Abstract

We developed an all-optical link system for making remote comparisons of two distant ultra-stable optical clocks. An optical carrier transfer system based on a fiber interferometer was employed to compensate the phase noise accumulated during the propagation through a fiber link. Transfer stabilities of 2 × 10−15 at 1 second and 4 × 10−18 at 1000 seconds were achieved in a 90-km link. An active polarization control system was additionally introduced to maintain the transmitted light in an adequate polarization, and consequently, a stable and reliable comparison was accomplished. The instabilities of the all-optical link system, including those of the erbium doped fiber amplifiers (EDFAs) which are free from phase-noise compensation, were below 2 × 10−15 at 1 second and 7 × 10−17 at 1000 seconds. The system was available for the direct comparison of two distant 87Sr lattice clocks via an urban fiber link of 60 km. This technique will be essential for the measuring the reproducibility of optical frequency standards.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Panfilo and E. Felicitas Arias, “Algorithms for international atomic time,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57(1), 140–150 (2010).
    [CrossRef]
  2. C. W. Chou, D. B. Hume, J. C. J. Koelemeiji, D. J. Wineland, and T. Rosenband, “Frequency comparison of two high-accuracy Al+ optical clocks,” Phys. Rev. Lett. 104, 070802 (2010).
    [CrossRef] [PubMed]
  3. S. M. Foreman, K. W. Holman, D. D. Hudson, D. J. Jones, and J. Ye, “Remote transfer of ultrastable frequency references via fiber networks,” Rev. Sci. Instrum. 78, 021101 (2007).
    [CrossRef] [PubMed]
  4. P. A. Williams, W. C. Swann, and N. R. Newbury, “High-stability transfer of an optical frequency over long fiber-optic links,” J. Opt. Soc. Am. B 25(8), 1284–1293 (2008).
    [CrossRef]
  5. M. Musha, F.-L. Hong, K. Nakagawa, and K. Ueda, “Coherent optical frequency transfer over 50-km physical distance using a 120-km-long installed telecom fiber network,” Opt. Express 16(21), 16459–16466 (2008).
    [CrossRef] [PubMed]
  6. L. S. Ma, P. Jungner, J. Ye, and J. L. Hall, “Delivering the same optical frequency at two places: accurate cancellation of phase noise introduced by an optical fiber or other time-varying path,” Opt. Lett. 19(21), 1777–1779 (1994).
    [CrossRef] [PubMed]
  7. N. R. Newbury, P. A. Williams, and W. C. Swann, “Coherent transfer of an optical carrier over 251 km,” Opt. Lett. 32(21), 3056–3058 (2007).
    [CrossRef] [PubMed]
  8. F. Kefelian, O. Lopez, H. Jiang, C. Chardonnet, A. Amy-Klein, and G. Santarelli, “High-resolution optical frequency dissemination on a telecommunications network with data traffic,” Opt. Lett. 34(10), 1573–1575 (2009).
    [CrossRef] [PubMed]
  9. O. Lopez, A. Haboucha, F. Kefelian, H. Jiang, B. Chanteau, V. Roncin, C. Chardonnet, A. Amy-Klein, and G. Santarelli, “Cascaded multiplexed optical link on a telecommunication network for frequency dissemination,” Opt. Express 18(16), 16849–16857 (2010).
    [CrossRef] [PubMed]
  10. O. Terra, G. Grosche, and H. Schnatz, “Brillouin amplification in phase coherent transfer of optical frequencies over 480 km fiber,” Opt. Express 18(15), 16102–16111 (2010).
    [CrossRef] [PubMed]
  11. A. D. Ludlow, T. Zelevinsky, G. K. Campbell, S. Blatt, M. M. Boyd, M. H. G. de Miranda, M. J. Martin, J. W. Thomsen, S. M. Foreman, J. Ye, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, Y. Le Coq, Z. W. Barber, N. Poli, N. D. Lemke, K. M. Beck, and C. W. Oates, “Sr lattice clock at 1 × 10−16 fractional uncertainty by remote optical evaluation with a Ca clock,” Science 319, 1805–1808 (2008).
    [CrossRef] [PubMed]
  12. O. Terra, G. Grosche, K. Predehl, R. Holzwarth, T. Legero, U. Sterr, B. Lipphardt, and H. Schnatz, “Phase-coherent comparison of two optical frequency standards over 146 km using a telecommunication fiber link,” Appl. Phys. B 97, 541–551 (2009).
    [CrossRef]
  13. A. Pape, O. Terra, J. Friebe, M. Riedmann, T. Wubbena, E. M. Rasel, K. Predehl, T. Legero, B. Lipphardt, H. Schnatz, and G. Grosche, “Long-distance remote comparison of ultrastable optical frequencies with 10−15 instability in fractions of a second,” Opt. Express 18(20), 21477–21483 (2010).
    [CrossRef] [PubMed]
  14. Japan Gigabit Network 2 plus [Online]. Available: http://www.jgn.nict.go.jp/jgn2plus_archive/english/index.html .
  15. M. Kumagai, M. Fujieda, S. Nagano, and M. Hosokawa, “Stable radio frequency transfer in 114 km urban optical fiber link,” Opt. Lett. 34(19), 2949–2951 (2009).
    [CrossRef] [PubMed]
  16. M. Fujieda, M. Kumagai, and S. Nagano, “Coherent microwave transfer over a 204-km telecom fiber link by a cascaded system,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57(1), 168–174 (2010).
    [CrossRef]
  17. P. Lesage, “Characterization of frequency stability: bias due to the juxtapositon of time-interval measurements,” IEEE Trans. Instrum. Meas. 32(1), 204–207 (1983).
    [CrossRef]
  18. M. Takamoto, F. L. Hong, R. Higashi, and H. Katori, “An optical lattice clock,” Nature 435, 321–324 (2005).
    [CrossRef] [PubMed]
  19. T. Akatsuka, M. Takamoto, and H. Katori, “Optical lattice clocks with non-interacting boson and fermions,” Nat. Phys. 4, 954–959 (2008).
    [CrossRef]
  20. M. Takamoto, T. Takano, and H. Katori, “Frequency comparison of optical lattice clocks beyond the Dick limit,” Nat. Photonics 5, 288–292 (2011).
    [CrossRef]
  21. A. Yamaguchi, M. Fujieda, M. Kumagai, H. Hachisu, S. Nagano, Y. Li, T. Ido, T. Takano, M. Takamoto, and H. Katori, “Direct comparison of distant optical lattice clocks at the 10−16 uncertainty,” Appl. Phys. Express 4, 082203 (2011).
    [CrossRef]
  22. S. Nagano, H. Ito, Y. Li, K. Matsubara, and M. Hosokawa, “Stable operation of femtosecond laser frequency combs with uncertainty at the 10−17 level toward optical frequency standards,” Jpn. J. Appl. Phys. 48, 042301 (2009).
    [CrossRef]
  23. Y. Y. Jiang, A. D. Ludlow, N. D. Lemke, R. W. Fox, J. A. Sherman, L. S. Ma, and C. W. Oates, “Making optical atomic clocks more stable with 10−16-level laser stabilization,” Nat. Photonics 5, 158–161 (2011).
    [CrossRef]

2011

M. Takamoto, T. Takano, and H. Katori, “Frequency comparison of optical lattice clocks beyond the Dick limit,” Nat. Photonics 5, 288–292 (2011).
[CrossRef]

A. Yamaguchi, M. Fujieda, M. Kumagai, H. Hachisu, S. Nagano, Y. Li, T. Ido, T. Takano, M. Takamoto, and H. Katori, “Direct comparison of distant optical lattice clocks at the 10−16 uncertainty,” Appl. Phys. Express 4, 082203 (2011).
[CrossRef]

Y. Y. Jiang, A. D. Ludlow, N. D. Lemke, R. W. Fox, J. A. Sherman, L. S. Ma, and C. W. Oates, “Making optical atomic clocks more stable with 10−16-level laser stabilization,” Nat. Photonics 5, 158–161 (2011).
[CrossRef]

2010

2009

F. Kefelian, O. Lopez, H. Jiang, C. Chardonnet, A. Amy-Klein, and G. Santarelli, “High-resolution optical frequency dissemination on a telecommunications network with data traffic,” Opt. Lett. 34(10), 1573–1575 (2009).
[CrossRef] [PubMed]

M. Kumagai, M. Fujieda, S. Nagano, and M. Hosokawa, “Stable radio frequency transfer in 114 km urban optical fiber link,” Opt. Lett. 34(19), 2949–2951 (2009).
[CrossRef] [PubMed]

S. Nagano, H. Ito, Y. Li, K. Matsubara, and M. Hosokawa, “Stable operation of femtosecond laser frequency combs with uncertainty at the 10−17 level toward optical frequency standards,” Jpn. J. Appl. Phys. 48, 042301 (2009).
[CrossRef]

O. Terra, G. Grosche, K. Predehl, R. Holzwarth, T. Legero, U. Sterr, B. Lipphardt, and H. Schnatz, “Phase-coherent comparison of two optical frequency standards over 146 km using a telecommunication fiber link,” Appl. Phys. B 97, 541–551 (2009).
[CrossRef]

2008

A. D. Ludlow, T. Zelevinsky, G. K. Campbell, S. Blatt, M. M. Boyd, M. H. G. de Miranda, M. J. Martin, J. W. Thomsen, S. M. Foreman, J. Ye, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, Y. Le Coq, Z. W. Barber, N. Poli, N. D. Lemke, K. M. Beck, and C. W. Oates, “Sr lattice clock at 1 × 10−16 fractional uncertainty by remote optical evaluation with a Ca clock,” Science 319, 1805–1808 (2008).
[CrossRef] [PubMed]

P. A. Williams, W. C. Swann, and N. R. Newbury, “High-stability transfer of an optical frequency over long fiber-optic links,” J. Opt. Soc. Am. B 25(8), 1284–1293 (2008).
[CrossRef]

M. Musha, F.-L. Hong, K. Nakagawa, and K. Ueda, “Coherent optical frequency transfer over 50-km physical distance using a 120-km-long installed telecom fiber network,” Opt. Express 16(21), 16459–16466 (2008).
[CrossRef] [PubMed]

T. Akatsuka, M. Takamoto, and H. Katori, “Optical lattice clocks with non-interacting boson and fermions,” Nat. Phys. 4, 954–959 (2008).
[CrossRef]

2007

S. M. Foreman, K. W. Holman, D. D. Hudson, D. J. Jones, and J. Ye, “Remote transfer of ultrastable frequency references via fiber networks,” Rev. Sci. Instrum. 78, 021101 (2007).
[CrossRef] [PubMed]

N. R. Newbury, P. A. Williams, and W. C. Swann, “Coherent transfer of an optical carrier over 251 km,” Opt. Lett. 32(21), 3056–3058 (2007).
[CrossRef] [PubMed]

2005

M. Takamoto, F. L. Hong, R. Higashi, and H. Katori, “An optical lattice clock,” Nature 435, 321–324 (2005).
[CrossRef] [PubMed]

1994

1983

P. Lesage, “Characterization of frequency stability: bias due to the juxtapositon of time-interval measurements,” IEEE Trans. Instrum. Meas. 32(1), 204–207 (1983).
[CrossRef]

Akatsuka, T.

T. Akatsuka, M. Takamoto, and H. Katori, “Optical lattice clocks with non-interacting boson and fermions,” Nat. Phys. 4, 954–959 (2008).
[CrossRef]

Amy-Klein, A.

Barber, Z. W.

A. D. Ludlow, T. Zelevinsky, G. K. Campbell, S. Blatt, M. M. Boyd, M. H. G. de Miranda, M. J. Martin, J. W. Thomsen, S. M. Foreman, J. Ye, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, Y. Le Coq, Z. W. Barber, N. Poli, N. D. Lemke, K. M. Beck, and C. W. Oates, “Sr lattice clock at 1 × 10−16 fractional uncertainty by remote optical evaluation with a Ca clock,” Science 319, 1805–1808 (2008).
[CrossRef] [PubMed]

Beck, K. M.

A. D. Ludlow, T. Zelevinsky, G. K. Campbell, S. Blatt, M. M. Boyd, M. H. G. de Miranda, M. J. Martin, J. W. Thomsen, S. M. Foreman, J. Ye, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, Y. Le Coq, Z. W. Barber, N. Poli, N. D. Lemke, K. M. Beck, and C. W. Oates, “Sr lattice clock at 1 × 10−16 fractional uncertainty by remote optical evaluation with a Ca clock,” Science 319, 1805–1808 (2008).
[CrossRef] [PubMed]

Blatt, S.

A. D. Ludlow, T. Zelevinsky, G. K. Campbell, S. Blatt, M. M. Boyd, M. H. G. de Miranda, M. J. Martin, J. W. Thomsen, S. M. Foreman, J. Ye, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, Y. Le Coq, Z. W. Barber, N. Poli, N. D. Lemke, K. M. Beck, and C. W. Oates, “Sr lattice clock at 1 × 10−16 fractional uncertainty by remote optical evaluation with a Ca clock,” Science 319, 1805–1808 (2008).
[CrossRef] [PubMed]

Boyd, M. M.

A. D. Ludlow, T. Zelevinsky, G. K. Campbell, S. Blatt, M. M. Boyd, M. H. G. de Miranda, M. J. Martin, J. W. Thomsen, S. M. Foreman, J. Ye, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, Y. Le Coq, Z. W. Barber, N. Poli, N. D. Lemke, K. M. Beck, and C. W. Oates, “Sr lattice clock at 1 × 10−16 fractional uncertainty by remote optical evaluation with a Ca clock,” Science 319, 1805–1808 (2008).
[CrossRef] [PubMed]

Campbell, G. K.

A. D. Ludlow, T. Zelevinsky, G. K. Campbell, S. Blatt, M. M. Boyd, M. H. G. de Miranda, M. J. Martin, J. W. Thomsen, S. M. Foreman, J. Ye, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, Y. Le Coq, Z. W. Barber, N. Poli, N. D. Lemke, K. M. Beck, and C. W. Oates, “Sr lattice clock at 1 × 10−16 fractional uncertainty by remote optical evaluation with a Ca clock,” Science 319, 1805–1808 (2008).
[CrossRef] [PubMed]

Chanteau, B.

Chardonnet, C.

Chou, C. W.

C. W. Chou, D. B. Hume, J. C. J. Koelemeiji, D. J. Wineland, and T. Rosenband, “Frequency comparison of two high-accuracy Al+ optical clocks,” Phys. Rev. Lett. 104, 070802 (2010).
[CrossRef] [PubMed]

de Miranda, M. H. G.

A. D. Ludlow, T. Zelevinsky, G. K. Campbell, S. Blatt, M. M. Boyd, M. H. G. de Miranda, M. J. Martin, J. W. Thomsen, S. M. Foreman, J. Ye, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, Y. Le Coq, Z. W. Barber, N. Poli, N. D. Lemke, K. M. Beck, and C. W. Oates, “Sr lattice clock at 1 × 10−16 fractional uncertainty by remote optical evaluation with a Ca clock,” Science 319, 1805–1808 (2008).
[CrossRef] [PubMed]

Diddams, S. A.

A. D. Ludlow, T. Zelevinsky, G. K. Campbell, S. Blatt, M. M. Boyd, M. H. G. de Miranda, M. J. Martin, J. W. Thomsen, S. M. Foreman, J. Ye, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, Y. Le Coq, Z. W. Barber, N. Poli, N. D. Lemke, K. M. Beck, and C. W. Oates, “Sr lattice clock at 1 × 10−16 fractional uncertainty by remote optical evaluation with a Ca clock,” Science 319, 1805–1808 (2008).
[CrossRef] [PubMed]

Felicitas Arias, E.

G. Panfilo and E. Felicitas Arias, “Algorithms for international atomic time,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57(1), 140–150 (2010).
[CrossRef]

Foreman, S. M.

A. D. Ludlow, T. Zelevinsky, G. K. Campbell, S. Blatt, M. M. Boyd, M. H. G. de Miranda, M. J. Martin, J. W. Thomsen, S. M. Foreman, J. Ye, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, Y. Le Coq, Z. W. Barber, N. Poli, N. D. Lemke, K. M. Beck, and C. W. Oates, “Sr lattice clock at 1 × 10−16 fractional uncertainty by remote optical evaluation with a Ca clock,” Science 319, 1805–1808 (2008).
[CrossRef] [PubMed]

S. M. Foreman, K. W. Holman, D. D. Hudson, D. J. Jones, and J. Ye, “Remote transfer of ultrastable frequency references via fiber networks,” Rev. Sci. Instrum. 78, 021101 (2007).
[CrossRef] [PubMed]

Fortier, T. M.

A. D. Ludlow, T. Zelevinsky, G. K. Campbell, S. Blatt, M. M. Boyd, M. H. G. de Miranda, M. J. Martin, J. W. Thomsen, S. M. Foreman, J. Ye, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, Y. Le Coq, Z. W. Barber, N. Poli, N. D. Lemke, K. M. Beck, and C. W. Oates, “Sr lattice clock at 1 × 10−16 fractional uncertainty by remote optical evaluation with a Ca clock,” Science 319, 1805–1808 (2008).
[CrossRef] [PubMed]

Fox, R. W.

Y. Y. Jiang, A. D. Ludlow, N. D. Lemke, R. W. Fox, J. A. Sherman, L. S. Ma, and C. W. Oates, “Making optical atomic clocks more stable with 10−16-level laser stabilization,” Nat. Photonics 5, 158–161 (2011).
[CrossRef]

Friebe, J.

Fujieda, M.

A. Yamaguchi, M. Fujieda, M. Kumagai, H. Hachisu, S. Nagano, Y. Li, T. Ido, T. Takano, M. Takamoto, and H. Katori, “Direct comparison of distant optical lattice clocks at the 10−16 uncertainty,” Appl. Phys. Express 4, 082203 (2011).
[CrossRef]

M. Fujieda, M. Kumagai, and S. Nagano, “Coherent microwave transfer over a 204-km telecom fiber link by a cascaded system,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57(1), 168–174 (2010).
[CrossRef]

M. Kumagai, M. Fujieda, S. Nagano, and M. Hosokawa, “Stable radio frequency transfer in 114 km urban optical fiber link,” Opt. Lett. 34(19), 2949–2951 (2009).
[CrossRef] [PubMed]

Grosche, G.

Haboucha, A.

Hachisu, H.

A. Yamaguchi, M. Fujieda, M. Kumagai, H. Hachisu, S. Nagano, Y. Li, T. Ido, T. Takano, M. Takamoto, and H. Katori, “Direct comparison of distant optical lattice clocks at the 10−16 uncertainty,” Appl. Phys. Express 4, 082203 (2011).
[CrossRef]

Hall, J. L.

Higashi, R.

M. Takamoto, F. L. Hong, R. Higashi, and H. Katori, “An optical lattice clock,” Nature 435, 321–324 (2005).
[CrossRef] [PubMed]

Holman, K. W.

S. M. Foreman, K. W. Holman, D. D. Hudson, D. J. Jones, and J. Ye, “Remote transfer of ultrastable frequency references via fiber networks,” Rev. Sci. Instrum. 78, 021101 (2007).
[CrossRef] [PubMed]

Holzwarth, R.

O. Terra, G. Grosche, K. Predehl, R. Holzwarth, T. Legero, U. Sterr, B. Lipphardt, and H. Schnatz, “Phase-coherent comparison of two optical frequency standards over 146 km using a telecommunication fiber link,” Appl. Phys. B 97, 541–551 (2009).
[CrossRef]

Hong, F. L.

M. Takamoto, F. L. Hong, R. Higashi, and H. Katori, “An optical lattice clock,” Nature 435, 321–324 (2005).
[CrossRef] [PubMed]

Hong, F.-L.

Hosokawa, M.

M. Kumagai, M. Fujieda, S. Nagano, and M. Hosokawa, “Stable radio frequency transfer in 114 km urban optical fiber link,” Opt. Lett. 34(19), 2949–2951 (2009).
[CrossRef] [PubMed]

S. Nagano, H. Ito, Y. Li, K. Matsubara, and M. Hosokawa, “Stable operation of femtosecond laser frequency combs with uncertainty at the 10−17 level toward optical frequency standards,” Jpn. J. Appl. Phys. 48, 042301 (2009).
[CrossRef]

Hudson, D. D.

S. M. Foreman, K. W. Holman, D. D. Hudson, D. J. Jones, and J. Ye, “Remote transfer of ultrastable frequency references via fiber networks,” Rev. Sci. Instrum. 78, 021101 (2007).
[CrossRef] [PubMed]

Hume, D. B.

C. W. Chou, D. B. Hume, J. C. J. Koelemeiji, D. J. Wineland, and T. Rosenband, “Frequency comparison of two high-accuracy Al+ optical clocks,” Phys. Rev. Lett. 104, 070802 (2010).
[CrossRef] [PubMed]

Ido, T.

A. Yamaguchi, M. Fujieda, M. Kumagai, H. Hachisu, S. Nagano, Y. Li, T. Ido, T. Takano, M. Takamoto, and H. Katori, “Direct comparison of distant optical lattice clocks at the 10−16 uncertainty,” Appl. Phys. Express 4, 082203 (2011).
[CrossRef]

Ito, H.

S. Nagano, H. Ito, Y. Li, K. Matsubara, and M. Hosokawa, “Stable operation of femtosecond laser frequency combs with uncertainty at the 10−17 level toward optical frequency standards,” Jpn. J. Appl. Phys. 48, 042301 (2009).
[CrossRef]

Jiang, H.

Jiang, Y. Y.

Y. Y. Jiang, A. D. Ludlow, N. D. Lemke, R. W. Fox, J. A. Sherman, L. S. Ma, and C. W. Oates, “Making optical atomic clocks more stable with 10−16-level laser stabilization,” Nat. Photonics 5, 158–161 (2011).
[CrossRef]

Jones, D. J.

S. M. Foreman, K. W. Holman, D. D. Hudson, D. J. Jones, and J. Ye, “Remote transfer of ultrastable frequency references via fiber networks,” Rev. Sci. Instrum. 78, 021101 (2007).
[CrossRef] [PubMed]

Jungner, P.

Katori, H.

A. Yamaguchi, M. Fujieda, M. Kumagai, H. Hachisu, S. Nagano, Y. Li, T. Ido, T. Takano, M. Takamoto, and H. Katori, “Direct comparison of distant optical lattice clocks at the 10−16 uncertainty,” Appl. Phys. Express 4, 082203 (2011).
[CrossRef]

M. Takamoto, T. Takano, and H. Katori, “Frequency comparison of optical lattice clocks beyond the Dick limit,” Nat. Photonics 5, 288–292 (2011).
[CrossRef]

T. Akatsuka, M. Takamoto, and H. Katori, “Optical lattice clocks with non-interacting boson and fermions,” Nat. Phys. 4, 954–959 (2008).
[CrossRef]

M. Takamoto, F. L. Hong, R. Higashi, and H. Katori, “An optical lattice clock,” Nature 435, 321–324 (2005).
[CrossRef] [PubMed]

Kefelian, F.

Koelemeiji, J. C. J.

C. W. Chou, D. B. Hume, J. C. J. Koelemeiji, D. J. Wineland, and T. Rosenband, “Frequency comparison of two high-accuracy Al+ optical clocks,” Phys. Rev. Lett. 104, 070802 (2010).
[CrossRef] [PubMed]

Kumagai, M.

A. Yamaguchi, M. Fujieda, M. Kumagai, H. Hachisu, S. Nagano, Y. Li, T. Ido, T. Takano, M. Takamoto, and H. Katori, “Direct comparison of distant optical lattice clocks at the 10−16 uncertainty,” Appl. Phys. Express 4, 082203 (2011).
[CrossRef]

M. Fujieda, M. Kumagai, and S. Nagano, “Coherent microwave transfer over a 204-km telecom fiber link by a cascaded system,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57(1), 168–174 (2010).
[CrossRef]

M. Kumagai, M. Fujieda, S. Nagano, and M. Hosokawa, “Stable radio frequency transfer in 114 km urban optical fiber link,” Opt. Lett. 34(19), 2949–2951 (2009).
[CrossRef] [PubMed]

Le Coq, Y.

A. D. Ludlow, T. Zelevinsky, G. K. Campbell, S. Blatt, M. M. Boyd, M. H. G. de Miranda, M. J. Martin, J. W. Thomsen, S. M. Foreman, J. Ye, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, Y. Le Coq, Z. W. Barber, N. Poli, N. D. Lemke, K. M. Beck, and C. W. Oates, “Sr lattice clock at 1 × 10−16 fractional uncertainty by remote optical evaluation with a Ca clock,” Science 319, 1805–1808 (2008).
[CrossRef] [PubMed]

Legero, T.

A. Pape, O. Terra, J. Friebe, M. Riedmann, T. Wubbena, E. M. Rasel, K. Predehl, T. Legero, B. Lipphardt, H. Schnatz, and G. Grosche, “Long-distance remote comparison of ultrastable optical frequencies with 10−15 instability in fractions of a second,” Opt. Express 18(20), 21477–21483 (2010).
[CrossRef] [PubMed]

O. Terra, G. Grosche, K. Predehl, R. Holzwarth, T. Legero, U. Sterr, B. Lipphardt, and H. Schnatz, “Phase-coherent comparison of two optical frequency standards over 146 km using a telecommunication fiber link,” Appl. Phys. B 97, 541–551 (2009).
[CrossRef]

Lemke, N. D.

Y. Y. Jiang, A. D. Ludlow, N. D. Lemke, R. W. Fox, J. A. Sherman, L. S. Ma, and C. W. Oates, “Making optical atomic clocks more stable with 10−16-level laser stabilization,” Nat. Photonics 5, 158–161 (2011).
[CrossRef]

A. D. Ludlow, T. Zelevinsky, G. K. Campbell, S. Blatt, M. M. Boyd, M. H. G. de Miranda, M. J. Martin, J. W. Thomsen, S. M. Foreman, J. Ye, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, Y. Le Coq, Z. W. Barber, N. Poli, N. D. Lemke, K. M. Beck, and C. W. Oates, “Sr lattice clock at 1 × 10−16 fractional uncertainty by remote optical evaluation with a Ca clock,” Science 319, 1805–1808 (2008).
[CrossRef] [PubMed]

Lesage, P.

P. Lesage, “Characterization of frequency stability: bias due to the juxtapositon of time-interval measurements,” IEEE Trans. Instrum. Meas. 32(1), 204–207 (1983).
[CrossRef]

Li, Y.

A. Yamaguchi, M. Fujieda, M. Kumagai, H. Hachisu, S. Nagano, Y. Li, T. Ido, T. Takano, M. Takamoto, and H. Katori, “Direct comparison of distant optical lattice clocks at the 10−16 uncertainty,” Appl. Phys. Express 4, 082203 (2011).
[CrossRef]

S. Nagano, H. Ito, Y. Li, K. Matsubara, and M. Hosokawa, “Stable operation of femtosecond laser frequency combs with uncertainty at the 10−17 level toward optical frequency standards,” Jpn. J. Appl. Phys. 48, 042301 (2009).
[CrossRef]

Lipphardt, B.

A. Pape, O. Terra, J. Friebe, M. Riedmann, T. Wubbena, E. M. Rasel, K. Predehl, T. Legero, B. Lipphardt, H. Schnatz, and G. Grosche, “Long-distance remote comparison of ultrastable optical frequencies with 10−15 instability in fractions of a second,” Opt. Express 18(20), 21477–21483 (2010).
[CrossRef] [PubMed]

O. Terra, G. Grosche, K. Predehl, R. Holzwarth, T. Legero, U. Sterr, B. Lipphardt, and H. Schnatz, “Phase-coherent comparison of two optical frequency standards over 146 km using a telecommunication fiber link,” Appl. Phys. B 97, 541–551 (2009).
[CrossRef]

Lopez, O.

Ludlow, A. D.

Y. Y. Jiang, A. D. Ludlow, N. D. Lemke, R. W. Fox, J. A. Sherman, L. S. Ma, and C. W. Oates, “Making optical atomic clocks more stable with 10−16-level laser stabilization,” Nat. Photonics 5, 158–161 (2011).
[CrossRef]

A. D. Ludlow, T. Zelevinsky, G. K. Campbell, S. Blatt, M. M. Boyd, M. H. G. de Miranda, M. J. Martin, J. W. Thomsen, S. M. Foreman, J. Ye, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, Y. Le Coq, Z. W. Barber, N. Poli, N. D. Lemke, K. M. Beck, and C. W. Oates, “Sr lattice clock at 1 × 10−16 fractional uncertainty by remote optical evaluation with a Ca clock,” Science 319, 1805–1808 (2008).
[CrossRef] [PubMed]

Ma, L. S.

Y. Y. Jiang, A. D. Ludlow, N. D. Lemke, R. W. Fox, J. A. Sherman, L. S. Ma, and C. W. Oates, “Making optical atomic clocks more stable with 10−16-level laser stabilization,” Nat. Photonics 5, 158–161 (2011).
[CrossRef]

L. S. Ma, P. Jungner, J. Ye, and J. L. Hall, “Delivering the same optical frequency at two places: accurate cancellation of phase noise introduced by an optical fiber or other time-varying path,” Opt. Lett. 19(21), 1777–1779 (1994).
[CrossRef] [PubMed]

Martin, M. J.

A. D. Ludlow, T. Zelevinsky, G. K. Campbell, S. Blatt, M. M. Boyd, M. H. G. de Miranda, M. J. Martin, J. W. Thomsen, S. M. Foreman, J. Ye, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, Y. Le Coq, Z. W. Barber, N. Poli, N. D. Lemke, K. M. Beck, and C. W. Oates, “Sr lattice clock at 1 × 10−16 fractional uncertainty by remote optical evaluation with a Ca clock,” Science 319, 1805–1808 (2008).
[CrossRef] [PubMed]

Matsubara, K.

S. Nagano, H. Ito, Y. Li, K. Matsubara, and M. Hosokawa, “Stable operation of femtosecond laser frequency combs with uncertainty at the 10−17 level toward optical frequency standards,” Jpn. J. Appl. Phys. 48, 042301 (2009).
[CrossRef]

Musha, M.

Nagano, S.

A. Yamaguchi, M. Fujieda, M. Kumagai, H. Hachisu, S. Nagano, Y. Li, T. Ido, T. Takano, M. Takamoto, and H. Katori, “Direct comparison of distant optical lattice clocks at the 10−16 uncertainty,” Appl. Phys. Express 4, 082203 (2011).
[CrossRef]

M. Fujieda, M. Kumagai, and S. Nagano, “Coherent microwave transfer over a 204-km telecom fiber link by a cascaded system,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57(1), 168–174 (2010).
[CrossRef]

M. Kumagai, M. Fujieda, S. Nagano, and M. Hosokawa, “Stable radio frequency transfer in 114 km urban optical fiber link,” Opt. Lett. 34(19), 2949–2951 (2009).
[CrossRef] [PubMed]

S. Nagano, H. Ito, Y. Li, K. Matsubara, and M. Hosokawa, “Stable operation of femtosecond laser frequency combs with uncertainty at the 10−17 level toward optical frequency standards,” Jpn. J. Appl. Phys. 48, 042301 (2009).
[CrossRef]

Nakagawa, K.

Newbury, N. R.

Oates, C. W.

Y. Y. Jiang, A. D. Ludlow, N. D. Lemke, R. W. Fox, J. A. Sherman, L. S. Ma, and C. W. Oates, “Making optical atomic clocks more stable with 10−16-level laser stabilization,” Nat. Photonics 5, 158–161 (2011).
[CrossRef]

A. D. Ludlow, T. Zelevinsky, G. K. Campbell, S. Blatt, M. M. Boyd, M. H. G. de Miranda, M. J. Martin, J. W. Thomsen, S. M. Foreman, J. Ye, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, Y. Le Coq, Z. W. Barber, N. Poli, N. D. Lemke, K. M. Beck, and C. W. Oates, “Sr lattice clock at 1 × 10−16 fractional uncertainty by remote optical evaluation with a Ca clock,” Science 319, 1805–1808 (2008).
[CrossRef] [PubMed]

Panfilo, G.

G. Panfilo and E. Felicitas Arias, “Algorithms for international atomic time,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57(1), 140–150 (2010).
[CrossRef]

Pape, A.

Poli, N.

A. D. Ludlow, T. Zelevinsky, G. K. Campbell, S. Blatt, M. M. Boyd, M. H. G. de Miranda, M. J. Martin, J. W. Thomsen, S. M. Foreman, J. Ye, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, Y. Le Coq, Z. W. Barber, N. Poli, N. D. Lemke, K. M. Beck, and C. W. Oates, “Sr lattice clock at 1 × 10−16 fractional uncertainty by remote optical evaluation with a Ca clock,” Science 319, 1805–1808 (2008).
[CrossRef] [PubMed]

Predehl, K.

A. Pape, O. Terra, J. Friebe, M. Riedmann, T. Wubbena, E. M. Rasel, K. Predehl, T. Legero, B. Lipphardt, H. Schnatz, and G. Grosche, “Long-distance remote comparison of ultrastable optical frequencies with 10−15 instability in fractions of a second,” Opt. Express 18(20), 21477–21483 (2010).
[CrossRef] [PubMed]

O. Terra, G. Grosche, K. Predehl, R. Holzwarth, T. Legero, U. Sterr, B. Lipphardt, and H. Schnatz, “Phase-coherent comparison of two optical frequency standards over 146 km using a telecommunication fiber link,” Appl. Phys. B 97, 541–551 (2009).
[CrossRef]

Rasel, E. M.

Riedmann, M.

Roncin, V.

Rosenband, T.

C. W. Chou, D. B. Hume, J. C. J. Koelemeiji, D. J. Wineland, and T. Rosenband, “Frequency comparison of two high-accuracy Al+ optical clocks,” Phys. Rev. Lett. 104, 070802 (2010).
[CrossRef] [PubMed]

Santarelli, G.

Schnatz, H.

Sherman, J. A.

Y. Y. Jiang, A. D. Ludlow, N. D. Lemke, R. W. Fox, J. A. Sherman, L. S. Ma, and C. W. Oates, “Making optical atomic clocks more stable with 10−16-level laser stabilization,” Nat. Photonics 5, 158–161 (2011).
[CrossRef]

Stalnaker, J. E.

A. D. Ludlow, T. Zelevinsky, G. K. Campbell, S. Blatt, M. M. Boyd, M. H. G. de Miranda, M. J. Martin, J. W. Thomsen, S. M. Foreman, J. Ye, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, Y. Le Coq, Z. W. Barber, N. Poli, N. D. Lemke, K. M. Beck, and C. W. Oates, “Sr lattice clock at 1 × 10−16 fractional uncertainty by remote optical evaluation with a Ca clock,” Science 319, 1805–1808 (2008).
[CrossRef] [PubMed]

Sterr, U.

O. Terra, G. Grosche, K. Predehl, R. Holzwarth, T. Legero, U. Sterr, B. Lipphardt, and H. Schnatz, “Phase-coherent comparison of two optical frequency standards over 146 km using a telecommunication fiber link,” Appl. Phys. B 97, 541–551 (2009).
[CrossRef]

Swann, W. C.

Takamoto, M.

A. Yamaguchi, M. Fujieda, M. Kumagai, H. Hachisu, S. Nagano, Y. Li, T. Ido, T. Takano, M. Takamoto, and H. Katori, “Direct comparison of distant optical lattice clocks at the 10−16 uncertainty,” Appl. Phys. Express 4, 082203 (2011).
[CrossRef]

M. Takamoto, T. Takano, and H. Katori, “Frequency comparison of optical lattice clocks beyond the Dick limit,” Nat. Photonics 5, 288–292 (2011).
[CrossRef]

T. Akatsuka, M. Takamoto, and H. Katori, “Optical lattice clocks with non-interacting boson and fermions,” Nat. Phys. 4, 954–959 (2008).
[CrossRef]

M. Takamoto, F. L. Hong, R. Higashi, and H. Katori, “An optical lattice clock,” Nature 435, 321–324 (2005).
[CrossRef] [PubMed]

Takano, T.

M. Takamoto, T. Takano, and H. Katori, “Frequency comparison of optical lattice clocks beyond the Dick limit,” Nat. Photonics 5, 288–292 (2011).
[CrossRef]

A. Yamaguchi, M. Fujieda, M. Kumagai, H. Hachisu, S. Nagano, Y. Li, T. Ido, T. Takano, M. Takamoto, and H. Katori, “Direct comparison of distant optical lattice clocks at the 10−16 uncertainty,” Appl. Phys. Express 4, 082203 (2011).
[CrossRef]

Terra, O.

Thomsen, J. W.

A. D. Ludlow, T. Zelevinsky, G. K. Campbell, S. Blatt, M. M. Boyd, M. H. G. de Miranda, M. J. Martin, J. W. Thomsen, S. M. Foreman, J. Ye, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, Y. Le Coq, Z. W. Barber, N. Poli, N. D. Lemke, K. M. Beck, and C. W. Oates, “Sr lattice clock at 1 × 10−16 fractional uncertainty by remote optical evaluation with a Ca clock,” Science 319, 1805–1808 (2008).
[CrossRef] [PubMed]

Ueda, K.

Williams, P. A.

Wineland, D. J.

C. W. Chou, D. B. Hume, J. C. J. Koelemeiji, D. J. Wineland, and T. Rosenband, “Frequency comparison of two high-accuracy Al+ optical clocks,” Phys. Rev. Lett. 104, 070802 (2010).
[CrossRef] [PubMed]

Wubbena, T.

Yamaguchi, A.

A. Yamaguchi, M. Fujieda, M. Kumagai, H. Hachisu, S. Nagano, Y. Li, T. Ido, T. Takano, M. Takamoto, and H. Katori, “Direct comparison of distant optical lattice clocks at the 10−16 uncertainty,” Appl. Phys. Express 4, 082203 (2011).
[CrossRef]

Ye, J.

A. D. Ludlow, T. Zelevinsky, G. K. Campbell, S. Blatt, M. M. Boyd, M. H. G. de Miranda, M. J. Martin, J. W. Thomsen, S. M. Foreman, J. Ye, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, Y. Le Coq, Z. W. Barber, N. Poli, N. D. Lemke, K. M. Beck, and C. W. Oates, “Sr lattice clock at 1 × 10−16 fractional uncertainty by remote optical evaluation with a Ca clock,” Science 319, 1805–1808 (2008).
[CrossRef] [PubMed]

S. M. Foreman, K. W. Holman, D. D. Hudson, D. J. Jones, and J. Ye, “Remote transfer of ultrastable frequency references via fiber networks,” Rev. Sci. Instrum. 78, 021101 (2007).
[CrossRef] [PubMed]

L. S. Ma, P. Jungner, J. Ye, and J. L. Hall, “Delivering the same optical frequency at two places: accurate cancellation of phase noise introduced by an optical fiber or other time-varying path,” Opt. Lett. 19(21), 1777–1779 (1994).
[CrossRef] [PubMed]

Zelevinsky, T.

A. D. Ludlow, T. Zelevinsky, G. K. Campbell, S. Blatt, M. M. Boyd, M. H. G. de Miranda, M. J. Martin, J. W. Thomsen, S. M. Foreman, J. Ye, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, Y. Le Coq, Z. W. Barber, N. Poli, N. D. Lemke, K. M. Beck, and C. W. Oates, “Sr lattice clock at 1 × 10−16 fractional uncertainty by remote optical evaluation with a Ca clock,” Science 319, 1805–1808 (2008).
[CrossRef] [PubMed]

Appl. Phys. B

O. Terra, G. Grosche, K. Predehl, R. Holzwarth, T. Legero, U. Sterr, B. Lipphardt, and H. Schnatz, “Phase-coherent comparison of two optical frequency standards over 146 km using a telecommunication fiber link,” Appl. Phys. B 97, 541–551 (2009).
[CrossRef]

Appl. Phys. Express

A. Yamaguchi, M. Fujieda, M. Kumagai, H. Hachisu, S. Nagano, Y. Li, T. Ido, T. Takano, M. Takamoto, and H. Katori, “Direct comparison of distant optical lattice clocks at the 10−16 uncertainty,” Appl. Phys. Express 4, 082203 (2011).
[CrossRef]

IEEE Trans. Instrum. Meas.

P. Lesage, “Characterization of frequency stability: bias due to the juxtapositon of time-interval measurements,” IEEE Trans. Instrum. Meas. 32(1), 204–207 (1983).
[CrossRef]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control

M. Fujieda, M. Kumagai, and S. Nagano, “Coherent microwave transfer over a 204-km telecom fiber link by a cascaded system,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57(1), 168–174 (2010).
[CrossRef]

G. Panfilo and E. Felicitas Arias, “Algorithms for international atomic time,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57(1), 140–150 (2010).
[CrossRef]

J. Opt. Soc. Am. B

Jpn. J. Appl. Phys.

S. Nagano, H. Ito, Y. Li, K. Matsubara, and M. Hosokawa, “Stable operation of femtosecond laser frequency combs with uncertainty at the 10−17 level toward optical frequency standards,” Jpn. J. Appl. Phys. 48, 042301 (2009).
[CrossRef]

Nat. Photonics

Y. Y. Jiang, A. D. Ludlow, N. D. Lemke, R. W. Fox, J. A. Sherman, L. S. Ma, and C. W. Oates, “Making optical atomic clocks more stable with 10−16-level laser stabilization,” Nat. Photonics 5, 158–161 (2011).
[CrossRef]

M. Takamoto, T. Takano, and H. Katori, “Frequency comparison of optical lattice clocks beyond the Dick limit,” Nat. Photonics 5, 288–292 (2011).
[CrossRef]

Nat. Phys.

T. Akatsuka, M. Takamoto, and H. Katori, “Optical lattice clocks with non-interacting boson and fermions,” Nat. Phys. 4, 954–959 (2008).
[CrossRef]

Nature

M. Takamoto, F. L. Hong, R. Higashi, and H. Katori, “An optical lattice clock,” Nature 435, 321–324 (2005).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

C. W. Chou, D. B. Hume, J. C. J. Koelemeiji, D. J. Wineland, and T. Rosenband, “Frequency comparison of two high-accuracy Al+ optical clocks,” Phys. Rev. Lett. 104, 070802 (2010).
[CrossRef] [PubMed]

Rev. Sci. Instrum.

S. M. Foreman, K. W. Holman, D. D. Hudson, D. J. Jones, and J. Ye, “Remote transfer of ultrastable frequency references via fiber networks,” Rev. Sci. Instrum. 78, 021101 (2007).
[CrossRef] [PubMed]

Science

A. D. Ludlow, T. Zelevinsky, G. K. Campbell, S. Blatt, M. M. Boyd, M. H. G. de Miranda, M. J. Martin, J. W. Thomsen, S. M. Foreman, J. Ye, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, Y. Le Coq, Z. W. Barber, N. Poli, N. D. Lemke, K. M. Beck, and C. W. Oates, “Sr lattice clock at 1 × 10−16 fractional uncertainty by remote optical evaluation with a Ca clock,” Science 319, 1805–1808 (2008).
[CrossRef] [PubMed]

Other

Japan Gigabit Network 2 plus [Online]. Available: http://www.jgn.nict.go.jp/jgn2plus_archive/english/index.html .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Overall system of the all-optical link. The clock signal at the local site is frequency-converted into the 1.5 μm light and transferred to the remote site via an optical fiber link. The optical carrier transfer system compensates the phase noise so that the clock signal is faithfully transferred to the remote site. The transferred light is converted into a visible wavelength to be compared with another clock signal at the remote site. ECDL: external cavity diode laser, x2: PPLN frequency doubler.

Fig. 2
Fig. 2

Schematic diagram of the optical carrier transfer system. The system consists of local and remote parts. To evaluate the system performance, both parts are initially located at the same place. The beat signal between the output of the remote site and auxiliary reference is used for the evaluation. OC: optical circulator, AOM: acousto-optic modulator, VCO: voltage controlled oscillator, SG: signal generator, DDS: direct digital synthesizer, PD: photo detector, PLO: phase locked oscillator, EDFA: erbium doped fiber amplifier.

Fig. 3
Fig. 3

Schematic diagram of the optical fiber link in Tokyo (left) and the optical losses (right).

Fig. 4
Fig. 4

Phase noises of the out-of-loop beat in the 90-km unstabilized (red) and stabilized (blue) links. The difference of 56 dB at 1 Hz agrees with the theoretical limit of phase noise suppression. Thus, the optical carrier system works properly.

Fig. 5
Fig. 5

Phase noise of the 60-km unstabilized link between NICT and UT. The data were obtained at 1:00 and 15:00. The difference between the daytime and nighttime results is one or two orders of magnitude.

Fig. 6
Fig. 6

Frequency stabilities of the transferred signal in the unstabilized (red) and stabilized (blue & green) links. The curves in red and green colors were measured by a Π-type frequency counter. The blue curves were measured by a Λ-type frequency counter. The frequency stabilities shown in the dashed and solid curves were measured during the daytime (15:00–17:00) and around midnight (1:00–3:00), respectively.

Fig. 7
Fig. 7

Schematic diagram of the polarization control system. The polarization variation is detected by the beat intensity between the SHG light and the relevant Ti:S comb component. The rotation is compensated at the polarization tracker (pol. tracker). PPLN: periodically poled lithium niobate, div: divider, BPF: band-pass filter, mw: microwave.

Fig. 8
Fig. 8

Up: Intensity variation of the SHG light without the polarization control system. Down: Intensity variation of the beat signal with the polarization control system. Both results were obtained in the 90-km link.

Fig. 9
Fig. 9

Frequency instabilities of direct clock comparison and system as measured by a Λ-type counter. The instability of optical clock comparison (f) is not limited by the overall instability (d) of the all-optical link.

Metrics