Abstract

We report selective patterning process, laser ‘rail-roading’ scribing method, of which operating principle is based on transient force balance between the material properties including cohesion and adhesion forces subjected to underlying substrate and laser-induced shock compression and shear forces. By using dual fs-laser beam lines with an interval larger than laser spot size, we provide a proof of the concept by patterning the photovoltaic modules based on CIGS (Cu(In,Ga)Se2) coated on Mo electrode. With varying the interval between the two laser beam tracks, we can provide intact Mo back contact surface without any residues in a manner of more facile, high-speed and high scribing efficiency. We have interpreted the effect of the ambient gases and grooving width on the scribing performance in terms of the cohesion forces between the grains of CIGS thin films as well as adhesion force between underlying Mo layer and CIGS, which are mainly governed by local laser ablation and peening process followed by laser-induced shock compression, respectively.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Kessler, D. Herrmann, and M. Powalla, “Approaches to flexible CIGS thin-film solar cells,” Thin Solid Films 491, 480–481 (2005).
  2. P. O. Westin, U. Zimmermann, and M. Edoff, “Laser patterning of P2 interconnect via in thin-film CIGS PV modules,” Sol. Energy Mater. Sol. Cells 92(10), 1230–1235 (2008).
    [CrossRef]
  3. P. M. Harrison, N. Hay, and D. P. Hand, “A study of stitch line formation during high speed laser patterning of thin film indium tin oxide transparent electrodes,” Appl. Surf. Sci. 256(23), 7276–7284 (2010).
    [CrossRef]
  4. H. Yoo, H. Shin, B. Sim, S. Kim, and M. Lee, “Parallelized laser-direct patterning of nanocrystalline metal thin films by use of a pulsed laser-induced thermo-elastic force,” Nanotechnology 20(24), 245301 (2009).
    [CrossRef] [PubMed]
  5. P.-O. Westin, U. Zimmermann, M. Ruth, and M. Edoff, “Next generation interconnective laser patterning of CIGS thin film modules,” Sol. Energy Mater. Sol. Cells 95(4), 1062–1068 (2011).
    [CrossRef]
  6. P. Gečys, G. Račiukaitis, E. Miltenis, A. Braun, and S. Ragnow, “Scribing of thin-film solar cells with picosecond laser pulses,” Phys. Proc. 12, 141–148 (2011).
    [CrossRef]
  7. Y. Hernandez, A. Bertrand, S. Selleri, F. Salin, L. Leick, M. Hueske, R. Petkovsek, F. Ferrario, and N. Lichtenstein, “Recent progress on the ALPINE (advanced lasers for photovoltaic industrial processing enhancement) FP7 integrated project,” in Fiber Laser Applications OSA Technical Digest FThB1 (2011).
  8. N. G. Dhere, “Scale-up issues of CIGS thin film PV modules,” Sol. Energy Mater. Sol. Cells 95(1), 277–280 (2011).
    [CrossRef]
  9. M. Park, B. H. Chon, H. S. Kim, S. C. Jeoung, D. Kim, J.-I. Lee, H. Y. Chu, and H. R. Kim, “Ultrafast laser ablation of indium tin oxide thin films for organic light-emitting diode application,” Opt. Lasers Eng. 44(2), 138–146 (2006).
    [CrossRef]
  10. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent material,” Nat. Photonics 2(4), 219–225 (2008).
    [CrossRef]
  11. D. Butler, “Thin films: ready for their close-up?” Nature 454(7204), 558–559 (2008).
    [CrossRef] [PubMed]
  12. I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To, and R. Noufi, “19.9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor,” Prog. Photovolt. Res. Appl. 16(3), 235–239 (2008).
    [CrossRef]
  13. M. D. Abbott, T. Trupke, H. P. Hartmann, R. Gupta, and O. Breitenstein, “Laser isolation of shunted regions in industrial solar cells,” Prog. Photovolt. Res. Appl. 15(7), 613–620 (2007).
    [CrossRef]
  14. L. Zhang, H. Shen, Z. Yang, and J. Jin, “Shunt removal and patching for crystalline silicon solar cells using infrared imaging and laser cutting,” Prog. Photovolt. Res. Appl. 18(1), 54–60 (2010).
    [CrossRef]
  15. B. Wu, S. Tao, and S. Lei, “Numerical modeling of laser shock peening with femtosecond laser pulses and comparisons to experiments,” Appl. Surf. Sci. 256(13), 4376–4382 (2010).
    [CrossRef]
  16. J. S. Wittenberg, M. G. Merkle, and A. P. Alivisatos, “Wurtzite to rocksalt phase transformation of cadmium selenide nanocrystals via laser-induced shock waves: transition from single to multiple nucleation,” Phys. Rev. Lett. 103(12), 125701 (2009).
    [CrossRef] [PubMed]
  17. The shock provided by successive pulse trains in addition to that by individual laser pulse exposure should contribute to the overall external forces if the pulse repetition rate is fast than the relaxation rate of shock pressure. And also, we cannot completely rule out the possibility of the contribution of high-pressure gas blowing to the material removal accompanied with laser-induced shock propagation along CIGS/Mo interface. However, we tentatively neglect the contribution of gas blowing since it is so complicated to analyze the external force applied both by shock pressure from high-repetition rate laser pulses and by gas pressure in quantitatively with current experimental observation.

2011 (3)

P.-O. Westin, U. Zimmermann, M. Ruth, and M. Edoff, “Next generation interconnective laser patterning of CIGS thin film modules,” Sol. Energy Mater. Sol. Cells 95(4), 1062–1068 (2011).
[CrossRef]

P. Gečys, G. Račiukaitis, E. Miltenis, A. Braun, and S. Ragnow, “Scribing of thin-film solar cells with picosecond laser pulses,” Phys. Proc. 12, 141–148 (2011).
[CrossRef]

N. G. Dhere, “Scale-up issues of CIGS thin film PV modules,” Sol. Energy Mater. Sol. Cells 95(1), 277–280 (2011).
[CrossRef]

2010 (3)

P. M. Harrison, N. Hay, and D. P. Hand, “A study of stitch line formation during high speed laser patterning of thin film indium tin oxide transparent electrodes,” Appl. Surf. Sci. 256(23), 7276–7284 (2010).
[CrossRef]

L. Zhang, H. Shen, Z. Yang, and J. Jin, “Shunt removal and patching for crystalline silicon solar cells using infrared imaging and laser cutting,” Prog. Photovolt. Res. Appl. 18(1), 54–60 (2010).
[CrossRef]

B. Wu, S. Tao, and S. Lei, “Numerical modeling of laser shock peening with femtosecond laser pulses and comparisons to experiments,” Appl. Surf. Sci. 256(13), 4376–4382 (2010).
[CrossRef]

2009 (2)

J. S. Wittenberg, M. G. Merkle, and A. P. Alivisatos, “Wurtzite to rocksalt phase transformation of cadmium selenide nanocrystals via laser-induced shock waves: transition from single to multiple nucleation,” Phys. Rev. Lett. 103(12), 125701 (2009).
[CrossRef] [PubMed]

H. Yoo, H. Shin, B. Sim, S. Kim, and M. Lee, “Parallelized laser-direct patterning of nanocrystalline metal thin films by use of a pulsed laser-induced thermo-elastic force,” Nanotechnology 20(24), 245301 (2009).
[CrossRef] [PubMed]

2008 (4)

P. O. Westin, U. Zimmermann, and M. Edoff, “Laser patterning of P2 interconnect via in thin-film CIGS PV modules,” Sol. Energy Mater. Sol. Cells 92(10), 1230–1235 (2008).
[CrossRef]

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent material,” Nat. Photonics 2(4), 219–225 (2008).
[CrossRef]

D. Butler, “Thin films: ready for their close-up?” Nature 454(7204), 558–559 (2008).
[CrossRef] [PubMed]

I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To, and R. Noufi, “19.9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor,” Prog. Photovolt. Res. Appl. 16(3), 235–239 (2008).
[CrossRef]

2007 (1)

M. D. Abbott, T. Trupke, H. P. Hartmann, R. Gupta, and O. Breitenstein, “Laser isolation of shunted regions in industrial solar cells,” Prog. Photovolt. Res. Appl. 15(7), 613–620 (2007).
[CrossRef]

2006 (1)

M. Park, B. H. Chon, H. S. Kim, S. C. Jeoung, D. Kim, J.-I. Lee, H. Y. Chu, and H. R. Kim, “Ultrafast laser ablation of indium tin oxide thin films for organic light-emitting diode application,” Opt. Lasers Eng. 44(2), 138–146 (2006).
[CrossRef]

2005 (1)

F. Kessler, D. Herrmann, and M. Powalla, “Approaches to flexible CIGS thin-film solar cells,” Thin Solid Films 491, 480–481 (2005).

Abbott, M. D.

M. D. Abbott, T. Trupke, H. P. Hartmann, R. Gupta, and O. Breitenstein, “Laser isolation of shunted regions in industrial solar cells,” Prog. Photovolt. Res. Appl. 15(7), 613–620 (2007).
[CrossRef]

Alivisatos, A. P.

J. S. Wittenberg, M. G. Merkle, and A. P. Alivisatos, “Wurtzite to rocksalt phase transformation of cadmium selenide nanocrystals via laser-induced shock waves: transition from single to multiple nucleation,” Phys. Rev. Lett. 103(12), 125701 (2009).
[CrossRef] [PubMed]

Braun, A.

P. Gečys, G. Račiukaitis, E. Miltenis, A. Braun, and S. Ragnow, “Scribing of thin-film solar cells with picosecond laser pulses,” Phys. Proc. 12, 141–148 (2011).
[CrossRef]

Breitenstein, O.

M. D. Abbott, T. Trupke, H. P. Hartmann, R. Gupta, and O. Breitenstein, “Laser isolation of shunted regions in industrial solar cells,” Prog. Photovolt. Res. Appl. 15(7), 613–620 (2007).
[CrossRef]

Butler, D.

D. Butler, “Thin films: ready for their close-up?” Nature 454(7204), 558–559 (2008).
[CrossRef] [PubMed]

Chon, B. H.

M. Park, B. H. Chon, H. S. Kim, S. C. Jeoung, D. Kim, J.-I. Lee, H. Y. Chu, and H. R. Kim, “Ultrafast laser ablation of indium tin oxide thin films for organic light-emitting diode application,” Opt. Lasers Eng. 44(2), 138–146 (2006).
[CrossRef]

Chu, H. Y.

M. Park, B. H. Chon, H. S. Kim, S. C. Jeoung, D. Kim, J.-I. Lee, H. Y. Chu, and H. R. Kim, “Ultrafast laser ablation of indium tin oxide thin films for organic light-emitting diode application,” Opt. Lasers Eng. 44(2), 138–146 (2006).
[CrossRef]

Contreras, M. A.

I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To, and R. Noufi, “19.9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor,” Prog. Photovolt. Res. Appl. 16(3), 235–239 (2008).
[CrossRef]

DeHart, C.

I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To, and R. Noufi, “19.9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor,” Prog. Photovolt. Res. Appl. 16(3), 235–239 (2008).
[CrossRef]

Dhere, N. G.

N. G. Dhere, “Scale-up issues of CIGS thin film PV modules,” Sol. Energy Mater. Sol. Cells 95(1), 277–280 (2011).
[CrossRef]

Edoff, M.

P.-O. Westin, U. Zimmermann, M. Ruth, and M. Edoff, “Next generation interconnective laser patterning of CIGS thin film modules,” Sol. Energy Mater. Sol. Cells 95(4), 1062–1068 (2011).
[CrossRef]

P. O. Westin, U. Zimmermann, and M. Edoff, “Laser patterning of P2 interconnect via in thin-film CIGS PV modules,” Sol. Energy Mater. Sol. Cells 92(10), 1230–1235 (2008).
[CrossRef]

Egaas, B.

I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To, and R. Noufi, “19.9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor,” Prog. Photovolt. Res. Appl. 16(3), 235–239 (2008).
[CrossRef]

Gattass, R. R.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent material,” Nat. Photonics 2(4), 219–225 (2008).
[CrossRef]

Gecys, P.

P. Gečys, G. Račiukaitis, E. Miltenis, A. Braun, and S. Ragnow, “Scribing of thin-film solar cells with picosecond laser pulses,” Phys. Proc. 12, 141–148 (2011).
[CrossRef]

Gupta, R.

M. D. Abbott, T. Trupke, H. P. Hartmann, R. Gupta, and O. Breitenstein, “Laser isolation of shunted regions in industrial solar cells,” Prog. Photovolt. Res. Appl. 15(7), 613–620 (2007).
[CrossRef]

Hand, D. P.

P. M. Harrison, N. Hay, and D. P. Hand, “A study of stitch line formation during high speed laser patterning of thin film indium tin oxide transparent electrodes,” Appl. Surf. Sci. 256(23), 7276–7284 (2010).
[CrossRef]

Harrison, P. M.

P. M. Harrison, N. Hay, and D. P. Hand, “A study of stitch line formation during high speed laser patterning of thin film indium tin oxide transparent electrodes,” Appl. Surf. Sci. 256(23), 7276–7284 (2010).
[CrossRef]

Hartmann, H. P.

M. D. Abbott, T. Trupke, H. P. Hartmann, R. Gupta, and O. Breitenstein, “Laser isolation of shunted regions in industrial solar cells,” Prog. Photovolt. Res. Appl. 15(7), 613–620 (2007).
[CrossRef]

Hay, N.

P. M. Harrison, N. Hay, and D. P. Hand, “A study of stitch line formation during high speed laser patterning of thin film indium tin oxide transparent electrodes,” Appl. Surf. Sci. 256(23), 7276–7284 (2010).
[CrossRef]

Herrmann, D.

F. Kessler, D. Herrmann, and M. Powalla, “Approaches to flexible CIGS thin-film solar cells,” Thin Solid Films 491, 480–481 (2005).

Jeoung, S. C.

M. Park, B. H. Chon, H. S. Kim, S. C. Jeoung, D. Kim, J.-I. Lee, H. Y. Chu, and H. R. Kim, “Ultrafast laser ablation of indium tin oxide thin films for organic light-emitting diode application,” Opt. Lasers Eng. 44(2), 138–146 (2006).
[CrossRef]

Jin, J.

L. Zhang, H. Shen, Z. Yang, and J. Jin, “Shunt removal and patching for crystalline silicon solar cells using infrared imaging and laser cutting,” Prog. Photovolt. Res. Appl. 18(1), 54–60 (2010).
[CrossRef]

Kessler, F.

F. Kessler, D. Herrmann, and M. Powalla, “Approaches to flexible CIGS thin-film solar cells,” Thin Solid Films 491, 480–481 (2005).

Kim, D.

M. Park, B. H. Chon, H. S. Kim, S. C. Jeoung, D. Kim, J.-I. Lee, H. Y. Chu, and H. R. Kim, “Ultrafast laser ablation of indium tin oxide thin films for organic light-emitting diode application,” Opt. Lasers Eng. 44(2), 138–146 (2006).
[CrossRef]

Kim, H. R.

M. Park, B. H. Chon, H. S. Kim, S. C. Jeoung, D. Kim, J.-I. Lee, H. Y. Chu, and H. R. Kim, “Ultrafast laser ablation of indium tin oxide thin films for organic light-emitting diode application,” Opt. Lasers Eng. 44(2), 138–146 (2006).
[CrossRef]

Kim, H. S.

M. Park, B. H. Chon, H. S. Kim, S. C. Jeoung, D. Kim, J.-I. Lee, H. Y. Chu, and H. R. Kim, “Ultrafast laser ablation of indium tin oxide thin films for organic light-emitting diode application,” Opt. Lasers Eng. 44(2), 138–146 (2006).
[CrossRef]

Kim, S.

H. Yoo, H. Shin, B. Sim, S. Kim, and M. Lee, “Parallelized laser-direct patterning of nanocrystalline metal thin films by use of a pulsed laser-induced thermo-elastic force,” Nanotechnology 20(24), 245301 (2009).
[CrossRef] [PubMed]

Lee, J.-I.

M. Park, B. H. Chon, H. S. Kim, S. C. Jeoung, D. Kim, J.-I. Lee, H. Y. Chu, and H. R. Kim, “Ultrafast laser ablation of indium tin oxide thin films for organic light-emitting diode application,” Opt. Lasers Eng. 44(2), 138–146 (2006).
[CrossRef]

Lee, M.

H. Yoo, H. Shin, B. Sim, S. Kim, and M. Lee, “Parallelized laser-direct patterning of nanocrystalline metal thin films by use of a pulsed laser-induced thermo-elastic force,” Nanotechnology 20(24), 245301 (2009).
[CrossRef] [PubMed]

Lei, S.

B. Wu, S. Tao, and S. Lei, “Numerical modeling of laser shock peening with femtosecond laser pulses and comparisons to experiments,” Appl. Surf. Sci. 256(13), 4376–4382 (2010).
[CrossRef]

Mazur, E.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent material,” Nat. Photonics 2(4), 219–225 (2008).
[CrossRef]

Merkle, M. G.

J. S. Wittenberg, M. G. Merkle, and A. P. Alivisatos, “Wurtzite to rocksalt phase transformation of cadmium selenide nanocrystals via laser-induced shock waves: transition from single to multiple nucleation,” Phys. Rev. Lett. 103(12), 125701 (2009).
[CrossRef] [PubMed]

Miltenis, E.

P. Gečys, G. Račiukaitis, E. Miltenis, A. Braun, and S. Ragnow, “Scribing of thin-film solar cells with picosecond laser pulses,” Phys. Proc. 12, 141–148 (2011).
[CrossRef]

Noufi, R.

I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To, and R. Noufi, “19.9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor,” Prog. Photovolt. Res. Appl. 16(3), 235–239 (2008).
[CrossRef]

Park, M.

M. Park, B. H. Chon, H. S. Kim, S. C. Jeoung, D. Kim, J.-I. Lee, H. Y. Chu, and H. R. Kim, “Ultrafast laser ablation of indium tin oxide thin films for organic light-emitting diode application,” Opt. Lasers Eng. 44(2), 138–146 (2006).
[CrossRef]

Perkins, C. L.

I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To, and R. Noufi, “19.9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor,” Prog. Photovolt. Res. Appl. 16(3), 235–239 (2008).
[CrossRef]

Powalla, M.

F. Kessler, D. Herrmann, and M. Powalla, “Approaches to flexible CIGS thin-film solar cells,” Thin Solid Films 491, 480–481 (2005).

Raciukaitis, G.

P. Gečys, G. Račiukaitis, E. Miltenis, A. Braun, and S. Ragnow, “Scribing of thin-film solar cells with picosecond laser pulses,” Phys. Proc. 12, 141–148 (2011).
[CrossRef]

Ragnow, S.

P. Gečys, G. Račiukaitis, E. Miltenis, A. Braun, and S. Ragnow, “Scribing of thin-film solar cells with picosecond laser pulses,” Phys. Proc. 12, 141–148 (2011).
[CrossRef]

Repins, I.

I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To, and R. Noufi, “19.9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor,” Prog. Photovolt. Res. Appl. 16(3), 235–239 (2008).
[CrossRef]

Ruth, M.

P.-O. Westin, U. Zimmermann, M. Ruth, and M. Edoff, “Next generation interconnective laser patterning of CIGS thin film modules,” Sol. Energy Mater. Sol. Cells 95(4), 1062–1068 (2011).
[CrossRef]

Scharf, J.

I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To, and R. Noufi, “19.9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor,” Prog. Photovolt. Res. Appl. 16(3), 235–239 (2008).
[CrossRef]

Shen, H.

L. Zhang, H. Shen, Z. Yang, and J. Jin, “Shunt removal and patching for crystalline silicon solar cells using infrared imaging and laser cutting,” Prog. Photovolt. Res. Appl. 18(1), 54–60 (2010).
[CrossRef]

Shin, H.

H. Yoo, H. Shin, B. Sim, S. Kim, and M. Lee, “Parallelized laser-direct patterning of nanocrystalline metal thin films by use of a pulsed laser-induced thermo-elastic force,” Nanotechnology 20(24), 245301 (2009).
[CrossRef] [PubMed]

Sim, B.

H. Yoo, H. Shin, B. Sim, S. Kim, and M. Lee, “Parallelized laser-direct patterning of nanocrystalline metal thin films by use of a pulsed laser-induced thermo-elastic force,” Nanotechnology 20(24), 245301 (2009).
[CrossRef] [PubMed]

Tao, S.

B. Wu, S. Tao, and S. Lei, “Numerical modeling of laser shock peening with femtosecond laser pulses and comparisons to experiments,” Appl. Surf. Sci. 256(13), 4376–4382 (2010).
[CrossRef]

To, B.

I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To, and R. Noufi, “19.9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor,” Prog. Photovolt. Res. Appl. 16(3), 235–239 (2008).
[CrossRef]

Trupke, T.

M. D. Abbott, T. Trupke, H. P. Hartmann, R. Gupta, and O. Breitenstein, “Laser isolation of shunted regions in industrial solar cells,” Prog. Photovolt. Res. Appl. 15(7), 613–620 (2007).
[CrossRef]

Westin, P. O.

P. O. Westin, U. Zimmermann, and M. Edoff, “Laser patterning of P2 interconnect via in thin-film CIGS PV modules,” Sol. Energy Mater. Sol. Cells 92(10), 1230–1235 (2008).
[CrossRef]

Westin, P.-O.

P.-O. Westin, U. Zimmermann, M. Ruth, and M. Edoff, “Next generation interconnective laser patterning of CIGS thin film modules,” Sol. Energy Mater. Sol. Cells 95(4), 1062–1068 (2011).
[CrossRef]

Wittenberg, J. S.

J. S. Wittenberg, M. G. Merkle, and A. P. Alivisatos, “Wurtzite to rocksalt phase transformation of cadmium selenide nanocrystals via laser-induced shock waves: transition from single to multiple nucleation,” Phys. Rev. Lett. 103(12), 125701 (2009).
[CrossRef] [PubMed]

Wu, B.

B. Wu, S. Tao, and S. Lei, “Numerical modeling of laser shock peening with femtosecond laser pulses and comparisons to experiments,” Appl. Surf. Sci. 256(13), 4376–4382 (2010).
[CrossRef]

Yang, Z.

L. Zhang, H. Shen, Z. Yang, and J. Jin, “Shunt removal and patching for crystalline silicon solar cells using infrared imaging and laser cutting,” Prog. Photovolt. Res. Appl. 18(1), 54–60 (2010).
[CrossRef]

Yoo, H.

H. Yoo, H. Shin, B. Sim, S. Kim, and M. Lee, “Parallelized laser-direct patterning of nanocrystalline metal thin films by use of a pulsed laser-induced thermo-elastic force,” Nanotechnology 20(24), 245301 (2009).
[CrossRef] [PubMed]

Zhang, L.

L. Zhang, H. Shen, Z. Yang, and J. Jin, “Shunt removal and patching for crystalline silicon solar cells using infrared imaging and laser cutting,” Prog. Photovolt. Res. Appl. 18(1), 54–60 (2010).
[CrossRef]

Zimmermann, U.

P.-O. Westin, U. Zimmermann, M. Ruth, and M. Edoff, “Next generation interconnective laser patterning of CIGS thin film modules,” Sol. Energy Mater. Sol. Cells 95(4), 1062–1068 (2011).
[CrossRef]

P. O. Westin, U. Zimmermann, and M. Edoff, “Laser patterning of P2 interconnect via in thin-film CIGS PV modules,” Sol. Energy Mater. Sol. Cells 92(10), 1230–1235 (2008).
[CrossRef]

Appl. Surf. Sci. (2)

P. M. Harrison, N. Hay, and D. P. Hand, “A study of stitch line formation during high speed laser patterning of thin film indium tin oxide transparent electrodes,” Appl. Surf. Sci. 256(23), 7276–7284 (2010).
[CrossRef]

B. Wu, S. Tao, and S. Lei, “Numerical modeling of laser shock peening with femtosecond laser pulses and comparisons to experiments,” Appl. Surf. Sci. 256(13), 4376–4382 (2010).
[CrossRef]

Nanotechnology (1)

H. Yoo, H. Shin, B. Sim, S. Kim, and M. Lee, “Parallelized laser-direct patterning of nanocrystalline metal thin films by use of a pulsed laser-induced thermo-elastic force,” Nanotechnology 20(24), 245301 (2009).
[CrossRef] [PubMed]

Nat. Photonics (1)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent material,” Nat. Photonics 2(4), 219–225 (2008).
[CrossRef]

Nature (1)

D. Butler, “Thin films: ready for their close-up?” Nature 454(7204), 558–559 (2008).
[CrossRef] [PubMed]

Opt. Lasers Eng. (1)

M. Park, B. H. Chon, H. S. Kim, S. C. Jeoung, D. Kim, J.-I. Lee, H. Y. Chu, and H. R. Kim, “Ultrafast laser ablation of indium tin oxide thin films for organic light-emitting diode application,” Opt. Lasers Eng. 44(2), 138–146 (2006).
[CrossRef]

Phys. Proc. (1)

P. Gečys, G. Račiukaitis, E. Miltenis, A. Braun, and S. Ragnow, “Scribing of thin-film solar cells with picosecond laser pulses,” Phys. Proc. 12, 141–148 (2011).
[CrossRef]

Phys. Rev. Lett. (1)

J. S. Wittenberg, M. G. Merkle, and A. P. Alivisatos, “Wurtzite to rocksalt phase transformation of cadmium selenide nanocrystals via laser-induced shock waves: transition from single to multiple nucleation,” Phys. Rev. Lett. 103(12), 125701 (2009).
[CrossRef] [PubMed]

Prog. Photovolt. Res. Appl. (3)

I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To, and R. Noufi, “19.9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor,” Prog. Photovolt. Res. Appl. 16(3), 235–239 (2008).
[CrossRef]

M. D. Abbott, T. Trupke, H. P. Hartmann, R. Gupta, and O. Breitenstein, “Laser isolation of shunted regions in industrial solar cells,” Prog. Photovolt. Res. Appl. 15(7), 613–620 (2007).
[CrossRef]

L. Zhang, H. Shen, Z. Yang, and J. Jin, “Shunt removal and patching for crystalline silicon solar cells using infrared imaging and laser cutting,” Prog. Photovolt. Res. Appl. 18(1), 54–60 (2010).
[CrossRef]

Sol. Energy Mater. Sol. Cells (3)

N. G. Dhere, “Scale-up issues of CIGS thin film PV modules,” Sol. Energy Mater. Sol. Cells 95(1), 277–280 (2011).
[CrossRef]

P.-O. Westin, U. Zimmermann, M. Ruth, and M. Edoff, “Next generation interconnective laser patterning of CIGS thin film modules,” Sol. Energy Mater. Sol. Cells 95(4), 1062–1068 (2011).
[CrossRef]

P. O. Westin, U. Zimmermann, and M. Edoff, “Laser patterning of P2 interconnect via in thin-film CIGS PV modules,” Sol. Energy Mater. Sol. Cells 92(10), 1230–1235 (2008).
[CrossRef]

Thin Solid Films (1)

F. Kessler, D. Herrmann, and M. Powalla, “Approaches to flexible CIGS thin-film solar cells,” Thin Solid Films 491, 480–481 (2005).

Other (2)

Y. Hernandez, A. Bertrand, S. Selleri, F. Salin, L. Leick, M. Hueske, R. Petkovsek, F. Ferrario, and N. Lichtenstein, “Recent progress on the ALPINE (advanced lasers for photovoltaic industrial processing enhancement) FP7 integrated project,” in Fiber Laser Applications OSA Technical Digest FThB1 (2011).

The shock provided by successive pulse trains in addition to that by individual laser pulse exposure should contribute to the overall external forces if the pulse repetition rate is fast than the relaxation rate of shock pressure. And also, we cannot completely rule out the possibility of the contribution of high-pressure gas blowing to the material removal accompanied with laser-induced shock propagation along CIGS/Mo interface. However, we tentatively neglect the contribution of gas blowing since it is so complicated to analyze the external force applied both by shock pressure from high-repetition rate laser pulses and by gas pressure in quantitatively with current experimental observation.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic diagram for the laser ‘rail-roading’ methods to pattern CIGS thin films coated on Mo electrode. fs-laser beam is divided in two beam lines by 50:50 beam splitter (1). Both the laser beams were focused on the sample surface by an objective lens (2). The polarization was changed by variable wave plates (3). The interval between the two laser tracks varied with keeping the laser power exposed to the surface constant. The arrow indicates the direction of laser exposure.

Fig. 2
Fig. 2

SEM images of laser rail-roading scribes in ZnO/CdS/CIGS films with 110 μm (A), 80 μm (B), and with 50 μm (C) intervals between two laser beams. (D) is SEM image of the same samples when scanning with one laser beam line followed to additional line scanning with 50 μm interval. The scribing area was blown with 4.5 atm nitrogen gas at right angle to the processing direction. Each of laser line has a laser fluence of 10.6 J/cm2. The scale bar is 100 μm.

Fig. 3
Fig. 3

SEM images of CIGS bottom surface before (A) and after (B) laser exposing. The scale bar is 1 μm.

Fig. 4
Fig. 4

SEM images of single laser beam scribes on CIGS films coated on Mo electrode with a laser fluence of (A) 7.1 J/cm2, (B) 14.1 J/cm2, and (C) 21.2 J/cm2. The stage speed and laser repetition rate is 70 mm/sec and 33.3 kHz, respectively.

Fig. 5
Fig. 5

(A) Schematics of the model to describe the laser ‘rail-roading’ scribing method. The two laser beams are simultaneously exposed to the CIGS films as depicted in Fig. 1. The external force applied by each laser exposure is highlighted by blue dotted lines. (B-C) Laser track interval dependence of the force balance between Fc,CIGS (cyan dashed lines), Fa,CIGS/Mo (blue dotted lines), and Fshock (black lines). The interval of the laser beam tracks is 50 μm (A), 80 μm (B), and 110 μm (C). For reference, laser-induced shear forces applied by the two laser beam are also shown with circles in red and green. Since only relative magnitude of the forces is meaningful in this model, all the forces used in this model are represented as a unit-less quantities. The insets exhibit SEM images of the patterns for each interval.

Tables (1)

Tables Icon

Table 1 Percentage of CIGS Film Scribing as a Function of the Intervals with Changing the Blowing Condition*

Metrics