Abstract

Spatial division multiplexing has been proposed as an option for further capacity increase of transmission fibers. Application of this concept is attractive only, if cost and energy efficient implementations can be found. In this work, optical amplification and optical filter based signal processing concepts are investigated. Deployment of multi mode fibers as the waveguide type for erbium doped fiber amplifiers potentially offers cost and energy efficiency advantages compared to using multi core fibers in preamplifier as well as booster stages. Additional advantages can be gained from optimization of the amplifier module design. Together with transponder design optimizations, they can increase the attractiveness of inverse spatial multiplexing, which is proposed as an intermediate step. Signal processing based on adaptive passive optical filters offers an alternative approach for the separation of channels at the receiver which have experienced mode coupling along the link. With this optical filter based approach, fiber capacity can potentially be increased faster and more energy efficiently than with solutions relying solely on electronic signal processing.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Gilder, “The rise of Exaflood Optics”, 35th European Conference on Optical Communication (ECOC 2009), paper 1.0.1.
  2. A. Chraplyvy, “The Coming Capacity Crunch”, 35th European Conference on Optical Communication (ECOC 2009), paper 1.0.2.
  3. P. J. Winzer, “Challenges and evolution of optical transport networks”, 36th European Conference on Optical Communication (ECOC 2010), Torino, Italy, Sept. 19 – 23, We.8.D.1.
  4. R. W. Tkach, “Scaling optical communications for the next decade and beyond,” Bell Labs Tech. J. 14(4), 3–9 (2010).
    [CrossRef]
  5. J. Baliga, R. Ayre, K. Hinton, W. V. Sorin, and R. S. Tucker, “Energy Consumption in Optical IP Networks,” J. Lightwave Technol. 27(13), 2391–2403 (2009).
    [CrossRef]
  6. S. Berdagué and P. Facq, “Mode division multiplexing in optical fibers,” Appl. Opt. 21(11), 1950–1955 (1982).
    [CrossRef] [PubMed]
  7. T. Morioka, “New generation optical infrastructure technologies: “EXAT initiative” towards 2020 and beyond”, 14th OptoElectronics and Communications Conference (OECC 2009), July 13–17, Hong Kong, China, paper FT4.
  8. K. Imamura, K. Mukasa, and T. Yagi, “Effective space division multiplexing by multi-core fibers”, 36th European Conference on Optical Communication (ECOC 2010), Torino, Italy, Sept. 19 – 23, P1.09.
  9. J. Sakaguchi, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, T. Hayashi, T. Taru, T. Kobayashi, and M. Watanabe, “109-Tb/s (7x97x172-Gb/s SDM/WDM/PDM) QPSK transmission through 16.8-km homogeneous multi-core fiber”, Optical Fiber Communication Conference and Exhibition (OFC 2011), March 6–10, Los Angeles, CA, USA, paper PDPB6.
  10. B. Zhu, T. F. Taunay, M. Fishteyn, X. Liu, S. Chandrasekhar, M. F. Yan, J. M. Fini, E. M. Monberg, F. V. Dimarcello, K. Abedin, P. W. Wisk, D. W. Peckham, and P. Dziedzic, “Space-, Wavelength-, Polarization-Division Multiplexed Transmission of 56-Tb/s over a 76.8-km Seven-Core Fiber”, Optical Fiber Communication Conference and Exhibition (OFC 2011), March 6–10, Los Angeles, CA, USA, paper PDPB7.
  11. A. Li, A. A. Amin, X. Chen, and W. Shieh, “Reception of Mode and Polarization Multiplexed 107-Gb/s CO-OFDM Signal over a Two-Mode Fiber”, Optical Fiber Communication Conference and Exhibition (OFC 2011), March 6–10, Los Angeles, CA, USA, paper PDPB8.
  12. M. Salsi, C. Koebele, D. Sperti, P. Tran, P. Brindel, H. Mardoyan, S. Bigo, A. Boutin, F. Verluise, P. Sillard, M. Astruc, L. Provost, F. Cerou, and G. Charlet, “Transmission at 2x100Gb/s, over Two Modes of 40km-long Prototype Few-Mode Fiber, using LCOS-based Mode Multiplexer and Demultiplexer”, Optical Fiber Communication Conference and Exhibition (OFC 2011), March 6–10, Los Angeles, CA, USA, paper PDPB9.
  13. R. Ryf, S. Randel, A. H. Gnauck, C. Bolle, R.-J. Essiambre, P. J. Winzer, D. W. Peckham, A. McCurd, and R. Lingle, Jr., “Space-division multiplexing over 10 km of three-mode fiber using coherent 6 x 6 MIMO processing”, Optical Fiber Communication Conference and Exhibition (OFC 2011), March 6–10, Los Angeles, CA, USA, paper PDPB10.
  14. P. M. Krummrich and K. Petermann, “Evaluation of Potential Optical Amplifier Concepts for Coherent Mode Multiplexing”, Optical Fiber Communication Conference and Exhibition (OFC 2011), March 6–10, Los Angeles, CA, USA, paper OMH5.
  15. H.-G. Unger, “Elektromagnetische Theorie fuer die Hochfrequenztechnik – Teil I”, Huethig (1988), Heidelberg, p. 327.
  16. G. P. Agrawal, “Fiber-Optic Communication Systems”, Wiley Interscience (2002), New York, p. 34.
  17. H.-G. Unger, “Optische Nachrichtentechnik – Band1: Optische Wellenleiter”, Huethig (1993), Heidelberg, p. 193.
  18. J. F. Massicott, R. Wyatt, B. J. Ainslie, S. P. Craig-Ryan, B. J. Ainslie, and S. P. Craig-Ryan, “Efficient, High-Power, High Gain, Er3+ Doped Silica Fibre Amplifier,” Electron. Lett. 26(14), 1038–1039 (1990).
    [CrossRef]
  19. B. Pedersen, M. L. Dakss, B. A. Thompson, W. J. Miniscalco, T. Wei, and L. J. Andrews, “Experimental and Theoretical Analysis of Efficient Erbium-Doped Fiber Power Amplifiers,” IEEE Photon. Technol. Lett. 3(12), 1085–1087 (1991).
    [CrossRef]
  20. K. W. Bennett, F. Davis, P. A. Jacobsen, N. Jolley, R. Keys, M. A. Newhouse, S. Sheih, and M. J. Yadlowski, “980 nm band pump wavelength tuning of the gain spectrum of EDFAs”, Conference on Optical Amplifiers and their Applications (OAA 1997), paper PDP4.
  21. M. J. Yadlowsky, “Pump Wavelength-Dependent Spectral Hole Burning in EDFAs,” IEEE J. Lightw. Technol. 17(9), 1643–1648 (1999).
    [CrossRef]
  22. F. A. Kish, et al., “Volume manufacturing and deployment of large-scale photonic integrated circuits”, Optical Fiber Communication Conference and Exhibition (OFC 2006), March 5–10, Anaheim, CA, USA, paper OWL1.
  23. P. Evans, et al., “Multi-Channel Coherent PM-QPSK InP Transmitter Photonic Integrated Circuit (PIC) Operating at 112 Gb/s per Wavelength”, Optical Fiber Communication Conference and Exhibition (OFC 2011), March 6–10, Los Angeles, CA, USA, paper PDPC7.
  24. B. Zhu, T. F. Taunay, M. F. Yan, J. M. Fini, M. Fishteyn, E. M. Monberg, and F. V. Dimarcello, “Seven-core multicore fiber transmissions for passive optical network,” Opt. Express 18(11), 11117–11122 (2010).
    [CrossRef] [PubMed]
  25. G. Stepniak, L. Maksymiuk, and J. Siuzdak, “Increasing Multimode Fiber Transmission Capacity by Mode Selective Spatial Light Modulation”, 36th European Conference on Optical Communication (ECOC 2010), Torino, Italy, Sept. 19 – 23, paper P6.03.
  26. K. Takenaga, S. Tanigawa, N. Guan, S. Matsuo, K. Saitoh, and M. Koshiba, “Reduction of Crosstalk by Quasi-Homogeneous Solid Multi-Core Fiber”, Optical Fiber Communication Conference and Exhibition (OFC 2010), March 23–25, San Diego, CA, USA, paper OWK7.
  27. T. Hayashi, T. Taru, O. Shimakawa, T. Sasaki, and E. Sasaoka, “Ultra-Low-Crosstalk Multi-Core Fiber Feasible to Ultra-Long-Haul Transmission”, Optical Fiber Communication Conference and Exhibition (OFC 2011), March 6–10, Los Angeles, CA, USA, paper PDPC2.
  28. M. Westhaeuser, M. Finkenbusch, C. Remmersmann, S. Pachnicke, and P. M. Krummrich, “Optical Filter-Based Mitigation of Group Delay Rippel- and PMD-Related Penalties for High Capacity Metro Networks,” IEEE J. Lightw. Technol. (accepted for publication).
  29. M. Fadel, M. Bülters, M. Niemand, E. Voges, and P. Krummrich, “Low-Loss and Low-Birefringence High-Contrast Silicon-Oxynitride Waveguides for Optical Communication,” J. Lightwave Technol. 27(6), 698–705 (2009).
    [CrossRef]

2010 (2)

2009 (2)

1999 (1)

M. J. Yadlowsky, “Pump Wavelength-Dependent Spectral Hole Burning in EDFAs,” IEEE J. Lightw. Technol. 17(9), 1643–1648 (1999).
[CrossRef]

1991 (1)

B. Pedersen, M. L. Dakss, B. A. Thompson, W. J. Miniscalco, T. Wei, and L. J. Andrews, “Experimental and Theoretical Analysis of Efficient Erbium-Doped Fiber Power Amplifiers,” IEEE Photon. Technol. Lett. 3(12), 1085–1087 (1991).
[CrossRef]

1990 (1)

J. F. Massicott, R. Wyatt, B. J. Ainslie, S. P. Craig-Ryan, B. J. Ainslie, and S. P. Craig-Ryan, “Efficient, High-Power, High Gain, Er3+ Doped Silica Fibre Amplifier,” Electron. Lett. 26(14), 1038–1039 (1990).
[CrossRef]

1982 (1)

Ainslie, B. J.

J. F. Massicott, R. Wyatt, B. J. Ainslie, S. P. Craig-Ryan, B. J. Ainslie, and S. P. Craig-Ryan, “Efficient, High-Power, High Gain, Er3+ Doped Silica Fibre Amplifier,” Electron. Lett. 26(14), 1038–1039 (1990).
[CrossRef]

J. F. Massicott, R. Wyatt, B. J. Ainslie, S. P. Craig-Ryan, B. J. Ainslie, and S. P. Craig-Ryan, “Efficient, High-Power, High Gain, Er3+ Doped Silica Fibre Amplifier,” Electron. Lett. 26(14), 1038–1039 (1990).
[CrossRef]

Andrews, L. J.

B. Pedersen, M. L. Dakss, B. A. Thompson, W. J. Miniscalco, T. Wei, and L. J. Andrews, “Experimental and Theoretical Analysis of Efficient Erbium-Doped Fiber Power Amplifiers,” IEEE Photon. Technol. Lett. 3(12), 1085–1087 (1991).
[CrossRef]

Ayre, R.

Baliga, J.

Berdagué, S.

Bülters, M.

Craig-Ryan, S. P.

J. F. Massicott, R. Wyatt, B. J. Ainslie, S. P. Craig-Ryan, B. J. Ainslie, and S. P. Craig-Ryan, “Efficient, High-Power, High Gain, Er3+ Doped Silica Fibre Amplifier,” Electron. Lett. 26(14), 1038–1039 (1990).
[CrossRef]

J. F. Massicott, R. Wyatt, B. J. Ainslie, S. P. Craig-Ryan, B. J. Ainslie, and S. P. Craig-Ryan, “Efficient, High-Power, High Gain, Er3+ Doped Silica Fibre Amplifier,” Electron. Lett. 26(14), 1038–1039 (1990).
[CrossRef]

Dakss, M. L.

B. Pedersen, M. L. Dakss, B. A. Thompson, W. J. Miniscalco, T. Wei, and L. J. Andrews, “Experimental and Theoretical Analysis of Efficient Erbium-Doped Fiber Power Amplifiers,” IEEE Photon. Technol. Lett. 3(12), 1085–1087 (1991).
[CrossRef]

Dimarcello, F. V.

Facq, P.

Fadel, M.

Fini, J. M.

Finkenbusch, M.

M. Westhaeuser, M. Finkenbusch, C. Remmersmann, S. Pachnicke, and P. M. Krummrich, “Optical Filter-Based Mitigation of Group Delay Rippel- and PMD-Related Penalties for High Capacity Metro Networks,” IEEE J. Lightw. Technol. (accepted for publication).

Fishteyn, M.

Hinton, K.

Krummrich, P.

Krummrich, P. M.

M. Westhaeuser, M. Finkenbusch, C. Remmersmann, S. Pachnicke, and P. M. Krummrich, “Optical Filter-Based Mitigation of Group Delay Rippel- and PMD-Related Penalties for High Capacity Metro Networks,” IEEE J. Lightw. Technol. (accepted for publication).

Massicott, J. F.

J. F. Massicott, R. Wyatt, B. J. Ainslie, S. P. Craig-Ryan, B. J. Ainslie, and S. P. Craig-Ryan, “Efficient, High-Power, High Gain, Er3+ Doped Silica Fibre Amplifier,” Electron. Lett. 26(14), 1038–1039 (1990).
[CrossRef]

Miniscalco, W. J.

B. Pedersen, M. L. Dakss, B. A. Thompson, W. J. Miniscalco, T. Wei, and L. J. Andrews, “Experimental and Theoretical Analysis of Efficient Erbium-Doped Fiber Power Amplifiers,” IEEE Photon. Technol. Lett. 3(12), 1085–1087 (1991).
[CrossRef]

Monberg, E. M.

Niemand, M.

Pachnicke, S.

M. Westhaeuser, M. Finkenbusch, C. Remmersmann, S. Pachnicke, and P. M. Krummrich, “Optical Filter-Based Mitigation of Group Delay Rippel- and PMD-Related Penalties for High Capacity Metro Networks,” IEEE J. Lightw. Technol. (accepted for publication).

Pedersen, B.

B. Pedersen, M. L. Dakss, B. A. Thompson, W. J. Miniscalco, T. Wei, and L. J. Andrews, “Experimental and Theoretical Analysis of Efficient Erbium-Doped Fiber Power Amplifiers,” IEEE Photon. Technol. Lett. 3(12), 1085–1087 (1991).
[CrossRef]

Remmersmann, C.

M. Westhaeuser, M. Finkenbusch, C. Remmersmann, S. Pachnicke, and P. M. Krummrich, “Optical Filter-Based Mitigation of Group Delay Rippel- and PMD-Related Penalties for High Capacity Metro Networks,” IEEE J. Lightw. Technol. (accepted for publication).

Sorin, W. V.

Taunay, T. F.

Thompson, B. A.

B. Pedersen, M. L. Dakss, B. A. Thompson, W. J. Miniscalco, T. Wei, and L. J. Andrews, “Experimental and Theoretical Analysis of Efficient Erbium-Doped Fiber Power Amplifiers,” IEEE Photon. Technol. Lett. 3(12), 1085–1087 (1991).
[CrossRef]

Tkach, R. W.

R. W. Tkach, “Scaling optical communications for the next decade and beyond,” Bell Labs Tech. J. 14(4), 3–9 (2010).
[CrossRef]

Tucker, R. S.

Voges, E.

Wei, T.

B. Pedersen, M. L. Dakss, B. A. Thompson, W. J. Miniscalco, T. Wei, and L. J. Andrews, “Experimental and Theoretical Analysis of Efficient Erbium-Doped Fiber Power Amplifiers,” IEEE Photon. Technol. Lett. 3(12), 1085–1087 (1991).
[CrossRef]

Westhaeuser, M.

M. Westhaeuser, M. Finkenbusch, C. Remmersmann, S. Pachnicke, and P. M. Krummrich, “Optical Filter-Based Mitigation of Group Delay Rippel- and PMD-Related Penalties for High Capacity Metro Networks,” IEEE J. Lightw. Technol. (accepted for publication).

Wyatt, R.

J. F. Massicott, R. Wyatt, B. J. Ainslie, S. P. Craig-Ryan, B. J. Ainslie, and S. P. Craig-Ryan, “Efficient, High-Power, High Gain, Er3+ Doped Silica Fibre Amplifier,” Electron. Lett. 26(14), 1038–1039 (1990).
[CrossRef]

Yadlowsky, M. J.

M. J. Yadlowsky, “Pump Wavelength-Dependent Spectral Hole Burning in EDFAs,” IEEE J. Lightw. Technol. 17(9), 1643–1648 (1999).
[CrossRef]

Yan, M. F.

Zhu, B.

Appl. Opt. (1)

Bell Labs Tech. J. (1)

R. W. Tkach, “Scaling optical communications for the next decade and beyond,” Bell Labs Tech. J. 14(4), 3–9 (2010).
[CrossRef]

Electron. Lett. (1)

J. F. Massicott, R. Wyatt, B. J. Ainslie, S. P. Craig-Ryan, B. J. Ainslie, and S. P. Craig-Ryan, “Efficient, High-Power, High Gain, Er3+ Doped Silica Fibre Amplifier,” Electron. Lett. 26(14), 1038–1039 (1990).
[CrossRef]

IEEE J. Lightw. Technol. (2)

M. J. Yadlowsky, “Pump Wavelength-Dependent Spectral Hole Burning in EDFAs,” IEEE J. Lightw. Technol. 17(9), 1643–1648 (1999).
[CrossRef]

M. Westhaeuser, M. Finkenbusch, C. Remmersmann, S. Pachnicke, and P. M. Krummrich, “Optical Filter-Based Mitigation of Group Delay Rippel- and PMD-Related Penalties for High Capacity Metro Networks,” IEEE J. Lightw. Technol. (accepted for publication).

IEEE Photon. Technol. Lett. (1)

B. Pedersen, M. L. Dakss, B. A. Thompson, W. J. Miniscalco, T. Wei, and L. J. Andrews, “Experimental and Theoretical Analysis of Efficient Erbium-Doped Fiber Power Amplifiers,” IEEE Photon. Technol. Lett. 3(12), 1085–1087 (1991).
[CrossRef]

J. Lightwave Technol. (2)

Opt. Express (1)

Other (20)

G. Stepniak, L. Maksymiuk, and J. Siuzdak, “Increasing Multimode Fiber Transmission Capacity by Mode Selective Spatial Light Modulation”, 36th European Conference on Optical Communication (ECOC 2010), Torino, Italy, Sept. 19 – 23, paper P6.03.

K. Takenaga, S. Tanigawa, N. Guan, S. Matsuo, K. Saitoh, and M. Koshiba, “Reduction of Crosstalk by Quasi-Homogeneous Solid Multi-Core Fiber”, Optical Fiber Communication Conference and Exhibition (OFC 2010), March 23–25, San Diego, CA, USA, paper OWK7.

T. Hayashi, T. Taru, O. Shimakawa, T. Sasaki, and E. Sasaoka, “Ultra-Low-Crosstalk Multi-Core Fiber Feasible to Ultra-Long-Haul Transmission”, Optical Fiber Communication Conference and Exhibition (OFC 2011), March 6–10, Los Angeles, CA, USA, paper PDPC2.

G. Gilder, “The rise of Exaflood Optics”, 35th European Conference on Optical Communication (ECOC 2009), paper 1.0.1.

A. Chraplyvy, “The Coming Capacity Crunch”, 35th European Conference on Optical Communication (ECOC 2009), paper 1.0.2.

P. J. Winzer, “Challenges and evolution of optical transport networks”, 36th European Conference on Optical Communication (ECOC 2010), Torino, Italy, Sept. 19 – 23, We.8.D.1.

K. W. Bennett, F. Davis, P. A. Jacobsen, N. Jolley, R. Keys, M. A. Newhouse, S. Sheih, and M. J. Yadlowski, “980 nm band pump wavelength tuning of the gain spectrum of EDFAs”, Conference on Optical Amplifiers and their Applications (OAA 1997), paper PDP4.

F. A. Kish, et al., “Volume manufacturing and deployment of large-scale photonic integrated circuits”, Optical Fiber Communication Conference and Exhibition (OFC 2006), March 5–10, Anaheim, CA, USA, paper OWL1.

P. Evans, et al., “Multi-Channel Coherent PM-QPSK InP Transmitter Photonic Integrated Circuit (PIC) Operating at 112 Gb/s per Wavelength”, Optical Fiber Communication Conference and Exhibition (OFC 2011), March 6–10, Los Angeles, CA, USA, paper PDPC7.

T. Morioka, “New generation optical infrastructure technologies: “EXAT initiative” towards 2020 and beyond”, 14th OptoElectronics and Communications Conference (OECC 2009), July 13–17, Hong Kong, China, paper FT4.

K. Imamura, K. Mukasa, and T. Yagi, “Effective space division multiplexing by multi-core fibers”, 36th European Conference on Optical Communication (ECOC 2010), Torino, Italy, Sept. 19 – 23, P1.09.

J. Sakaguchi, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, T. Hayashi, T. Taru, T. Kobayashi, and M. Watanabe, “109-Tb/s (7x97x172-Gb/s SDM/WDM/PDM) QPSK transmission through 16.8-km homogeneous multi-core fiber”, Optical Fiber Communication Conference and Exhibition (OFC 2011), March 6–10, Los Angeles, CA, USA, paper PDPB6.

B. Zhu, T. F. Taunay, M. Fishteyn, X. Liu, S. Chandrasekhar, M. F. Yan, J. M. Fini, E. M. Monberg, F. V. Dimarcello, K. Abedin, P. W. Wisk, D. W. Peckham, and P. Dziedzic, “Space-, Wavelength-, Polarization-Division Multiplexed Transmission of 56-Tb/s over a 76.8-km Seven-Core Fiber”, Optical Fiber Communication Conference and Exhibition (OFC 2011), March 6–10, Los Angeles, CA, USA, paper PDPB7.

A. Li, A. A. Amin, X. Chen, and W. Shieh, “Reception of Mode and Polarization Multiplexed 107-Gb/s CO-OFDM Signal over a Two-Mode Fiber”, Optical Fiber Communication Conference and Exhibition (OFC 2011), March 6–10, Los Angeles, CA, USA, paper PDPB8.

M. Salsi, C. Koebele, D. Sperti, P. Tran, P. Brindel, H. Mardoyan, S. Bigo, A. Boutin, F. Verluise, P. Sillard, M. Astruc, L. Provost, F. Cerou, and G. Charlet, “Transmission at 2x100Gb/s, over Two Modes of 40km-long Prototype Few-Mode Fiber, using LCOS-based Mode Multiplexer and Demultiplexer”, Optical Fiber Communication Conference and Exhibition (OFC 2011), March 6–10, Los Angeles, CA, USA, paper PDPB9.

R. Ryf, S. Randel, A. H. Gnauck, C. Bolle, R.-J. Essiambre, P. J. Winzer, D. W. Peckham, A. McCurd, and R. Lingle, Jr., “Space-division multiplexing over 10 km of three-mode fiber using coherent 6 x 6 MIMO processing”, Optical Fiber Communication Conference and Exhibition (OFC 2011), March 6–10, Los Angeles, CA, USA, paper PDPB10.

P. M. Krummrich and K. Petermann, “Evaluation of Potential Optical Amplifier Concepts for Coherent Mode Multiplexing”, Optical Fiber Communication Conference and Exhibition (OFC 2011), March 6–10, Los Angeles, CA, USA, paper OMH5.

H.-G. Unger, “Elektromagnetische Theorie fuer die Hochfrequenztechnik – Teil I”, Huethig (1988), Heidelberg, p. 327.

G. P. Agrawal, “Fiber-Optic Communication Systems”, Wiley Interscience (2002), New York, p. 34.

H.-G. Unger, “Optische Nachrichtentechnik – Band1: Optische Wellenleiter”, Huethig (1993), Heidelberg, p. 193.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Required pump power in mW vs. the number of modes in different active fiber types: squares – multi core fiber, diamonds – multi mode fiber

Fig. 2
Fig. 2

SWAM design optimization by sharing of pump lasers

Fig. 3
Fig. 3

Block diagram of a system deploying inverse spatial multiplexing

Fig. 4
Fig. 4

Block diagram of a butterfly filter structure which can be deployed for MIMO processing of polarization multiplexed signals

Fig. 5
Fig. 5

Extended filter structure capable of processing polarization and mode multiplexed signals

Fig. 6
Fig. 6

Implementation of the equalizer structure for the separation of polarization and mode multiplexed channels using optical components suitable for monolithic integration

Fig. 7
Fig. 7

Realization of an IIR filter stage using a Mach-Zehnder interferometer and a loop resonator with adaptive phase shifters

Fig. 8
Fig. 8

Compact implementation of the butterfly equalizer structure with a two dimensional arrangement of filters

Fig. 9
Fig. 9

Example for the realization of the compact butterfly equalizer structure using parallel optical processing

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

η = N 2 N t = S p S p + h ν A 21 / σ 13 .
V = a 2 π λ 0 N A , B = n e f f 2 n m 2 n k 2 n m 2 ,
M m = K c 2 = V 2 4 .
M m = a 2 π 2 λ 0 2 N A .
P t = S p A e f f = S p ( 1 + ε ) 2 λ 0 2 π N A 2 M m .
P t = M c A e f f , c S p .
A e f f , c = ( 1 + ε c ) 2 a c 2 π .
P t = S p ( 1 + ε c ) 2 V c 2 λ 0 2 4 π N A 2 M c .

Metrics