Abstract

We report successful transmission of dual-LP11 mode (LP11a and LP11b), dual-polarization coherent optical orthogonal frequency division multiplexing (CO-OFDM) signals over two-mode fibers (TMF) using all-fiber mode converters. Mode converters based on mechanically induced long-period grating with better than 20 dB extinction ratios are realized and used for interfacing single-mode fiber transmitters and receivers to the TMF. We demonstrate that by using 4x4 MIMO-OFDM processing, the random coupling of the two LP11 spatial modes can be successfully tracked and equalized with a one-tap frequency-domain equalizer. We achieve successful transmission of a 35.3-Gb/s CO-OFDM signal over 26-km two-mode fiber with less than 3 dB penalty.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |

  1. D. Qian, M. F. Huang, E. Ip, Y. K. Huang, Y. Shao, J. Hu, and T. Wang, “101.7-Tb/s (370 x 294-Gb/s) PDM-128QAM-OFDM transmission over 3 x 55-km SSMF using pilot-based phase noise mitigation,” Optical Fiber Communication Conference (OFC), 2011, p. PDPB5.
  2. R. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel, “Capacity limits of optical fiber networks,” J. Lightwave Technol.28(4), 662–701 (2010).
    [CrossRef]
  3. W. Shieh and X. Chen, “Information spectral efficiency and launch power density limits due to fiber nonlinearity for coherent optical OFDM systems,” IEEE Photon. J.3(2), 158–173 (2011).
    [CrossRef]
  4. S. Chandrasekhar, X. Liu, B. Zhu, and D. W. Peckham, “Transmission of a 1.2-Tb/s 24-carrier no-guard-interval coherent OFDM superchannel over 7200-km of ultra-large-area fiber,” European Conference On Optical Communication, (ECOC), 2009, PD2.6.
  5. F. Yaman, N. Bai, Y. K. Huang, M. F. Huang, B. Zhu, T. Wang, and G. Li, “10 x 112Gb/s PDM-QPSK transmission over 5032 km in few-mode fibers,” Opt. Express18(20), 21342–21349 (2010), http://www.opticsinfobase.org/abstract.cfm?URI=oe-18-20-21342 .
    [CrossRef] [PubMed]
  6. J. Sakaguchi, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, T. Hayashi, T. Taru, T. Kobayashi, and M. Watanabe, “109-Tb/s (7x97x172-Gb/s SDM/WDM/PDM) QPSK transmission through 16.8-km homogeneous multi-core fiber,” Optical Fiber Communication Conference (OFC), 2011, p. PDPB6.
  7. B. Zhu, T. Taunay, M. Fishteyn, X. Liu, S. Chandrasekhar, M. Yan, J. Fini, E. Monberg, and F. Dimarcello, “Space-, wavelength-, polarization-division multiplexed transmission of 56-Tb/s over a 76.8-km seven-core fiber,” Optical Fiber Communication Conference (OFC),2011, PDPB7.
  8. H. R. Stuart, “Dispersive multiplexing in multimode optical fiber,” Science289(5477), 281–283 (2000).
    [CrossRef] [PubMed]
  9. A. Tarighat, R. C. Hsu, A. Shah, A. H. Sayed, and B. Jalali, “Fundamentals and challenges of optical multiple-input multiple-output multimode fiber links,” IEEE Commun. Mag.45(5), 57–63 (2007).
    [CrossRef]
  10. N. Hanzawa, K. Saitoh, T. Sakamoto, T. Matsui, S. Tomita, and M. Koshiba, “Demonstration of mode-division multiplexing transmission over 10 km two-mode fiber with mode coupler,” Optical Fiber Communication Conference (OFC), 2011, p. OWA4.
  11. A. Li, A. Al Amin, X. Chen, and W. Shieh, “Transmission of 107-Gb/s mode and polarization multiplexed CO-OFDM signal over a two-mode fiber,” Opt. Express19(9), 8808–8814 (2011).
    [CrossRef] [PubMed]
  12. M. Salsi, C. Koebele, D. Sperti, P. Tran, P. Brindel, H. Mardoyan, S. Bigo, A. Boutin, F. Verluise, P. Sillard, and others, “Transmission at 2x100Gb/s, over Two Modes of 40km-long Prototype Few-Mode Fiber, using LCOS based Mode Multiplexer and Demultiplexer,” Optical Fiber Comm. Conference (OFC), 2011, p.PDPB9.
  13. R. Ryf, S. Randel, A. H. Gnauck, C. Bolle, R. J. Essiambre, P. Winzer, D. W. Peckham, A. McCurdy, and R. Lingle, “Space-division multiplexing over 10 km of three-mode fiber using coherent 6 x 6 MIMO processing,” Optical Fiber Communication Conference (OFC), 2011, p. PDPB10.
  14. I. B. Djordjevic, M. Arabaci, L. Xu, and T. Wang, “Spatial-domain-based multidimensional modulation for multi-Tb/s serial optical transmission,” Opt. Express19(7), 6845–6857 (2011).
    [CrossRef] [PubMed]
  15. S. H. Murshid, A. Chakravarty, and R. Biswas, “Simultaneous transmission of two channels operating at the same wavelength in standard multimode fibers,” Lasers and Electro-Optics, 2008 and 2008 Conference on Quantum Electronics and Laser Science. CLEO/QELS Conference, 2008, pp. 1–2.
  16. B. C. Thomsen, “MIMO enabled 40 Gb/s transmission using mode division multiplexing in multimode fiber,” Optical Fiber Communication (OFC), 2010, p.OThM6.
  17. B. Franz, D. Suikat, R. Dischler, F. Buchali, and H. Buelow, “High speed OFDM data transmission over 5 km GI-multimode fiber using spatial multiplexing with 2x4 MIMO processing,” European Conference on Optical Communication (ECOC), 2010, p.Tu3.C.4.
  18. J. Carpenter and T. D. Wilkinson, “Holographic mode-group division multiplexing,” Optical Fiber Communication Conference (OFC), 2011, p.OThN3.
  19. A. Al Amin, A. Li, X. Chen, and W. Shieh, “LP01/LP11 dual-mode and dual-polarisation CO-OFDM transmission on two-mode fibre,” Electron. Lett.47(10), 606–607 (2011).
    [CrossRef]
  20. R. C. Youngquist, J. L. Brooks, and H. J. Shaw, “Two-mode fiber modal coupler,” Opt. Lett.9(5), 177–179 (1984).
    [CrossRef] [PubMed]
  21. S. L. Jansen, I. Morita, N. Takeda, and H. Tanaka, “20-Gb/s OFDM transmission over 4,160-km SSMF enabled by RF-pilot tone phase noise compensation,” Optical Fiber Communication Conference (OFC), 2007,p.PDP 15.
  22. K. Y. Song, I. K. Hwang, S. H. Yun, and B. Y. Kim, “High performance fused-type mode-selective coupler using elliptical core two-mode fiber at 1550 nm,” IEEE Photon. Technol. Lett.14(4), 501–503 (2002).
    [CrossRef]

Other

D. Qian, M. F. Huang, E. Ip, Y. K. Huang, Y. Shao, J. Hu, and T. Wang, “101.7-Tb/s (370 x 294-Gb/s) PDM-128QAM-OFDM transmission over 3 x 55-km SSMF using pilot-based phase noise mitigation,” Optical Fiber Communication Conference (OFC), 2011, p. PDPB5.

R. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel, “Capacity limits of optical fiber networks,” J. Lightwave Technol.28(4), 662–701 (2010).
[CrossRef]

W. Shieh and X. Chen, “Information spectral efficiency and launch power density limits due to fiber nonlinearity for coherent optical OFDM systems,” IEEE Photon. J.3(2), 158–173 (2011).
[CrossRef]

S. Chandrasekhar, X. Liu, B. Zhu, and D. W. Peckham, “Transmission of a 1.2-Tb/s 24-carrier no-guard-interval coherent OFDM superchannel over 7200-km of ultra-large-area fiber,” European Conference On Optical Communication, (ECOC), 2009, PD2.6.

F. Yaman, N. Bai, Y. K. Huang, M. F. Huang, B. Zhu, T. Wang, and G. Li, “10 x 112Gb/s PDM-QPSK transmission over 5032 km in few-mode fibers,” Opt. Express18(20), 21342–21349 (2010), http://www.opticsinfobase.org/abstract.cfm?URI=oe-18-20-21342 .
[CrossRef] [PubMed]

J. Sakaguchi, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, T. Hayashi, T. Taru, T. Kobayashi, and M. Watanabe, “109-Tb/s (7x97x172-Gb/s SDM/WDM/PDM) QPSK transmission through 16.8-km homogeneous multi-core fiber,” Optical Fiber Communication Conference (OFC), 2011, p. PDPB6.

B. Zhu, T. Taunay, M. Fishteyn, X. Liu, S. Chandrasekhar, M. Yan, J. Fini, E. Monberg, and F. Dimarcello, “Space-, wavelength-, polarization-division multiplexed transmission of 56-Tb/s over a 76.8-km seven-core fiber,” Optical Fiber Communication Conference (OFC),2011, PDPB7.

H. R. Stuart, “Dispersive multiplexing in multimode optical fiber,” Science289(5477), 281–283 (2000).
[CrossRef] [PubMed]

A. Tarighat, R. C. Hsu, A. Shah, A. H. Sayed, and B. Jalali, “Fundamentals and challenges of optical multiple-input multiple-output multimode fiber links,” IEEE Commun. Mag.45(5), 57–63 (2007).
[CrossRef]

N. Hanzawa, K. Saitoh, T. Sakamoto, T. Matsui, S. Tomita, and M. Koshiba, “Demonstration of mode-division multiplexing transmission over 10 km two-mode fiber with mode coupler,” Optical Fiber Communication Conference (OFC), 2011, p. OWA4.

A. Li, A. Al Amin, X. Chen, and W. Shieh, “Transmission of 107-Gb/s mode and polarization multiplexed CO-OFDM signal over a two-mode fiber,” Opt. Express19(9), 8808–8814 (2011).
[CrossRef] [PubMed]

M. Salsi, C. Koebele, D. Sperti, P. Tran, P. Brindel, H. Mardoyan, S. Bigo, A. Boutin, F. Verluise, P. Sillard, and others, “Transmission at 2x100Gb/s, over Two Modes of 40km-long Prototype Few-Mode Fiber, using LCOS based Mode Multiplexer and Demultiplexer,” Optical Fiber Comm. Conference (OFC), 2011, p.PDPB9.

R. Ryf, S. Randel, A. H. Gnauck, C. Bolle, R. J. Essiambre, P. Winzer, D. W. Peckham, A. McCurdy, and R. Lingle, “Space-division multiplexing over 10 km of three-mode fiber using coherent 6 x 6 MIMO processing,” Optical Fiber Communication Conference (OFC), 2011, p. PDPB10.

I. B. Djordjevic, M. Arabaci, L. Xu, and T. Wang, “Spatial-domain-based multidimensional modulation for multi-Tb/s serial optical transmission,” Opt. Express19(7), 6845–6857 (2011).
[CrossRef] [PubMed]

S. H. Murshid, A. Chakravarty, and R. Biswas, “Simultaneous transmission of two channels operating at the same wavelength in standard multimode fibers,” Lasers and Electro-Optics, 2008 and 2008 Conference on Quantum Electronics and Laser Science. CLEO/QELS Conference, 2008, pp. 1–2.

B. C. Thomsen, “MIMO enabled 40 Gb/s transmission using mode division multiplexing in multimode fiber,” Optical Fiber Communication (OFC), 2010, p.OThM6.

B. Franz, D. Suikat, R. Dischler, F. Buchali, and H. Buelow, “High speed OFDM data transmission over 5 km GI-multimode fiber using spatial multiplexing with 2x4 MIMO processing,” European Conference on Optical Communication (ECOC), 2010, p.Tu3.C.4.

J. Carpenter and T. D. Wilkinson, “Holographic mode-group division multiplexing,” Optical Fiber Communication Conference (OFC), 2011, p.OThN3.

A. Al Amin, A. Li, X. Chen, and W. Shieh, “LP01/LP11 dual-mode and dual-polarisation CO-OFDM transmission on two-mode fibre,” Electron. Lett.47(10), 606–607 (2011).
[CrossRef]

R. C. Youngquist, J. L. Brooks, and H. J. Shaw, “Two-mode fiber modal coupler,” Opt. Lett.9(5), 177–179 (1984).
[CrossRef] [PubMed]

S. L. Jansen, I. Morita, N. Takeda, and H. Tanaka, “20-Gb/s OFDM transmission over 4,160-km SSMF enabled by RF-pilot tone phase noise compensation,” Optical Fiber Communication Conference (OFC), 2007,p.PDP 15.

K. Y. Song, I. K. Hwang, S. H. Yun, and B. Y. Kim, “High performance fused-type mode-selective coupler using elliptical core two-mode fiber at 1550 nm,” IEEE Photon. Technol. Lett.14(4), 501–503 (2002).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Schematic of fiber grating-based LP01-LP11 mode converter and dual-LP11 mode multiplexer. The mode demultiplexer is similar by reversing the direction of the signals. Inset shows the orthogonally adjusted far-field patterns of the LP11a and LP11b modes viewed with an infra-red (IR) beam-profiler. BS: beam-splitter, CL: collimating lens. (b) Pictures of one of the mode multiplexers (left) and mode converters (right).

Fig. 2
Fig. 2

Experimental setup for the 4x4 MIMO-OFDM transmission over TMF. The colors delineate fiber-based and free-space optics. PDM: polarization division multiplexing, MDM: mode division multiplexing, PBS/C: polarization beam splitter/combiner, MS: LP11 mode stripper, MC: LP01-LP11 mode converter, BS: beam splitter (non-polarizing cube), CL: collimating/ focusing lens, ADC: analog-to-digital converter. BPF: band-pass filter (optical). PC: polarization controller.

Fig. 3
Fig. 3

(a) Time-domain transmitted signal traces for the four tributaries, depicting method of emulating 4x4 MIMO transmitter from single source by 4-way splitting and multiplexing with delays of integer number of OFDM symbol length. TS: training symbol. (b) Received spectrum of one of the 4 channels after 26-km TMF transmission, depicting RF pilot used for phase noise compensation and frequency guard band to avoid signal-signal intermixing.

Fig. 4
Fig. 4

Schematic diagram of 4x4 MIMO DSP program: (a) offline digital signal processing at transmitter, and (b) offline digital signal processing at receiver.

Fig. 5
Fig. 5

(a) Measured OSNR sensitivity for QPSK, 35.3-Gb/s 4x4 MIMO-OFDM transmission over TMF back-to-back (B2B) and 26-km TMF. (b) Constellation of the received signal tributaries after 26-km TMF transmission.

Tables (1)

Tables Icon

Table 1 Parameters for the Step Index TMF Used in this Work (* are design values)

Metrics