Abstract

We describe a new multicore fiber (MCF) having seven single-mode cores arranged in a hexagonal array, exhibiting low crosstalk among the cores and low loss across the C and L bands. We experimentally demonstrate a record transmission capacity of 112 Tb/s over a 76.8-km MCF using space-division multiplexing and dense wavelength-division multiplexing (DWDM). Each core carries 160 107-Gb/s polarization-division multiplexed quadrature phase-shift keying (PDM-QPSK) channels on a 50-GHz grid in the C and L bands, resulting in an aggregate spectral efficiency of 14 b/s/Hz. We further investigate the impact of the inter-core crosstalk on a 107-Gb/s PDM-QPSK signal after transmitting through the center core of the MCF when all the 6 outer cores carry same-wavelength 107-Gb/s signals with equal powers, and discuss the system implications of core-to-core crosstalk on ultra-long-haul transmission.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. R. Chraplyvy, “The coming capacity crunch,” ECOC2009, Vienna, Austria, plenary talk.
  2. P. J. Winzer and R.-J. Essiambre, “Advanced Optical Modulation Formats”, in Optical Fiber Telecommunications V, I. Kaminow, T. Li, and A. E. Willner (eds.), Elsevier (2008)
  3. T. Morioka, “New generation optical infrastructure technologies: ‘EXAT initiative’ towards 2020 and beyond”, OECC2009, paper FT4.
  4. S. Inao, T. Sato, S. Sentsui, T. Kuroha, and Y. Nishimura, “Multicore optical fiber,” in Optical Fiber Communication, 1979 OSA Technical Digest Series (Optical Society of America, 1979), paper WB1.
  5. K. Imamura, K. Mukasa, T. Yagi., “Investigation on multicore fibers with large Aeff and low bending loss”, OFC2010, San Diego, CA, paper OWK6.
  6. T. Hayashi, T. Toshiki, S. Osamu, S. Takashi, and S. Eisuke, “Ultra-low-crosstalk multicore fiber feasible to ultra-long haul transmission”, OFC’11, PDPC2 (2011).
  7. J. Sakaguchi, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, T. Hayashi, T. Taru, T. Kobayashi, M. Watanabe, “109-Tb/s (7x97x172-Gb/s) SDM/WDM/PDM) QPSK transmission through 16.8-km homogeneous multicore fiber”, OFC’11, PDPB6 (2011).
  8. B. Zhu, T.F. Taunay, M. Fishteyn, X. Liu, S. Chandrasekhar, M. F. Yan, J. M. Fini, E.M. Monberg, F.V. Dimarcello, K. Abedin, P.W. Wisk D.W. Peckham, and P. Dziedzic, “Space-, wavelength-, polarization-division multiplexed transmission of 56-Tb/s over a 76.8-km seven-core fiber”, OFC’11, PDPB7 (2011).
  9. B. Zhu, T. F. Taunay, M. F. Yan, J. M. Fini, M. Fishteyn, E. M. Monberg, and F. V. Dimarcello, “Seven-core multicore fiber transmissions for passive optical network,” Opt. Express 18(11), 11117–11122 (2010).
    [CrossRef] [PubMed]
  10. J. M. Fini, T.F. Taunay, B. Zhu, and M. F. Yan, “Low cross-talk design of multicore fibers”, in CLEO2010, OSA Technical Digest, DC, paper CTuAA3.
  11. K.-P. Ho, “Effects of homodyne crosstalk on dual-polarization QPSK signals,” J. Lightwave Technol 29, 124 (2011).
  12. S. J. Savory, “Digital filters for coherent optical receivers,” Opt. Express 16(2), 804–817 (2008).
    [CrossRef] [PubMed]

2011

K.-P. Ho, “Effects of homodyne crosstalk on dual-polarization QPSK signals,” J. Lightwave Technol 29, 124 (2011).

2010

2008

Dimarcello, F. V.

Fini, J. M.

Fishteyn, M.

Ho, K.-P.

K.-P. Ho, “Effects of homodyne crosstalk on dual-polarization QPSK signals,” J. Lightwave Technol 29, 124 (2011).

Monberg, E. M.

Savory, S. J.

Taunay, T. F.

Yan, M. F.

Zhu, B.

Opt. Express

Other

A. R. Chraplyvy, “The coming capacity crunch,” ECOC2009, Vienna, Austria, plenary talk.

P. J. Winzer and R.-J. Essiambre, “Advanced Optical Modulation Formats”, in Optical Fiber Telecommunications V, I. Kaminow, T. Li, and A. E. Willner (eds.), Elsevier (2008)

T. Morioka, “New generation optical infrastructure technologies: ‘EXAT initiative’ towards 2020 and beyond”, OECC2009, paper FT4.

S. Inao, T. Sato, S. Sentsui, T. Kuroha, and Y. Nishimura, “Multicore optical fiber,” in Optical Fiber Communication, 1979 OSA Technical Digest Series (Optical Society of America, 1979), paper WB1.

K. Imamura, K. Mukasa, T. Yagi., “Investigation on multicore fibers with large Aeff and low bending loss”, OFC2010, San Diego, CA, paper OWK6.

T. Hayashi, T. Toshiki, S. Osamu, S. Takashi, and S. Eisuke, “Ultra-low-crosstalk multicore fiber feasible to ultra-long haul transmission”, OFC’11, PDPC2 (2011).

J. Sakaguchi, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, T. Hayashi, T. Taru, T. Kobayashi, M. Watanabe, “109-Tb/s (7x97x172-Gb/s) SDM/WDM/PDM) QPSK transmission through 16.8-km homogeneous multicore fiber”, OFC’11, PDPB6 (2011).

B. Zhu, T.F. Taunay, M. Fishteyn, X. Liu, S. Chandrasekhar, M. F. Yan, J. M. Fini, E.M. Monberg, F.V. Dimarcello, K. Abedin, P.W. Wisk D.W. Peckham, and P. Dziedzic, “Space-, wavelength-, polarization-division multiplexed transmission of 56-Tb/s over a 76.8-km seven-core fiber”, OFC’11, PDPB7 (2011).

J. M. Fini, T.F. Taunay, B. Zhu, and M. F. Yan, “Low cross-talk design of multicore fibers”, in CLEO2010, OSA Technical Digest, DC, paper CTuAA3.

K.-P. Ho, “Effects of homodyne crosstalk on dual-polarization QPSK signals,” J. Lightwave Technol 29, 124 (2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Measured attenuation spectra of seven-core MCF, Inset: cross-section photograph of the MCF, (b) measured optical core-to-core crosstalk spectra of the MCF.

Fig. 2
Fig. 2

Schematic diagram of tapered multicore fiber connectors.

Fig. 3
Fig. 3

Schematic diagram of experimental setup for 107-Gb/s SDM-DWDM seven-core fiber transmission.

Fig. 4
Fig. 4

Measured total span link crosstalk over C- and L-band.

Fig. 5
Fig. 5

In-band crosstalk Q-factor penalty of center-core as a function of the ratio between the outer-core signal power (Pouter) and the center-core signal power (Pcenter).

Fig. 6
Fig. 6

Typical optical spectrum and OSNR measured at one output of the seven-core fiber

Fig. 7
Fig. 7

Signal Q2-factor (derived from the measured BER) after 76.8-km transmission as a function of signal wavelength for all the seven cores. Insets: typical recovered signal constellations after transmission in the C-band (a) and in the L-band (b).

Metrics