle, M. Illegems, and C. Weisbuch, “Dual-wavelength emission from coupled semiconductor microcavity,” Appl. Phys. Lett. 71, 864–866 (1997).
    [CrossRef]
  18. M. Brunner, K. Gulden, R. Hovel, M. Moser, J. F. Carlin, R. P. Stanley, and M. Illegems, “Continuous-wave dual-wavelength lasing in a two-section vetrical-cavity laser,” IEEE Photon. Technol. Lett. 12, 1316–1318 (2000).
    [CrossRef]
  19. D. M. Grasso, K. D. Choquette, D. K. Serkland, G. M. Peake, and K. M. Geib, “High slope efficiency measured from a composite-resonator vertical-cavity laser,” IEEE Photon. Technol. Lett. 18, 1019–1021 (2006).
    [CrossRef]
  20. V. Badilita, J.-F. Carlin, M. Ilegems, and K. Panajotov, “Rate-equation model for coupled-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 40, 1646–1656 (2004).
    [CrossRef]
  21. K. Panajotov, M. Zujewski, and H. Thienpont, “Coupled-cavity surface-emitting lasers: spectral and polarization threshold characteristics and electrooptic switching,” Opt. Express 18, 27525–27533 (2010).
    [CrossRef]
  22. V. Verbrugge, J.-L. de Bougrenet de la Tocnaye, and L. Dupont, “C-band wavelength-tunable vertical-cavity laser using a nano polymer dispersed liquid crystal material,” Opt. Commun. 215, 353–359 (2003).
    [CrossRef]
  23. O. Castany, L. Dupont, A. Shuaib, J. P. Gauthier, C. Levallois, C. Paranthoen, N. Chevalier, O. Durand, and A. Le Corre, “Tunable VCSEL with intracavity liquid crystal layer,” EOS Annual Meeting (October 2010).
  24. O. Castany, L. Dupont, C. Paranthoen, C. Levallois, A. Le Corre, and S. Loualiche, “Liquid crystal micro-cells for tunable VCSELs,” Journes nationales sur les technologies mergentes (November 2010).
  25. M. Born and E. Wolf, Principles of Optics (Wiley, 1970).
  26. A. K. Jansen van Doornen, M. P. van Exter, and J. P. Woerdman, “Elasto-optic anisotropy and polarization orientation of vertical-cavity surface-emitting semiconductor lasers,” Appl. Phys. Lett. 69, 1041–1043 (1996).
    [CrossRef]
  27. K. Panajotov, J. Danckaert, G. Verschaffelt, M. Peeters, B. Nagler, J. Albert, B. Ryvkin, H. Thienpont, and I. Veretennicoff, “Polarization behavior of vertical-cavity surface-emitting lasers: experiments, models and applications,” in Nanoscale Linear and Nonlinear Optics, M. Bertolotti, C. M. Bowden, and C. Sibilia, eds. (American Institute of Physics, 2001), Vol. 560, pp. 403–417.
  28. J. A. Yeh, C. A. Chang, C.-C. Cheng, J.-Y. Huang, and S. H. Hsu, “Microwave characteristics of liquid-crystal tunable capacitors,” IEEE J. Dev. Lett. 26, 451–453 (2005).
    [CrossRef]

2010

2008

M. A. Arteaga, M. Lopez-Amo, J. Hernandez, H. Thienpont, and K. Panajotov, “Spectral properties of edge-emitting semiconductor laser subject to optical feedback from extremely short external cavity,” Opt. Quantum Electron. 40, 69–81 (2008).
[CrossRef]

2006

D. M. Grasso, K. D. Choquette, D. K. Serkland, G. M. Peake, and K. M. Geib, “High slope efficiency measured from a composite-resonator vertical-cavity laser,” IEEE Photon. Technol. Lett. 18, 1019–1021 (2006).
[CrossRef]

M. Arteaga, M. Lpez-Amo, H. Thienpont, and K. Panajotov, “Tailoring light polarization in vertical cavity surface emitting lasers by isotropic optical feedback from an extremely short external cavity,” Appl. Phys. Lett. 89, 091102 (2006).
[CrossRef]

2005

J. De Merlier, K. Mizutani, S. Sudo, K. Naniwae, Y. Furushima, S. Sato, K. Sato, and K. Kudo, “Full C-band external cavity wavelength tunable laser using a liquid-crystal-based tunable mirror,” IEEE Photon. Technol. Lett. 17, 681–683 (2005).
[CrossRef]

J. A. Yeh, C. A. Chang, C.-C. Cheng, J.-Y. Huang, and S. H. Hsu, “Microwave characteristics of liquid-crystal tunable capacitors,” IEEE J. Dev. Lett. 26, 451–453 (2005).
[CrossRef]

S. M. Weiss, H. Ouyang, J. Zhang, and P. M. Fauchet, “Electrical and thermal modulation of silicon photonic bandgap microcavities containing liquid crystals,” Opt. Express 13, 1090–1097 (2005).
[CrossRef] [PubMed]

2004

K. Panajotov, M. Arizaleta, M. Camarena, and H. Thienpont, “Polarization switching induced by phase change in extremely short external cavity vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 84, 2763–2765 (2004).
[CrossRef]

F. Du, Y.-Q. Lu, and S.-T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett. 85, 2181–2183 (2004).
[CrossRef]

V. Badilita, J.-F. Carlin, M. Ilegems, and K. Panajotov, “Rate-equation model for coupled-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 40, 1646–1656 (2004).
[CrossRef]

2003

Ch. Schuller, F. Klopf, J. P. Reithmaier, M. Kamp, and A. Forchel, “Tunable photonic crystals fabricated in III–V semiconductor slab waveguides using infiltrated liquid crystals,” Appl. Phys. Lett. 82, 2767–2769 (2003).
[CrossRef]

V. Verbrugge, J.-L. de Bougrenet de la Tocnaye, and L. Dupont, “C-band wavelength-tunable vertical-cavity laser using a nano polymer dispersed liquid crystal material,” Opt. Commun. 215, 353–359 (2003).
[CrossRef]

T. T. Larsen, A. Bjarklev, D. S. Hermann, and J. Broeng, “Optical devices based on liquid crystal photonic bandgap fibres,” Opt. Express 11, 2589–2596 (2003).
[CrossRef] [PubMed]

2001

Y. Shimoda, M. Ozaki, and K. Yoshino, “Electric field tuning of a stop band in a reflection spectrum of synthetic opal infiltrated with nematic liquid crystal,” Appl. Phys. Lett. 79, 3627–3629 (2001).
[CrossRef]

2000

M. Brunner, K. Gulden, R. Hovel, M. Moser, J. F. Carlin, R. P. Stanley, and M. Illegems, “Continuous-wave dual-wavelength lasing in a two-section vetrical-cavity laser,” IEEE Photon. Technol. Lett. 12, 1316–1318 (2000).
[CrossRef]

1999

C. I. Wilkinson, J. Woodhead, J. E. F. Frost, J. S. Roberts, R. Wilson, and M. F. Lewis, “Electrical polarization control of vertical-cavity surface-emitting lasers using polarized feedback and a liquid crystal,” IEEE Photon Technol. Lett. 11, 155–157 (1999).
[CrossRef]

C. I. Wilkinson, J. Woodhead, J. E. F. Frost, J. S. Roberts, R. Wilson, and M. F. Lewis, “Enhancement of a liquid-crystal modulator using an external-cavity VCSEL,” IEEE Photon. Technol. Lett. 11, 940–942 (1999).
[CrossRef]

1997

P. Pellandini, R. P. Stanley, R. Houdre, U. Oesterle, M. Illegems, and C. Weisbuch, “Dual-wavelength emission from coupled semiconductor microcavity,” Appl. Phys. Lett. 71, 864–866 (1997).
[CrossRef]

1996

A. K. Jansen van Doornen, M. P. van Exter, and J. P. Woerdman, “Elasto-optic anisotropy and polarization orientation of vertical-cavity surface-emitting semiconductor lasers,” Appl. Phys. Lett. 69, 1041–1043 (1996).
[CrossRef]

1994

R. P. Stanley, R. Houdre, U. Oesterle, M. Illegems, and C. Wesbuch, “Coupeld semiconductor microcavities,” Appl. Phys. Lett. 65, 2093–2095 (1994).
[CrossRef]

1990

J. R. Andrews, “Low voltage wavelength tuning of an external cavity diode laser using a nematic liquid crystal-containing birefringent filter,” IEEE Photon. Technol. Lett. 2, 334–336 (1990).
[CrossRef]

Albert, J.

K. Panajotov, J. Danckaert, G. Verschaffelt, M. Peeters, B. Nagler, J. Albert, B. Ryvkin, H. Thienpont, and I. Veretennicoff, “Polarization behavior of vertical-cavity surface-emitting lasers: experiments, models and applications,” in Nanoscale Linear and Nonlinear Optics, M. Bertolotti, C. M. Bowden, and C. Sibilia, eds. (American Institute of Physics, 2001), Vol. 560, pp. 403–417.

Andrews, J. R.

J. R. Andrews, “Low voltage wavelength tuning of an external cavity diode laser using a nematic liquid crystal-containing birefringent filter,” IEEE Photon. Technol. Lett. 2, 334–336 (1990).
[CrossRef]

Arizaleta, M.

K. Panajotov, M. Arizaleta, M. Camarena, and H. Thienpont, “Polarization switching induced by phase change in extremely short external cavity vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 84, 2763–2765 (2004).
[CrossRef]

Arkhipkin, V. G.

Arteaga, M.

M. Arteaga, M. Lpez-Amo, H. Thienpont, and K. Panajotov, “Tailoring light polarization in vertical cavity surface emitting lasers by isotropic optical feedback from an extremely short external cavity,” Appl. Phys. Lett. 89, 091102 (2006).
[CrossRef]

Arteaga, M. A.

M. A. Arteaga, M. Lopez-Amo, J. Hernandez, H. Thienpont, and K. Panajotov, “Spectral properties of edge-emitting semiconductor laser subject to optical feedback from extremely short external cavity,” Opt. Quantum Electron. 40, 69–81 (2008).
[CrossRef]

Badilita, V.

V. Badilita, J.-F. Carlin, M. Ilegems, and K. Panajotov, “Rate-equation model for coupled-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 40, 1646–1656 (2004).
[CrossRef]

Bjarklev, A.

Born, M.

M. Born and E. Wolf, Principles of Optics (Wiley, 1970).

Broeng, J.

Brunner, M.

M. Brunner, K. Gulden, R. Hovel, M. Moser, J. F. Carlin, R. P. Stanley, and M. Illegems, “Continuous-wave dual-wavelength lasing in a two-section vetrical-cavity laser,” IEEE Photon. Technol. Lett. 12, 1316–1318 (2000).
[CrossRef]

Camarena, M.

K. Panajotov, M. Arizaleta, M. Camarena, and H. Thienpont, “Polarization switching induced by phase change in extremely short external cavity vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 84, 2763–2765 (2004).
[CrossRef]

Carlin, J. F.

M. Brunner, K. Gulden, R. Hovel, M. Moser, J. F. Carlin, R. P. Stanley, and M. Illegems, “Continuous-wave dual-wavelength lasing in a two-section vetrical-cavity laser,” IEEE Photon. Technol. Lett. 12, 1316–1318 (2000).
[CrossRef]

Carlin, J.-F.

V. Badilita, J.-F. Carlin, M. Ilegems, and K. Panajotov, “Rate-equation model for coupled-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 40, 1646–1656 (2004).
[CrossRef]

Castany, O.

O. Castany, L. Dupont, A. Shuaib, J. P. Gauthier, C. Levallois, C. Paranthoen, N. Chevalier, O. Durand, and A. Le Corre, “Tunable VCSEL with intracavity liquid crystal layer,” EOS Annual Meeting (October 2010).

O. Castany, L. Dupont, C. Paranthoen, C. Levallois, A. Le Corre, and S. Loualiche, “Liquid crystal micro-cells for tunable VCSELs,” Journes nationales sur les technologies mergentes (November 2010).

Chang, C. A.

J. A. Yeh, C. A. Chang, C.-C. Cheng, J.-Y. Huang, and S. H. Hsu, “Microwave characteristics of liquid-crystal tunable capacitors,” IEEE J. Dev. Lett. 26, 451–453 (2005).
[CrossRef]

Cheng, C.-C.

J. A. Yeh, C. A. Chang, C.-C. Cheng, J.-Y. Huang, and S. H. Hsu, “Microwave characteristics of liquid-crystal tunable capacitors,” IEEE J. Dev. Lett. 26, 451–453 (2005).
[CrossRef]

Chevalier, N.

O. Castany, L. Dupont, A. Shuaib, J. P. Gauthier, C. Levallois, C. Paranthoen, N. Chevalier, O. Durand, and A. Le Corre, “Tunable VCSEL with intracavity liquid crystal layer,” EOS Annual Meeting (October 2010).

Choquette, K. D.

D. M. Grasso, K. D. Choquette, D. K. Serkland, G. M. Peake, and K. M. Geib, “High slope efficiency measured from a composite-resonator vertical-cavity laser,” IEEE Photon. Technol. Lett. 18, 1019–1021 (2006).
[CrossRef]

Danckaert, J.

K. Panajotov, J. Danckaert, G. Verschaffelt, M. Peeters, B. Nagler, J. Albert, B. Ryvkin, H. Thienpont, and I. Veretennicoff, “Polarization behavior of vertical-cavity surface-emitting lasers: experiments, models and applications,” in Nanoscale Linear and Nonlinear Optics, M. Bertolotti, C. M. Bowden, and C. Sibilia, eds. (American Institute of Physics, 2001), Vol. 560, pp. 403–417.

de Bougrenet de la Tocnaye, J.-L.

V. Verbrugge, J.-L. de Bougrenet de la Tocnaye, and L. Dupont, “C-band wavelength-tunable vertical-cavity laser using a nano polymer dispersed liquid crystal material,” Opt. Commun. 215, 353–359 (2003).
[CrossRef]

De Merlier, J.

J. De Merlier, K. Mizutani, S. Sudo, K. Naniwae, Y. Furushima, S. Sato, K. Sato, and K. Kudo, “Full C-band external cavity wavelength tunable laser using a liquid-crystal-based tunable mirror,” IEEE Photon. Technol. Lett. 17, 681–683 (2005).
[CrossRef]

Diaz, A.

I.-C. Khoo, A. Diaz, J. Liou, M. V. Stinger, J. Huang, and Y. Ma, “Liquid crystal tunable optical metamaterias,” IEEE J. Sel. Top. Quantum Electron. 16, 410–417 (2010).
[CrossRef]

Du, F.

F. Du, Y.-Q. Lu, and S.-T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett. 85, 2181–2183 (2004).
[CrossRef]

Dupont, L.

V. Verbrugge, J.-L. de Bougrenet de la Tocnaye, and L. Dupont, “C-band wavelength-tunable vertical-cavity laser using a nano polymer dispersed liquid crystal material,” Opt. Commun. 215, 353–359 (2003).
[CrossRef]

O. Castany, L. Dupont, C. Paranthoen, C. Levallois, A. Le Corre, and S. Loualiche, “Liquid crystal micro-cells for tunable VCSELs,” Journes nationales sur les technologies mergentes (November 2010).

O. Castany, L. Dupont, A. Shuaib, J. P. Gauthier, C. Levallois, C. Paranthoen, N. Chevalier, O. Durand, and A. Le Corre, “Tunable VCSEL with intracavity liquid crystal layer,” EOS Annual Meeting (October 2010).

Durand, O.

O. Castany, L. Dupont, A. Shuaib, J. P. Gauthier, C. Levallois, C. Paranthoen, N. Chevalier, O. Durand, and A. Le Corre, “Tunable VCSEL with intracavity liquid crystal layer,” EOS Annual Meeting (October 2010).

Fauchet, P. M.

Forchel, A.

Ch. Schuller, F. Klopf, J. P. Reithmaier, M. Kamp, and A. Forchel, “Tunable photonic crystals fabricated in III–V semiconductor slab waveguides using infiltrated liquid crystals,” Appl. Phys. Lett. 82, 2767–2769 (2003).
[CrossRef]

Frost, J. E. F.

C. I. Wilkinson, J. Woodhead, J. E. F. Frost, J. S. Roberts, R. Wilson, and M. F. Lewis, “Enhancement of a liquid-crystal modulator using an external-cavity VCSEL,” IEEE Photon. Technol. Lett. 11, 940–942 (1999).
[CrossRef]

C. I. Wilkinson, J. Woodhead, J. E. F. Frost, J. S. Roberts, R. Wilson, and M. F. Lewis, “Electrical polarization control of vertical-cavity surface-emitting lasers using polarized feedback and a liquid crystal,” IEEE Photon Technol. Lett. 11, 155–157 (1999).
[CrossRef]

Furushima, Y.

J. De Merlier, K. Mizutani, S. Sudo, K. Naniwae, Y. Furushima, S. Sato, K. Sato, and K. Kudo, “Full C-band external cavity wavelength tunable laser using a liquid-crystal-based tunable mirror,” IEEE Photon. Technol. Lett. 17, 681–683 (2005).
[CrossRef]

Gauthier, J. P.

O. Castany, L. Dupont, A. Shuaib, J. P. Gauthier, C. Levallois, C. Paranthoen, N. Chevalier, O. Durand, and A. Le Corre, “Tunable VCSEL with intracavity liquid crystal layer,” EOS Annual Meeting (October 2010).

Geib, K. M.

D. M. Grasso, K. D. Choquette, D. K. Serkland, G. M. Peake, and K. M. Geib, “High slope efficiency measured from a composite-resonator vertical-cavity laser,” IEEE Photon. Technol. Lett. 18, 1019–1021 (2006).
[CrossRef]

Grasso, D. M.

D. M. Grasso, K. D. Choquette, D. K. Serkland, G. M. Peake, and K. M. Geib, “High slope efficiency measured from a composite-resonator vertical-cavity laser,” IEEE Photon. Technol. Lett. 18, 1019–1021 (2006).
[CrossRef]

Gulden, K.

M. Brunner, K. Gulden, R. Hovel, M. Moser, J. F. Carlin, R. P. Stanley, and M. Illegems, “Continuous-wave dual-wavelength lasing in a two-section vetrical-cavity laser,” IEEE Photon. Technol. Lett. 12, 1316–1318 (2000).
[CrossRef]

Gunyakov, V. A.

Hermann, D. S.

Hernandez, J.

M. A. Arteaga, M. Lopez-Amo, J. Hernandez, H. Thienpont, and K. Panajotov, “Spectral properties of edge-emitting semiconductor laser subject to optical feedback from extremely short external cavity,” Opt. Quantum Electron. 40, 69–81 (2008).
[CrossRef]

Houdre, R.

P. Pellandini, R. P. Stanley, R. Houdre, U. Oesterle, M. Illegems, and C. Weisbuch, “Dual-wavelength emission from coupled semiconductor microcavity,” Appl. Phys. Lett. 71, 864–866 (1997).
[CrossRef]

R. P. Stanley, R. Houdre, U. Oesterle, M. Illegems, and C. Wesbuch, “Coupeld semiconductor microcavities,” Appl. Phys. Lett. 65, 2093–2095 (1994).
[CrossRef]

Hovel, R.

M. Brunner, K. Gulden, R. Hovel, M. Moser, J. F. Carlin, R. P. Stanley, and M. Illegems, “Continuous-wave dual-wavelength lasing in a two-section vetrical-cavity laser,” IEEE Photon. Technol. Lett. 12, 1316–1318 (2000).
[CrossRef]

Hsu, S. H.

J. A. Yeh, C. A. Chang, C.-C. Cheng, J.-Y. Huang, and S. H. Hsu, “Microwave characteristics of liquid-crystal tunable capacitors,” IEEE J. Dev. Lett. 26, 451–453 (2005).
[CrossRef]

Huang, J.

I.-C. Khoo, A. Diaz, J. Liou, M. V. Stinger, J. Huang, and Y. Ma, “Liquid crystal tunable optical metamaterias,” IEEE J. Sel. Top. Quantum Electron. 16, 410–417 (2010).
[CrossRef]

Huang, J.-Y.

J. A. Yeh, C. A. Chang, C.-C. Cheng, J.-Y. Huang, and S. H. Hsu, “Microwave characteristics of liquid-crystal tunable capacitors,” IEEE J. Dev. Lett. 26, 451–453 (2005).
[CrossRef]

Ilegems, M.

V. Badilita, J.-F. Carlin, M. Ilegems, and K. Panajotov, “Rate-equation model for coupled-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 40, 1646–1656 (2004).
[CrossRef]

Illegems, M.

M. Brunner, K. Gulden, R. Hovel, M. Moser, J. F. Carlin, R. P. Stanley, and M. Illegems, “Continuous-wave dual-wavelength lasing in a two-section vetrical-cavity laser,” IEEE Photon. Technol. Lett. 12, 1316–1318 (2000).
[CrossRef]

P. Pellandini, R. P. Stanley, R. Houdre, U. Oesterle, M. Illegems, and C. Weisbuch, “Dual-wavelength emission from coupled semiconductor microcavity,” Appl. Phys. Lett. 71, 864–866 (1997).
[CrossRef]

R. P. Stanley, R. Houdre, U. Oesterle, M. Illegems, and C. Wesbuch, “Coupeld semiconductor microcavities,” Appl. Phys. Lett. 65, 2093–2095 (1994).
[CrossRef]

Jansen van Doornen, A. K.

A. K. Jansen van Doornen, M. P. van Exter, and J. P. Woerdman, “Elasto-optic anisotropy and polarization orientation of vertical-cavity surface-emitting semiconductor lasers,” Appl. Phys. Lett. 69, 1041–1043 (1996).
[CrossRef]

Kamp, M.

Ch. Schuller, F. Klopf, J. P. Reithmaier, M. Kamp, and A. Forchel, “Tunable photonic crystals fabricated in III–V semiconductor slab waveguides using infiltrated liquid crystals,” Appl. Phys. Lett. 82, 2767–2769 (2003).
[CrossRef]

Khoo, I.-C.

I.-C. Khoo, A. Diaz, J. Liou, M. V. Stinger, J. Huang, and Y. Ma, “Liquid crystal tunable optical metamaterias,” IEEE J. Sel. Top. Quantum Electron. 16, 410–417 (2010).
[CrossRef]

I.-C. Khoo, Liquid Crystals (Wiley, 2007).
[CrossRef]

Klopf, F.

Ch. Schuller, F. Klopf, J. P. Reithmaier, M. Kamp, and A. Forchel, “Tunable photonic crystals fabricated in III–V semiconductor slab waveguides using infiltrated liquid crystals,” Appl. Phys. Lett. 82, 2767–2769 (2003).
[CrossRef]

Kudo, K.

J. De Merlier, K. Mizutani, S. Sudo, K. Naniwae, Y. Furushima, S. Sato, K. Sato, and K. Kudo, “Full C-band external cavity wavelength tunable laser using a liquid-crystal-based tunable mirror,” IEEE Photon. Technol. Lett. 17, 681–683 (2005).
[CrossRef]

Larsen, T. T.

Le Corre, A.

O. Castany, L. Dupont, C. Paranthoen, C. Levallois, A. Le Corre, and S. Loualiche, “Liquid crystal micro-cells for tunable VCSELs,” Journes nationales sur les technologies mergentes (November 2010).

O. Castany, L. Dupont, A. Shuaib, J. P. Gauthier, C. Levallois, C. Paranthoen, N. Chevalier, O. Durand, and A. Le Corre, “Tunable VCSEL with intracavity liquid crystal layer,” EOS Annual Meeting (October 2010).

Lee, W.

Levallois, C.

O. Castany, L. Dupont, C. Paranthoen, C. Levallois, A. Le Corre, and S. Loualiche, “Liquid crystal micro-cells for tunable VCSELs,” Journes nationales sur les technologies mergentes (November 2010).

O. Castany, L. Dupont, A. Shuaib, J. P. Gauthier, C. Levallois, C. Paranthoen, N. Chevalier, O. Durand, and A. Le Corre, “Tunable VCSEL with intracavity liquid crystal layer,” EOS Annual Meeting (October 2010).

Lewis, M. F.

C. I. Wilkinson, J. Woodhead, J. E. F. Frost, J. S. Roberts, R. Wilson, and M. F. Lewis, “Enhancement of a liquid-crystal modulator using an external-cavity VCSEL,” IEEE Photon. Technol. Lett. 11, 940–942 (1999).
[CrossRef]

C. I. Wilkinson, J. Woodhead, J. E. F. Frost, J. S. Roberts, R. Wilson, and M. F. Lewis, “Electrical polarization control of vertical-cavity surface-emitting lasers using polarized feedback and a liquid crystal,” IEEE Photon Technol. Lett. 11, 155–157 (1999).
[CrossRef]

Liou, J.

I.-C. Khoo, A. Diaz, J. Liou, M. V. Stinger, J. Huang, and Y. Ma, “Liquid crystal tunable optical metamaterias,” IEEE J. Sel. Top. Quantum Electron. 16, 410–417 (2010).
[CrossRef]

Lopez-Amo, M.

M. A. Arteaga, M. Lopez-Amo, J. Hernandez, H. Thienpont, and K. Panajotov, “Spectral properties of edge-emitting semiconductor laser subject to optical feedback from extremely short external cavity,” Opt. Quantum Electron. 40, 69–81 (2008).
[CrossRef]

Loualiche, S.

O. Castany, L. Dupont, C. Paranthoen, C. Levallois, A. Le Corre, and S. Loualiche, “Liquid crystal micro-cells for tunable VCSELs,” Journes nationales sur les technologies mergentes (November 2010).

Lpez-Amo, M.

M. Arteaga, M. Lpez-Amo, H. Thienpont, and K. Panajotov, “Tailoring light polarization in vertical cavity surface emitting lasers by isotropic optical feedback from an extremely short external cavity,” Appl. Phys. Lett. 89, 091102 (2006).
[CrossRef]

Lu, Y.-Q.

F. Du, Y.-Q. Lu, and S.-T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett. 85, 2181–2183 (2004).
[CrossRef]

Ma, Y.

I.-C. Khoo, A. Diaz, J. Liou, M. V. Stinger, J. Huang, and Y. Ma, “Liquid crystal tunable optical metamaterias,” IEEE J. Sel. Top. Quantum Electron. 16, 410–417 (2010).
[CrossRef]

Mizutani, K.

J. De Merlier, K. Mizutani, S. Sudo, K. Naniwae, Y. Furushima, S. Sato, K. Sato, and K. Kudo, “Full C-band external cavity wavelength tunable laser using a liquid-crystal-based tunable mirror,” IEEE Photon. Technol. Lett. 17, 681–683 (2005).
[CrossRef]

Moser, M.

M. Brunner, K. Gulden, R. Hovel, M. Moser, J. F. Carlin, R. P. Stanley, and M. Illegems, “Continuous-wave dual-wavelength lasing in a two-section vetrical-cavity laser,” IEEE Photon. Technol. Lett. 12, 1316–1318 (2000).
[CrossRef]

Myslivets, S. A.

Nagler, B.

K. Panajotov, J. Danckaert, G. Verschaffelt, M. Peeters, B. Nagler, J. Albert, B. Ryvkin, H. Thienpont, and I. Veretennicoff, “Polarization behavior of vertical-cavity surface-emitting lasers: experiments, models and applications,” in Nanoscale Linear and Nonlinear Optics, M. Bertolotti, C. M. Bowden, and C. Sibilia, eds. (American Institute of Physics, 2001), Vol. 560, pp. 403–417.

Naniwae, K.

J. De Merlier, K. Mizutani, S. Sudo, K. Naniwae, Y. Furushima, S. Sato, K. Sato, and K. Kudo, “Full C-band external cavity wavelength tunable laser using a liquid-crystal-based tunable mirror,” IEEE Photon. Technol. Lett. 17, 681–683 (2005).
[CrossRef]

Oesterle, U.

P. Pellandini, R. P. Stanley, R. Houdre, U. Oesterle, M. Illegems, and C. Weisbuch, “Dual-wavelength emission from coupled semiconductor microcavity,” Appl. Phys. Lett. 71, 864–866 (1997).
[CrossRef]

R. P. Stanley, R. Houdre, U. Oesterle, M. Illegems, and C. Wesbuch, “Coupeld semiconductor microcavities,” Appl. Phys. Lett. 65, 2093–2095 (1994).
[CrossRef]

Ouyang, H.

Ozaki, M.

Y. Shimoda, M. Ozaki, and K. Yoshino, “Electric field tuning of a stop band in a reflection spectrum of synthetic opal infiltrated with nematic liquid crystal,” Appl. Phys. Lett. 79, 3627–3629 (2001).
[CrossRef]

Panajotov, K.

K. Panajotov, M. Zujewski, and H. Thienpont, “Coupled-cavity surface-emitting lasers: spectral and polarization threshold characteristics and electrooptic switching,” Opt. Express 18, 27525–27533 (2010).
[CrossRef]

M. A. Arteaga, M. Lopez-Amo, J. Hernandez, H. Thienpont, and K. Panajotov, “Spectral properties of edge-emitting semiconductor laser subject to optical feedback from extremely short external cavity,” Opt. Quantum Electron. 40, 69–81 (2008).
[CrossRef]

M. Arteaga, M. Lpez-Amo, H. Thienpont, and K. Panajotov, “Tailoring light polarization in vertical cavity surface emitting lasers by isotropic optical feedback from an extremely short external cavity,” Appl. Phys. Lett. 89, 091102 (2006).
[CrossRef]

V. Badilita, J.-F. Carlin, M. Ilegems, and K. Panajotov, “Rate-equation model for coupled-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 40, 1646–1656 (2004).
[CrossRef]

K. Panajotov, M. Arizaleta, M. Camarena, and H. Thienpont, “Polarization switching induced by phase change in extremely short external cavity vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 84, 2763–2765 (2004).
[CrossRef]

K. Panajotov, J. Danckaert, G. Verschaffelt, M. Peeters, B. Nagler, J. Albert, B. Ryvkin, H. Thienpont, and I. Veretennicoff, “Polarization behavior of vertical-cavity surface-emitting lasers: experiments, models and applications,” in Nanoscale Linear and Nonlinear Optics, M. Bertolotti, C. M. Bowden, and C. Sibilia, eds. (American Institute of Physics, 2001), Vol. 560, pp. 403–417.

Paranthoen, C.

O. Castany, L. Dupont, A. Shuaib, J. P. Gauthier, C. Levallois, C. Paranthoen, N. Chevalier, O. Durand, and A. Le Corre, “Tunable VCSEL with intracavity liquid crystal layer,” EOS Annual Meeting (October 2010).

O. Castany, L. Dupont, C. Paranthoen, C. Levallois, A. Le Corre, and S. Loualiche, “Liquid crystal micro-cells for tunable VCSELs,” Journes nationales sur les technologies mergentes (November 2010).

Parshin, A. M.

Peake, G. M.

D. M. Grasso, K. D. Choquette, D. K. Serkland, G. M. Peake, and K. M. Geib, “High slope efficiency measured from a composite-resonator vertical-cavity laser,” IEEE Photon. Technol. Lett. 18, 1019–1021 (2006).
[CrossRef]

Peeters, M.

K. Panajotov, J. Danckaert, G. Verschaffelt, M. Peeters, B. Nagler, J. Albert, B. Ryvkin, H. Thienpont, and I. Veretennicoff, “Polarization behavior of vertical-cavity surface-emitting lasers: experiments, models and applications,” in Nanoscale Linear and Nonlinear Optics, M. Bertolotti, C. M. Bowden, and C. Sibilia, eds. (American Institute of Physics, 2001), Vol. 560, pp. 403–417.

Pellandini, P.

P. Pellandini, R. P. Stanley, R. Houdre, U. Oesterle, M. Illegems, and C. Weisbuch, “Dual-wavelength emission from coupled semiconductor microcavity,” Appl. Phys. Lett. 71, 864–866 (1997).
[CrossRef]

Reithmaier, J. P.

Ch. Schuller, F. Klopf, J. P. Reithmaier, M. Kamp, and A. Forchel, “Tunable photonic crystals fabricated in III–V semiconductor slab waveguides using infiltrated liquid crystals,” Appl. Phys. Lett. 82, 2767–2769 (2003).
[CrossRef]

Roberts, J. S.

C. I. Wilkinson, J. Woodhead, J. E. F. Frost, J. S. Roberts, R. Wilson, and M. F. Lewis, “Enhancement of a liquid-crystal modulator using an external-cavity VCSEL,” IEEE Photon. Technol. Lett. 11, 940–942 (1999).
[CrossRef]

C. I. Wilkinson, J. Woodhead, J. E. F. Frost, J. S. Roberts, R. Wilson, and M. F. Lewis, “Electrical polarization control of vertical-cavity surface-emitting lasers using polarized feedback and a liquid crystal,” IEEE Photon Technol. Lett. 11, 155–157 (1999).
[CrossRef]

Ryvkin, B.

K. Panajotov, J. Danckaert, G. Verschaffelt, M. Peeters, B. Nagler, J. Albert, B. Ryvkin, H. Thienpont, and I. Veretennicoff, “Polarization behavior of vertical-cavity surface-emitting lasers: experiments, models and applications,” in Nanoscale Linear and Nonlinear Optics, M. Bertolotti, C. M. Bowden, and C. Sibilia, eds. (American Institute of Physics, 2001), Vol. 560, pp. 403–417.

Sato, K.

J. De Merlier, K. Mizutani, S. Sudo, K. Naniwae, Y. Furushima, S. Sato, K. Sato, and K. Kudo, “Full C-band external cavity wavelength tunable laser using a liquid-crystal-based tunable mirror,” IEEE Photon. Technol. Lett. 17, 681–683 (2005).
[CrossRef]

Sato, S.

J. De Merlier, K. Mizutani, S. Sudo, K. Naniwae, Y. Furushima, S. Sato, K. Sato, and K. Kudo, “Full C-band external cavity wavelength tunable laser using a liquid-crystal-based tunable mirror,” IEEE Photon. Technol. Lett. 17, 681–683 (2005).
[CrossRef]

Schuller, Ch.

Ch. Schuller, F. Klopf, J. P. Reithmaier, M. Kamp, and A. Forchel, “Tunable photonic crystals fabricated in III–V semiconductor slab waveguides using infiltrated liquid crystals,” Appl. Phys. Lett. 82, 2767–2769 (2003).
[CrossRef]

Serkland, D. K.

D. M. Grasso, K. D. Choquette, D. K. Serkland, G. M. Peake, and K. M. Geib, “High slope efficiency measured from a composite-resonator vertical-cavity laser,” IEEE Photon. Technol. Lett. 18, 1019–1021 (2006).
[CrossRef]

Shabanov, V. F.

Shimoda, Y.

Y. Shimoda, M. Ozaki, and K. Yoshino, “Electric field tuning of a stop band in a reflection spectrum of synthetic opal infiltrated with nematic liquid crystal,” Appl. Phys. Lett. 79, 3627–3629 (2001).
[CrossRef]

Shuaib, A.

O. Castany, L. Dupont, A. Shuaib, J. P. Gauthier, C. Levallois, C. Paranthoen, N. Chevalier, O. Durand, and A. Le Corre, “Tunable VCSEL with intracavity liquid crystal layer,” EOS Annual Meeting (October 2010).

Stanley, R. P.

M. Brunner, K. Gulden, R. Hovel, M. Moser, J. F. Carlin, R. P. Stanley, and M. Illegems, “Continuous-wave dual-wavelength lasing in a two-section vetrical-cavity laser,” IEEE Photon. Technol. Lett. 12, 1316–1318 (2000).
[CrossRef]

P. Pellandini, R. P. Stanley, R. Houdre, U. Oesterle, M. Illegems, and C. Weisbuch, “Dual-wavelength emission from coupled semiconductor microcavity,” Appl. Phys. Lett. 71, 864–866 (1997).
[CrossRef]

R. P. Stanley, R. Houdre, U. Oesterle, M. Illegems, and C. Wesbuch, “Coupeld semiconductor microcavities,” Appl. Phys. Lett. 65, 2093–2095 (1994).
[CrossRef]

Stinger, M. V.

I.-C. Khoo, A. Diaz, J. Liou, M. V. Stinger, J. Huang, and Y. Ma, “Liquid crystal tunable optical metamaterias,” IEEE J. Sel. Top. Quantum Electron. 16, 410–417 (2010).
[CrossRef]

Sudo, S.

J. De Merlier, K. Mizutani, S. Sudo, K. Naniwae, Y. Furushima, S. Sato, K. Sato, and K. Kudo, “Full C-band external cavity wavelength tunable laser using a liquid-crystal-based tunable mirror,” IEEE Photon. Technol. Lett. 17, 681–683 (2005).
[CrossRef]

Thienpont, H.

K. Panajotov, M. Zujewski, and H. Thienpont, “Coupled-cavity surface-emitting lasers: spectral and polarization threshold characteristics and electrooptic switching,” Opt. Express 18, 27525–27533 (2010).
[CrossRef]

M. A. Arteaga, M. Lopez-Amo, J. Hernandez, H. Thienpont, and K. Panajotov, “Spectral properties of edge-emitting semiconductor laser subject to optical feedback from extremely short external cavity,” Opt. Quantum Electron. 40, 69–81 (2008).
[CrossRef]

M. Arteaga, M. Lpez-Amo, H. Thienpont, and K. Panajotov, “Tailoring light polarization in vertical cavity surface emitting lasers by isotropic optical feedback from an extremely short external cavity,” Appl. Phys. Lett. 89, 091102 (2006).
[CrossRef]

K. Panajotov, M. Arizaleta, M. Camarena, and H. Thienpont, “Polarization switching induced by phase change in extremely short external cavity vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 84, 2763–2765 (2004).
[CrossRef]

K. Panajotov, J. Danckaert, G. Verschaffelt, M. Peeters, B. Nagler, J. Albert, B. Ryvkin, H. Thienpont, and I. Veretennicoff, “Polarization behavior of vertical-cavity surface-emitting lasers: experiments, models and applications,” in Nanoscale Linear and Nonlinear Optics, M. Bertolotti, C. M. Bowden, and C. Sibilia, eds. (American Institute of Physics, 2001), Vol. 560, pp. 403–417.

van Exter, M. P.

A. K. Jansen van Doornen, M. P. van Exter, and J. P. Woerdman, “Elasto-optic anisotropy and polarization orientation of vertical-cavity surface-emitting semiconductor lasers,” Appl. Phys. Lett. 69, 1041–1043 (1996).
[CrossRef]

Verbrugge, V.

V. Verbrugge, J.-L. de Bougrenet de la Tocnaye, and L. Dupont, “C-band wavelength-tunable vertical-cavity laser using a nano polymer dispersed liquid crystal material,” Opt. Commun. 215, 353–359 (2003).
[CrossRef]

Veretennicoff, I.

K. Panajotov, J. Danckaert, G. Verschaffelt, M. Peeters, B. Nagler, J. Albert, B. Ryvkin, H. Thienpont, and I. Veretennicoff, “Polarization behavior of vertical-cavity surface-emitting lasers: experiments, models and applications,” in Nanoscale Linear and Nonlinear Optics, M. Bertolotti, C. M. Bowden, and C. Sibilia, eds. (American Institute of Physics, 2001), Vol. 560, pp. 403–417.

Verschaffelt, G.

K. Panajotov, J. Danckaert, G. Verschaffelt, M. Peeters, B. Nagler, J. Albert, B. Ryvkin, H. Thienpont, and I. Veretennicoff, “Polarization behavior of vertical-cavity surface-emitting lasers: experiments, models and applications,” in Nanoscale Linear and Nonlinear Optics, M. Bertolotti, C. M. Bowden, and C. Sibilia, eds. (American Institute of Physics, 2001), Vol. 560, pp. 403–417.

Weisbuch, C.

P. Pellandini, R. P. Stanley, R. Houdre, U. Oesterle, M. Illegems, and C. Weisbuch, “Dual-wavelength emission from coupled semiconductor microcavity,” Appl. Phys. Lett. 71, 864–866 (1997).
[CrossRef]

Weiss, S. M.

Wesbuch, C.

R. P. Stanley, R. Houdre, U. Oesterle, M. Illegems, and C. Wesbuch, “Coupeld semiconductor microcavities,” Appl. Phys. Lett. 65, 2093–2095 (1994).
[CrossRef]

Wilkinson, C. I.

C. I. Wilkinson, J. Woodhead, J. E. F. Frost, J. S. Roberts, R. Wilson, and M. F. Lewis, “Enhancement of a liquid-crystal modulator using an external-cavity VCSEL,” IEEE Photon. Technol. Lett. 11, 940–942 (1999).
[CrossRef]

C. I. Wilkinson, J. Woodhead, J. E. F. Frost, J. S. Roberts, R. Wilson, and M. F. Lewis, “Electrical polarization control of vertical-cavity surface-emitting lasers using polarized feedback and a liquid crystal,” IEEE Photon Technol. Lett. 11, 155–157 (1999).
[CrossRef]

Wilson, R.

C. I. Wilkinson, J. Woodhead, J. E. F. Frost, J. S. Roberts, R. Wilson, and M. F. Lewis, “Electrical polarization control of vertical-cavity surface-emitting lasers using polarized feedback and a liquid crystal,” IEEE Photon Technol. Lett. 11, 155–157 (1999).
[CrossRef]

C. I. Wilkinson, J. Woodhead, J. E. F. Frost, J. S. Roberts, R. Wilson, and M. F. Lewis, “Enhancement of a liquid-crystal modulator using an external-cavity VCSEL,” IEEE Photon. Technol. Lett. 11, 940–942 (1999).
[CrossRef]

Woerdman, J. P.

A. K. Jansen van Doornen, M. P. van Exter, and J. P. Woerdman, “Elasto-optic anisotropy and polarization orientation of vertical-cavity surface-emitting semiconductor lasers,” Appl. Phys. Lett. 69, 1041–1043 (1996).
[CrossRef]

Wolf, E.

M. Born and E. Wolf, Principles of Optics (Wiley, 1970).

Woodhead, J.

C. I. Wilkinson, J. Woodhead, J. E. F. Frost, J. S. Roberts, R. Wilson, and M. F. Lewis, “Electrical polarization control of vertical-cavity surface-emitting lasers using polarized feedback and a liquid crystal,” IEEE Photon Technol. Lett. 11, 155–157 (1999).
[CrossRef]

C. I. Wilkinson, J. Woodhead, J. E. F. Frost, J. S. Roberts, R. Wilson, and M. F. Lewis, “Enhancement of a liquid-crystal modulator using an external-cavity VCSEL,” IEEE Photon. Technol. Lett. 11, 940–942 (1999).
[CrossRef]

Wu, S.-T.

F. Du, Y.-Q. Lu, and S.-T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett. 85, 2181–2183 (2004).
[CrossRef]

Yeh, J. A.

J. A. Yeh, C. A. Chang, C.-C. Cheng, J.-Y. Huang, and S. H. Hsu, “Microwave characteristics of liquid-crystal tunable capacitors,” IEEE J. Dev. Lett. 26, 451–453 (2005).
[CrossRef]

Yoshino, K.

Y. Shimoda, M. Ozaki, and K. Yoshino, “Electric field tuning of a stop band in a reflection spectrum of synthetic opal infiltrated with nematic liquid crystal,” Appl. Phys. Lett. 79, 3627–3629 (2001).
[CrossRef]

Zhang, J.

Zujewski, M.

Zyryanov, V. Y.

Appl. Phys. Lett.

F. Du, Y.-Q. Lu, and S.-T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett. 85, 2181–2183 (2004).
[CrossRef]

Y. Shimoda, M. Ozaki, and K. Yoshino, “Electric field tuning of a stop band in a reflection spectrum of synthetic opal infiltrated with nematic liquid crystal,” Appl. Phys. Lett. 79, 3627–3629 (2001).
[CrossRef]

K. Panajotov, M. Arizaleta, M. Camarena, and H. Thienpont, “Polarization switching induced by phase change in extremely short external cavity vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 84, 2763–2765 (2004).
[CrossRef]

M. Arteaga, M. Lpez-Amo, H. Thienpont, and K. Panajotov, “Tailoring light polarization in vertical cavity surface emitting lasers by isotropic optical feedback from an extremely short external cavity,” Appl. Phys. Lett. 89, 091102 (2006).
[CrossRef]

R. P. Stanley, R. Houdre, U. Oesterle, M. Illegems, and C. Wesbuch, “Coupeld semiconductor microcavities,” Appl. Phys. Lett. 65, 2093–2095 (1994).
[CrossRef]

P. Pellandini, R. P. Stanley, R. Houdre, U. Oesterle, M. Illegems, and C. Weisbuch, “Dual-wavelength emission from coupled semiconductor microcavity,” Appl. Phys. Lett. 71, 864–866 (1997).
[CrossRef]

Ch. Schuller, F. Klopf, J. P. Reithmaier, M. Kamp, and A. Forchel, “Tunable photonic crystals fabricated in III–V semiconductor slab waveguides using infiltrated liquid crystals,” Appl. Phys. Lett. 82, 2767–2769 (2003).
[CrossRef]

A. K. Jansen van Doornen, M. P. van Exter, and J. P. Woerdman, “Elasto-optic anisotropy and polarization orientation of vertical-cavity surface-emitting semiconductor lasers,” Appl. Phys. Lett. 69, 1041–1043 (1996).
[CrossRef]

IEEE J. Dev. Lett.

J. A. Yeh, C. A. Chang, C.-C. Cheng, J.-Y. Huang, and S. H. Hsu, “Microwave characteristics of liquid-crystal tunable capacitors,” IEEE J. Dev. Lett. 26, 451–453 (2005).
[CrossRef]

IEEE J. Quantum Electron.

V. Badilita, J.-F. Carlin, M. Ilegems, and K. Panajotov, “Rate-equation model for coupled-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 40, 1646–1656 (2004).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

I.-C. Khoo, A. Diaz, J. Liou, M. V. Stinger, J. Huang, and Y. Ma, “Liquid crystal tunable optical metamaterias,” IEEE J. Sel. Top. Quantum Electron. 16, 410–417 (2010).
[CrossRef]

IEEE Photon Technol. Lett.

C. I. Wilkinson, J. Woodhead, J. E. F. Frost, J. S. Roberts, R. Wilson, and M. F. Lewis, “Electrical polarization control of vertical-cavity surface-emitting lasers using polarized feedback and a liquid crystal,” IEEE Photon Technol. Lett. 11, 155–157 (1999).
[CrossRef]

IEEE Photon. Technol. Lett.

C. I. Wilkinson, J. Woodhead, J. E. F. Frost, J. S. Roberts, R. Wilson, and M. F. Lewis, “Enhancement of a liquid-crystal modulator using an external-cavity VCSEL,” IEEE Photon. Technol. Lett. 11, 940–942 (1999).
[CrossRef]

J. R. Andrews, “Low voltage wavelength tuning of an external cavity diode laser using a nematic liquid crystal-containing birefringent filter,” IEEE Photon. Technol. Lett. 2, 334–336 (1990).
[CrossRef]

J. De Merlier, K. Mizutani, S. Sudo, K. Naniwae, Y. Furushima, S. Sato, K. Sato, and K. Kudo, “Full C-band external cavity wavelength tunable laser using a liquid-crystal-based tunable mirror,” IEEE Photon. Technol. Lett. 17, 681–683 (2005).
[CrossRef]

M. Brunner, K. Gulden, R. Hovel, M. Moser, J. F. Carlin, R. P. Stanley, and M. Illegems, “Continuous-wave dual-wavelength lasing in a two-section vetrical-cavity laser,” IEEE Photon. Technol. Lett. 12, 1316–1318 (2000).
[CrossRef]

D. M. Grasso, K. D. Choquette, D. K. Serkland, G. M. Peake, and K. M. Geib, “High slope efficiency measured from a composite-resonator vertical-cavity laser,” IEEE Photon. Technol. Lett. 18, 1019–1021 (2006).
[CrossRef]

Opt. Commun.

V. Verbrugge, J.-L. de Bougrenet de la Tocnaye, and L. Dupont, “C-band wavelength-tunable vertical-cavity laser using a nano polymer dispersed liquid crystal material,” Opt. Commun. 215, 353–359 (2003).
[CrossRef]

Opt. Express

Opt. Quantum Electron.

M. A. Arteaga, M. Lopez-Amo, J. Hernandez, H. Thienpont, and K. Panajotov, “Spectral properties of edge-emitting semiconductor laser subject to optical feedback from extremely short external cavity,” Opt. Quantum Electron. 40, 69–81 (2008).
[CrossRef]

Other

O. Castany, L. Dupont, A. Shuaib, J. P. Gauthier, C. Levallois, C. Paranthoen, N. Chevalier, O. Durand, and A. Le Corre, “Tunable VCSEL with intracavity liquid crystal layer,” EOS Annual Meeting (October 2010).

O. Castany, L. Dupont, C. Paranthoen, C. Levallois, A. Le Corre, and S. Loualiche, “Liquid crystal micro-cells for tunable VCSELs,” Journes nationales sur les technologies mergentes (November 2010).

M. Born and E. Wolf, Principles of Optics (Wiley, 1970).

I.-C. Khoo, Liquid Crystals (Wiley, 2007).
[CrossRef]

K. Panajotov, J. Danckaert, G. Verschaffelt, M. Peeters, B. Nagler, J. Albert, B. Ryvkin, H. Thienpont, and I. Veretennicoff, “Polarization behavior of vertical-cavity surface-emitting lasers: experiments, models and applications,” in Nanoscale Linear and Nonlinear Optics, M. Bertolotti, C. M. Bowden, and C. Sibilia, eds. (American Institute of Physics, 2001), Vol. 560, pp. 403–417.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

VCSEL with LC overlay: (a) longitudinal (type L 1) and (b)–(c) transversal LC cells with electric field applied to the LC, respectively, along (ELC || Oz) and transverse (ELC || Oy) to the light propagation direction (or VCSEL cavity). Transversal type LC-VCSEL cells T 1 (b) and T 2 (c) are with planar alignment of the LC molecules close to the glass boundaries along Oz and Ox, respectively.

Fig. 2
Fig. 2

Optical power distributions for two modes of LC-VCSEL with: (a) and (b) Ntop = 27, LLC = 5.05μm and ITO/Au mirror; (c) and (d) Ntop = 27, LLC = 5.08μm and ITO/dielectric DBR mirror and (e) and (f) Ntop = 0, LLC = 5.1μm and ITO/dielectric DBR mirror. LC ordinary refractive index is considered, which corresponds to x-LP mode in LC-VCSEL type L 1 or T 1. Refractive index profile of the LC-VCSEL structure is shown by black lines.

Fig. 3
Fig. 3

Resonant wavelengths λ and threshold gains Gth for two LP modes oriented along x (green lines) and y (blue lines) axes as a function of the LC cell length LLC . Longitudinal, L 1, and transversal, T 1, LC cells are considered with θ = π/2 and either a metal ((a),(b),(e) and (f)) or a dielectric ((c) and (d)) LC mirror. In (e) and (f) the LC cell is 10 times longer.

Fig. 4
Fig. 4

Resonant wavelengths λ (a,c) and threshold gains Gth (b, d) for two LP modes oriented along x (green lines) and y (blue lines) as a function of the LC director angle θ for the case of LC cell with a metal mirror and for two LC lengths: (a,b) LLC = 5.1μm and (c,d) LLC = 50.2μm. Dotted lines in a) and b) are for the case of realistic LC losses of 23 cm −1.

Fig. 5
Fig. 5

Resonant wavelengths λ (a,c) and threshold gains Gth (b, d) for two LP modes oriented along x (green lines) and y (blue lines) as a function of the LC director angle θ for the case of half-VCSEL (without the top DBR) and LC cell with a dielectric mirror and for two LC lengths: (a, b) LLC = 0.64μm and (c, d) LLC = 5.11μm.

Fig. 6
Fig. 6

(a) Orientation of the LC director θ along the length of the LC cell type L 1 for LC voltage of U = 2V(dotted line), U = 3V(dashed line) and U = 10V (solid line). Resonant wavelength λ (b) and threshold gain Gth (c) for the y LP mode as a function of the voltage U for the case of half-VCSEL and LC cell with a dielectric mirror and for two LC lengths: LLC = 0.64μm (blue line) and LLC = 1.2μm (red line).

Tables (1)

Tables Icon

Table 1 VCSEL and LC Parameters

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

[ z y ] = [ c o s ( θ ) s i n ( θ ) s i n ( θ ) c o s ( θ ) ] [ z y ] .
x 2 n o 2 + y 2 n o 2 + z 2 n e 2 = 1 ,
n x = n o , n y = n o n e n o 2 s i n 2 ( θ ) + n e 2 c o s 2 ( θ ) .
[ x y ] = [ c o s ( ϕ ) s i n ( ϕ ) s i n ( ϕ ) c o s ( ϕ ) ] [ x y ] .
n x = n e , n y = n o .
K d 2 θ d z 2 + Δ ɛ E 2 sin ( θ ) cos ( θ ) = 0 ,

Metrics