Abstract

This study demonstrates a non-degenerate pump-probe spectroscopy with a white light beam probe based on a regenerative, amplified, mode-locked, Ti:sapphire laser. This white light beam probe is produced by supercontinuum generation of sapphire crystal after ultra-short pulse excitation. To implement the pump-probe experimental operation, the ablation dynamics with and without fresh spot measurements in fused silica samples are demonstrated. Combining the time-resolved differential reflection profiles in the white light range and X-ray photoelectron spectroscopy spectra of fused silica, the following ablation dynamics processes can be observed: Without fresh spot measurements, once carriers are excited, first, the three absorption bands of the intrinsic defect sites are observed within 750 fs. Then, a fast recovery is observed. This recovery comes from defect-trapped carriers excited to conduction bands through hot-carrier-phonon interactions. In the final step, a rapidly rising signal is observed after 800 fs. This signal rise comes from the creation of free-electron plasma, the density of which increases with increasing excitation energy accumulation. With fresh spot measurements, time delay of carrier dynamics among the three bands can be identified clearly within 750 fs. The intrinsic defect sites of fused silica play the key role during the ultrafast laser ablation process.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. M. Ozkan, A. P. Malshe, T. A. Railkar, W. D. Brownd, M. D. Shirk, and P. A. Molian, “Femtosecond laser-induced periodic structure writing on diamond crystals and microclusters,” Appl. Phys. Lett. 75, 3716 (1999).
    [CrossRef]
  2. A. Y. Vorobyev and C. Guo, “Colorizing metals with femtosecond laser pulses,” Appl. Phys. Lett. 92(4), 041914 (2008).
    [CrossRef]
  3. J.-M. Shieh, Z.-H. Chen, B.-T. Dai, Y.-C. Wang, A. Zaitsev, and C.-L. Pan, “Near-infrared femtosecond laser-induced crystallization of amorphous silicon,” Appl. Phys. Lett. 85(7), 1232 (2004).
    [CrossRef]
  4. T. Burmester, M. Meier, H. Haferkamp, S. Barcikowski, J. Bunte, and A. Ostendorf, “Femtosecond laser cleaning of metallic cultural heritage and antique artworks,” Lasers Conser. Artworks 100, 61–69 (2005).
    [CrossRef]
  5. A. Wagner, R. A. Haight, and P. Longo, “MARS2: An advanced femtosecond laser mask repair tool,” Proceedings of 22nd Annual BACUS Symposium on Photomask Technology, 4889, 457 (2002).
  6. M. Li, S. Menon, J. P. Nibarger, and G. N. Gibson, “Ultrafast electron dynamics in femtosecond optical breakdown of dielectrics,” Phys. Rev. Lett. 82(11), 2394–2397 (1999).
    [CrossRef]
  7. I. H. Chowdhury, A. Q. Wu, X. Xu, and A. M. Weiner, “Ultra-fast laser absorption and ablation dynamics in wide-band-gap dielectrics,” Appl. Phys., A Mater. Sci. Process. 81(8), 1627–1632 (2005).
    [CrossRef]
  8. I. H. Chowdhury, X. Xu, and A. M. Weiner, “Ultrafast double-pulse ablation of fused silica,” Appl. Phys. Lett. 86(15), 151110 (2005).
    [CrossRef]
  9. E. Lioudakis, A. Othonos, and A. G. Nassiopoulou, “Probing carrier dynamics in implanted and annealed polycrystalline silicon thin films using white light,” Appl. Phys. Lett. 88(18), 181107 (2006).
    [CrossRef]
  10. H. Merdji, S. Guizard, P. Martin, G. Petite, F. Quéré, B. Carré, J. F. Hergott, L. Le Déroff, P. Salières, O. Gobert, P. Meynadier, and M. Perdrix, “Ultrafast electron relaxation measurements on α-SiO2 using high-order harmonics generation,” Laser Part. Beams 18(3), 489–494 (2000).
    [CrossRef]
  11. A. Mermillod-Blondin, J. Bonse, A. Rosenfeld, I. V. Hertel, Yu. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, and R. Stoian, “Dynamics of femtosecond laser induced voidlike structures in fused silica,” Appl. Phys. Lett. 94(4), 041911 (2009).
    [CrossRef]
  12. D. Ashkenasi, M. Lorenz, R. Stoian, and A. Rosenfeld, “Surface damage threshold and structuring of dielectrics using femtosecond laser pulses: the role of incubation,” Appl. Surf. Sci. 150(1-4), 101–106 (1999).
    [CrossRef]
  13. J. Schille, R. Eberta, U. Loeschnera, P. Scullyb, N. Goddard, and H. Exnera, “High repetition rate femto second laser processing of metals,” Proc. SPIE 7589, 758915, 758915–11 (2010).
    [CrossRef]
  14. S. Martin, A. Hertwig, M. Lenzner, J. Krüger, and W. Kautek, “Spot-size dependence of the ablation threshold in dielectrics for femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 77(7), 883–884 (2003).
    [CrossRef]
  15. A. K. Dharmadhikari, F. A. Rajgara, N. C. S. Reddy, A. S. Sandhu, and D. Mathur, “Highly efficient white light generation from barium fluoride,” Opt. Express 12(4), 695–700 (2004).
    [CrossRef] [PubMed]
  16. W. Liu, S. Petita, A. Beckera, N. Aközbekb, C. M. Bowdenb, and S. L. China, “Intensity clamping of a femtosecond laser pulse in condensed matter,” Opt. Commun. 202(1-3), 189–197 (2002).
    [CrossRef]
  17. A. Zoubir, C. Rivero, R. Grodsky, K. Richardson, M. Richardson, T. Cardinal, and M. Couzi, “Laser-induced defects in fused silica by femtosecond IR irradiationPhys. Rev. B 73(22), 224117 (2006).
    [CrossRef]
  18. H.-J. Fitting, A. N. Trukhin, T. Barfels, B. Schmidt, and A. V. Czarnowski, “Radiation induced defects in SiO2,” Radiation Effects Defects Solids. 157(6), 575–581 (2002).
    [CrossRef]
  19. S. Munekuni, T. Yamanaka, Y. Shimogaichi, R. Tohmon, Y. Ohki, K. Nagasawa, and Y. Hama, “Various types of nonbridging oxygen hole center in high-purity silica glass,” J. Appl. Phys. 68(3), 1212–1217 (1990).
    [CrossRef]
  20. Z. Vardeny and J. Tauc, “Hot-carrier thermalization in amorphous silicon,” Phys. Rev. Lett. 46(18), 1223–1226 (1981).
    [CrossRef]
  21. Y. Kostoulas, K. B. Ucer, G. W. Wicks, and P. M. Fauchet, “Femtosecond carrier dynamics in low‐temperature grown Ga0.51In0.49P,” Appl. Phys. Lett. 67(25), 3756 (1995).
    [CrossRef]
  22. http://www.cuhk.edu.hk/ipro/pressrelease/Raymond%20Kwok-e.htm, http://www.uksaf.org/software.html
  23. F. J. Himpsel, F. R. McFeely, A. Taleb-Ibrahimi, J. A. Yarmoff, and G. Hollinger, “Microscopic structure of the SiO2/Si interface,” Phys. Rev. B Condens. Matter 38(9), 6084–6096 (1988).
    [CrossRef] [PubMed]
  24. J. Shah, Ultrafast spectroscopy of semiconductors and semiconductor nanostructures (Springer-Verlag, Berlin, 314–323, 1996).

2010

J. Schille, R. Eberta, U. Loeschnera, P. Scullyb, N. Goddard, and H. Exnera, “High repetition rate femto second laser processing of metals,” Proc. SPIE 7589, 758915, 758915–11 (2010).
[CrossRef]

2009

A. Mermillod-Blondin, J. Bonse, A. Rosenfeld, I. V. Hertel, Yu. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, and R. Stoian, “Dynamics of femtosecond laser induced voidlike structures in fused silica,” Appl. Phys. Lett. 94(4), 041911 (2009).
[CrossRef]

2008

A. Y. Vorobyev and C. Guo, “Colorizing metals with femtosecond laser pulses,” Appl. Phys. Lett. 92(4), 041914 (2008).
[CrossRef]

2006

E. Lioudakis, A. Othonos, and A. G. Nassiopoulou, “Probing carrier dynamics in implanted and annealed polycrystalline silicon thin films using white light,” Appl. Phys. Lett. 88(18), 181107 (2006).
[CrossRef]

A. Zoubir, C. Rivero, R. Grodsky, K. Richardson, M. Richardson, T. Cardinal, and M. Couzi, “Laser-induced defects in fused silica by femtosecond IR irradiationPhys. Rev. B 73(22), 224117 (2006).
[CrossRef]

2005

I. H. Chowdhury, A. Q. Wu, X. Xu, and A. M. Weiner, “Ultra-fast laser absorption and ablation dynamics in wide-band-gap dielectrics,” Appl. Phys., A Mater. Sci. Process. 81(8), 1627–1632 (2005).
[CrossRef]

I. H. Chowdhury, X. Xu, and A. M. Weiner, “Ultrafast double-pulse ablation of fused silica,” Appl. Phys. Lett. 86(15), 151110 (2005).
[CrossRef]

T. Burmester, M. Meier, H. Haferkamp, S. Barcikowski, J. Bunte, and A. Ostendorf, “Femtosecond laser cleaning of metallic cultural heritage and antique artworks,” Lasers Conser. Artworks 100, 61–69 (2005).
[CrossRef]

2004

J.-M. Shieh, Z.-H. Chen, B.-T. Dai, Y.-C. Wang, A. Zaitsev, and C.-L. Pan, “Near-infrared femtosecond laser-induced crystallization of amorphous silicon,” Appl. Phys. Lett. 85(7), 1232 (2004).
[CrossRef]

A. K. Dharmadhikari, F. A. Rajgara, N. C. S. Reddy, A. S. Sandhu, and D. Mathur, “Highly efficient white light generation from barium fluoride,” Opt. Express 12(4), 695–700 (2004).
[CrossRef] [PubMed]

2003

S. Martin, A. Hertwig, M. Lenzner, J. Krüger, and W. Kautek, “Spot-size dependence of the ablation threshold in dielectrics for femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 77(7), 883–884 (2003).
[CrossRef]

2002

H.-J. Fitting, A. N. Trukhin, T. Barfels, B. Schmidt, and A. V. Czarnowski, “Radiation induced defects in SiO2,” Radiation Effects Defects Solids. 157(6), 575–581 (2002).
[CrossRef]

W. Liu, S. Petita, A. Beckera, N. Aközbekb, C. M. Bowdenb, and S. L. China, “Intensity clamping of a femtosecond laser pulse in condensed matter,” Opt. Commun. 202(1-3), 189–197 (2002).
[CrossRef]

2000

H. Merdji, S. Guizard, P. Martin, G. Petite, F. Quéré, B. Carré, J. F. Hergott, L. Le Déroff, P. Salières, O. Gobert, P. Meynadier, and M. Perdrix, “Ultrafast electron relaxation measurements on α-SiO2 using high-order harmonics generation,” Laser Part. Beams 18(3), 489–494 (2000).
[CrossRef]

1999

M. Li, S. Menon, J. P. Nibarger, and G. N. Gibson, “Ultrafast electron dynamics in femtosecond optical breakdown of dielectrics,” Phys. Rev. Lett. 82(11), 2394–2397 (1999).
[CrossRef]

D. Ashkenasi, M. Lorenz, R. Stoian, and A. Rosenfeld, “Surface damage threshold and structuring of dielectrics using femtosecond laser pulses: the role of incubation,” Appl. Surf. Sci. 150(1-4), 101–106 (1999).
[CrossRef]

A. M. Ozkan, A. P. Malshe, T. A. Railkar, W. D. Brownd, M. D. Shirk, and P. A. Molian, “Femtosecond laser-induced periodic structure writing on diamond crystals and microclusters,” Appl. Phys. Lett. 75, 3716 (1999).
[CrossRef]

1995

Y. Kostoulas, K. B. Ucer, G. W. Wicks, and P. M. Fauchet, “Femtosecond carrier dynamics in low‐temperature grown Ga0.51In0.49P,” Appl. Phys. Lett. 67(25), 3756 (1995).
[CrossRef]

1990

S. Munekuni, T. Yamanaka, Y. Shimogaichi, R. Tohmon, Y. Ohki, K. Nagasawa, and Y. Hama, “Various types of nonbridging oxygen hole center in high-purity silica glass,” J. Appl. Phys. 68(3), 1212–1217 (1990).
[CrossRef]

1988

F. J. Himpsel, F. R. McFeely, A. Taleb-Ibrahimi, J. A. Yarmoff, and G. Hollinger, “Microscopic structure of the SiO2/Si interface,” Phys. Rev. B Condens. Matter 38(9), 6084–6096 (1988).
[CrossRef] [PubMed]

1981

Z. Vardeny and J. Tauc, “Hot-carrier thermalization in amorphous silicon,” Phys. Rev. Lett. 46(18), 1223–1226 (1981).
[CrossRef]

Aközbekb, N.

W. Liu, S. Petita, A. Beckera, N. Aközbekb, C. M. Bowdenb, and S. L. China, “Intensity clamping of a femtosecond laser pulse in condensed matter,” Opt. Commun. 202(1-3), 189–197 (2002).
[CrossRef]

Ashkenasi, D.

D. Ashkenasi, M. Lorenz, R. Stoian, and A. Rosenfeld, “Surface damage threshold and structuring of dielectrics using femtosecond laser pulses: the role of incubation,” Appl. Surf. Sci. 150(1-4), 101–106 (1999).
[CrossRef]

Audouard, E.

A. Mermillod-Blondin, J. Bonse, A. Rosenfeld, I. V. Hertel, Yu. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, and R. Stoian, “Dynamics of femtosecond laser induced voidlike structures in fused silica,” Appl. Phys. Lett. 94(4), 041911 (2009).
[CrossRef]

Barcikowski, S.

T. Burmester, M. Meier, H. Haferkamp, S. Barcikowski, J. Bunte, and A. Ostendorf, “Femtosecond laser cleaning of metallic cultural heritage and antique artworks,” Lasers Conser. Artworks 100, 61–69 (2005).
[CrossRef]

Barfels, T.

H.-J. Fitting, A. N. Trukhin, T. Barfels, B. Schmidt, and A. V. Czarnowski, “Radiation induced defects in SiO2,” Radiation Effects Defects Solids. 157(6), 575–581 (2002).
[CrossRef]

Beckera, A.

W. Liu, S. Petita, A. Beckera, N. Aközbekb, C. M. Bowdenb, and S. L. China, “Intensity clamping of a femtosecond laser pulse in condensed matter,” Opt. Commun. 202(1-3), 189–197 (2002).
[CrossRef]

Bonse, J.

A. Mermillod-Blondin, J. Bonse, A. Rosenfeld, I. V. Hertel, Yu. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, and R. Stoian, “Dynamics of femtosecond laser induced voidlike structures in fused silica,” Appl. Phys. Lett. 94(4), 041911 (2009).
[CrossRef]

Bowdenb, C. M.

W. Liu, S. Petita, A. Beckera, N. Aközbekb, C. M. Bowdenb, and S. L. China, “Intensity clamping of a femtosecond laser pulse in condensed matter,” Opt. Commun. 202(1-3), 189–197 (2002).
[CrossRef]

Brownd, W. D.

A. M. Ozkan, A. P. Malshe, T. A. Railkar, W. D. Brownd, M. D. Shirk, and P. A. Molian, “Femtosecond laser-induced periodic structure writing on diamond crystals and microclusters,” Appl. Phys. Lett. 75, 3716 (1999).
[CrossRef]

Bulgakova, N. M.

A. Mermillod-Blondin, J. Bonse, A. Rosenfeld, I. V. Hertel, Yu. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, and R. Stoian, “Dynamics of femtosecond laser induced voidlike structures in fused silica,” Appl. Phys. Lett. 94(4), 041911 (2009).
[CrossRef]

Bunte, J.

T. Burmester, M. Meier, H. Haferkamp, S. Barcikowski, J. Bunte, and A. Ostendorf, “Femtosecond laser cleaning of metallic cultural heritage and antique artworks,” Lasers Conser. Artworks 100, 61–69 (2005).
[CrossRef]

Burmester, T.

T. Burmester, M. Meier, H. Haferkamp, S. Barcikowski, J. Bunte, and A. Ostendorf, “Femtosecond laser cleaning of metallic cultural heritage and antique artworks,” Lasers Conser. Artworks 100, 61–69 (2005).
[CrossRef]

Cardinal, T.

A. Zoubir, C. Rivero, R. Grodsky, K. Richardson, M. Richardson, T. Cardinal, and M. Couzi, “Laser-induced defects in fused silica by femtosecond IR irradiationPhys. Rev. B 73(22), 224117 (2006).
[CrossRef]

Carré, B.

H. Merdji, S. Guizard, P. Martin, G. Petite, F. Quéré, B. Carré, J. F. Hergott, L. Le Déroff, P. Salières, O. Gobert, P. Meynadier, and M. Perdrix, “Ultrafast electron relaxation measurements on α-SiO2 using high-order harmonics generation,” Laser Part. Beams 18(3), 489–494 (2000).
[CrossRef]

Chen, Z.-H.

J.-M. Shieh, Z.-H. Chen, B.-T. Dai, Y.-C. Wang, A. Zaitsev, and C.-L. Pan, “Near-infrared femtosecond laser-induced crystallization of amorphous silicon,” Appl. Phys. Lett. 85(7), 1232 (2004).
[CrossRef]

China, S. L.

W. Liu, S. Petita, A. Beckera, N. Aközbekb, C. M. Bowdenb, and S. L. China, “Intensity clamping of a femtosecond laser pulse in condensed matter,” Opt. Commun. 202(1-3), 189–197 (2002).
[CrossRef]

Chowdhury, I. H.

I. H. Chowdhury, A. Q. Wu, X. Xu, and A. M. Weiner, “Ultra-fast laser absorption and ablation dynamics in wide-band-gap dielectrics,” Appl. Phys., A Mater. Sci. Process. 81(8), 1627–1632 (2005).
[CrossRef]

I. H. Chowdhury, X. Xu, and A. M. Weiner, “Ultrafast double-pulse ablation of fused silica,” Appl. Phys. Lett. 86(15), 151110 (2005).
[CrossRef]

Couzi, M.

A. Zoubir, C. Rivero, R. Grodsky, K. Richardson, M. Richardson, T. Cardinal, and M. Couzi, “Laser-induced defects in fused silica by femtosecond IR irradiationPhys. Rev. B 73(22), 224117 (2006).
[CrossRef]

Czarnowski, A. V.

H.-J. Fitting, A. N. Trukhin, T. Barfels, B. Schmidt, and A. V. Czarnowski, “Radiation induced defects in SiO2,” Radiation Effects Defects Solids. 157(6), 575–581 (2002).
[CrossRef]

Dai, B.-T.

J.-M. Shieh, Z.-H. Chen, B.-T. Dai, Y.-C. Wang, A. Zaitsev, and C.-L. Pan, “Near-infrared femtosecond laser-induced crystallization of amorphous silicon,” Appl. Phys. Lett. 85(7), 1232 (2004).
[CrossRef]

Dharmadhikari, A. K.

Eberta, R.

J. Schille, R. Eberta, U. Loeschnera, P. Scullyb, N. Goddard, and H. Exnera, “High repetition rate femto second laser processing of metals,” Proc. SPIE 7589, 758915, 758915–11 (2010).
[CrossRef]

Exnera, H.

J. Schille, R. Eberta, U. Loeschnera, P. Scullyb, N. Goddard, and H. Exnera, “High repetition rate femto second laser processing of metals,” Proc. SPIE 7589, 758915, 758915–11 (2010).
[CrossRef]

Fauchet, P. M.

Y. Kostoulas, K. B. Ucer, G. W. Wicks, and P. M. Fauchet, “Femtosecond carrier dynamics in low‐temperature grown Ga0.51In0.49P,” Appl. Phys. Lett. 67(25), 3756 (1995).
[CrossRef]

Fitting, H.-J.

H.-J. Fitting, A. N. Trukhin, T. Barfels, B. Schmidt, and A. V. Czarnowski, “Radiation induced defects in SiO2,” Radiation Effects Defects Solids. 157(6), 575–581 (2002).
[CrossRef]

Gibson, G. N.

M. Li, S. Menon, J. P. Nibarger, and G. N. Gibson, “Ultrafast electron dynamics in femtosecond optical breakdown of dielectrics,” Phys. Rev. Lett. 82(11), 2394–2397 (1999).
[CrossRef]

Gobert, O.

H. Merdji, S. Guizard, P. Martin, G. Petite, F. Quéré, B. Carré, J. F. Hergott, L. Le Déroff, P. Salières, O. Gobert, P. Meynadier, and M. Perdrix, “Ultrafast electron relaxation measurements on α-SiO2 using high-order harmonics generation,” Laser Part. Beams 18(3), 489–494 (2000).
[CrossRef]

Goddard, N.

J. Schille, R. Eberta, U. Loeschnera, P. Scullyb, N. Goddard, and H. Exnera, “High repetition rate femto second laser processing of metals,” Proc. SPIE 7589, 758915, 758915–11 (2010).
[CrossRef]

Grodsky, R.

A. Zoubir, C. Rivero, R. Grodsky, K. Richardson, M. Richardson, T. Cardinal, and M. Couzi, “Laser-induced defects in fused silica by femtosecond IR irradiationPhys. Rev. B 73(22), 224117 (2006).
[CrossRef]

Guizard, S.

H. Merdji, S. Guizard, P. Martin, G. Petite, F. Quéré, B. Carré, J. F. Hergott, L. Le Déroff, P. Salières, O. Gobert, P. Meynadier, and M. Perdrix, “Ultrafast electron relaxation measurements on α-SiO2 using high-order harmonics generation,” Laser Part. Beams 18(3), 489–494 (2000).
[CrossRef]

Guo, C.

A. Y. Vorobyev and C. Guo, “Colorizing metals with femtosecond laser pulses,” Appl. Phys. Lett. 92(4), 041914 (2008).
[CrossRef]

Haferkamp, H.

T. Burmester, M. Meier, H. Haferkamp, S. Barcikowski, J. Bunte, and A. Ostendorf, “Femtosecond laser cleaning of metallic cultural heritage and antique artworks,” Lasers Conser. Artworks 100, 61–69 (2005).
[CrossRef]

Hama, Y.

S. Munekuni, T. Yamanaka, Y. Shimogaichi, R. Tohmon, Y. Ohki, K. Nagasawa, and Y. Hama, “Various types of nonbridging oxygen hole center in high-purity silica glass,” J. Appl. Phys. 68(3), 1212–1217 (1990).
[CrossRef]

Hergott, J. F.

H. Merdji, S. Guizard, P. Martin, G. Petite, F. Quéré, B. Carré, J. F. Hergott, L. Le Déroff, P. Salières, O. Gobert, P. Meynadier, and M. Perdrix, “Ultrafast electron relaxation measurements on α-SiO2 using high-order harmonics generation,” Laser Part. Beams 18(3), 489–494 (2000).
[CrossRef]

Hertel, I. V.

A. Mermillod-Blondin, J. Bonse, A. Rosenfeld, I. V. Hertel, Yu. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, and R. Stoian, “Dynamics of femtosecond laser induced voidlike structures in fused silica,” Appl. Phys. Lett. 94(4), 041911 (2009).
[CrossRef]

Hertwig, A.

S. Martin, A. Hertwig, M. Lenzner, J. Krüger, and W. Kautek, “Spot-size dependence of the ablation threshold in dielectrics for femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 77(7), 883–884 (2003).
[CrossRef]

Himpsel, F. J.

F. J. Himpsel, F. R. McFeely, A. Taleb-Ibrahimi, J. A. Yarmoff, and G. Hollinger, “Microscopic structure of the SiO2/Si interface,” Phys. Rev. B Condens. Matter 38(9), 6084–6096 (1988).
[CrossRef] [PubMed]

Hollinger, G.

F. J. Himpsel, F. R. McFeely, A. Taleb-Ibrahimi, J. A. Yarmoff, and G. Hollinger, “Microscopic structure of the SiO2/Si interface,” Phys. Rev. B Condens. Matter 38(9), 6084–6096 (1988).
[CrossRef] [PubMed]

Kautek, W.

S. Martin, A. Hertwig, M. Lenzner, J. Krüger, and W. Kautek, “Spot-size dependence of the ablation threshold in dielectrics for femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 77(7), 883–884 (2003).
[CrossRef]

Kostoulas, Y.

Y. Kostoulas, K. B. Ucer, G. W. Wicks, and P. M. Fauchet, “Femtosecond carrier dynamics in low‐temperature grown Ga0.51In0.49P,” Appl. Phys. Lett. 67(25), 3756 (1995).
[CrossRef]

Krüger, J.

S. Martin, A. Hertwig, M. Lenzner, J. Krüger, and W. Kautek, “Spot-size dependence of the ablation threshold in dielectrics for femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 77(7), 883–884 (2003).
[CrossRef]

Le Déroff, L.

H. Merdji, S. Guizard, P. Martin, G. Petite, F. Quéré, B. Carré, J. F. Hergott, L. Le Déroff, P. Salières, O. Gobert, P. Meynadier, and M. Perdrix, “Ultrafast electron relaxation measurements on α-SiO2 using high-order harmonics generation,” Laser Part. Beams 18(3), 489–494 (2000).
[CrossRef]

Lenzner, M.

S. Martin, A. Hertwig, M. Lenzner, J. Krüger, and W. Kautek, “Spot-size dependence of the ablation threshold in dielectrics for femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 77(7), 883–884 (2003).
[CrossRef]

Li, M.

M. Li, S. Menon, J. P. Nibarger, and G. N. Gibson, “Ultrafast electron dynamics in femtosecond optical breakdown of dielectrics,” Phys. Rev. Lett. 82(11), 2394–2397 (1999).
[CrossRef]

Lioudakis, E.

E. Lioudakis, A. Othonos, and A. G. Nassiopoulou, “Probing carrier dynamics in implanted and annealed polycrystalline silicon thin films using white light,” Appl. Phys. Lett. 88(18), 181107 (2006).
[CrossRef]

Liu, W.

W. Liu, S. Petita, A. Beckera, N. Aközbekb, C. M. Bowdenb, and S. L. China, “Intensity clamping of a femtosecond laser pulse in condensed matter,” Opt. Commun. 202(1-3), 189–197 (2002).
[CrossRef]

Loeschnera, U.

J. Schille, R. Eberta, U. Loeschnera, P. Scullyb, N. Goddard, and H. Exnera, “High repetition rate femto second laser processing of metals,” Proc. SPIE 7589, 758915, 758915–11 (2010).
[CrossRef]

Lorenz, M.

D. Ashkenasi, M. Lorenz, R. Stoian, and A. Rosenfeld, “Surface damage threshold and structuring of dielectrics using femtosecond laser pulses: the role of incubation,” Appl. Surf. Sci. 150(1-4), 101–106 (1999).
[CrossRef]

Malshe, A. P.

A. M. Ozkan, A. P. Malshe, T. A. Railkar, W. D. Brownd, M. D. Shirk, and P. A. Molian, “Femtosecond laser-induced periodic structure writing on diamond crystals and microclusters,” Appl. Phys. Lett. 75, 3716 (1999).
[CrossRef]

Martin, P.

H. Merdji, S. Guizard, P. Martin, G. Petite, F. Quéré, B. Carré, J. F. Hergott, L. Le Déroff, P. Salières, O. Gobert, P. Meynadier, and M. Perdrix, “Ultrafast electron relaxation measurements on α-SiO2 using high-order harmonics generation,” Laser Part. Beams 18(3), 489–494 (2000).
[CrossRef]

Martin, S.

S. Martin, A. Hertwig, M. Lenzner, J. Krüger, and W. Kautek, “Spot-size dependence of the ablation threshold in dielectrics for femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 77(7), 883–884 (2003).
[CrossRef]

Mathur, D.

McFeely, F. R.

F. J. Himpsel, F. R. McFeely, A. Taleb-Ibrahimi, J. A. Yarmoff, and G. Hollinger, “Microscopic structure of the SiO2/Si interface,” Phys. Rev. B Condens. Matter 38(9), 6084–6096 (1988).
[CrossRef] [PubMed]

Meier, M.

T. Burmester, M. Meier, H. Haferkamp, S. Barcikowski, J. Bunte, and A. Ostendorf, “Femtosecond laser cleaning of metallic cultural heritage and antique artworks,” Lasers Conser. Artworks 100, 61–69 (2005).
[CrossRef]

Menon, S.

M. Li, S. Menon, J. P. Nibarger, and G. N. Gibson, “Ultrafast electron dynamics in femtosecond optical breakdown of dielectrics,” Phys. Rev. Lett. 82(11), 2394–2397 (1999).
[CrossRef]

Merdji, H.

H. Merdji, S. Guizard, P. Martin, G. Petite, F. Quéré, B. Carré, J. F. Hergott, L. Le Déroff, P. Salières, O. Gobert, P. Meynadier, and M. Perdrix, “Ultrafast electron relaxation measurements on α-SiO2 using high-order harmonics generation,” Laser Part. Beams 18(3), 489–494 (2000).
[CrossRef]

Mermillod-Blondin, A.

A. Mermillod-Blondin, J. Bonse, A. Rosenfeld, I. V. Hertel, Yu. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, and R. Stoian, “Dynamics of femtosecond laser induced voidlike structures in fused silica,” Appl. Phys. Lett. 94(4), 041911 (2009).
[CrossRef]

Meshcheryakov, Yu. P.

A. Mermillod-Blondin, J. Bonse, A. Rosenfeld, I. V. Hertel, Yu. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, and R. Stoian, “Dynamics of femtosecond laser induced voidlike structures in fused silica,” Appl. Phys. Lett. 94(4), 041911 (2009).
[CrossRef]

Meynadier, P.

H. Merdji, S. Guizard, P. Martin, G. Petite, F. Quéré, B. Carré, J. F. Hergott, L. Le Déroff, P. Salières, O. Gobert, P. Meynadier, and M. Perdrix, “Ultrafast electron relaxation measurements on α-SiO2 using high-order harmonics generation,” Laser Part. Beams 18(3), 489–494 (2000).
[CrossRef]

Molian, P. A.

A. M. Ozkan, A. P. Malshe, T. A. Railkar, W. D. Brownd, M. D. Shirk, and P. A. Molian, “Femtosecond laser-induced periodic structure writing on diamond crystals and microclusters,” Appl. Phys. Lett. 75, 3716 (1999).
[CrossRef]

Munekuni, S.

S. Munekuni, T. Yamanaka, Y. Shimogaichi, R. Tohmon, Y. Ohki, K. Nagasawa, and Y. Hama, “Various types of nonbridging oxygen hole center in high-purity silica glass,” J. Appl. Phys. 68(3), 1212–1217 (1990).
[CrossRef]

Nagasawa, K.

S. Munekuni, T. Yamanaka, Y. Shimogaichi, R. Tohmon, Y. Ohki, K. Nagasawa, and Y. Hama, “Various types of nonbridging oxygen hole center in high-purity silica glass,” J. Appl. Phys. 68(3), 1212–1217 (1990).
[CrossRef]

Nassiopoulou, A. G.

E. Lioudakis, A. Othonos, and A. G. Nassiopoulou, “Probing carrier dynamics in implanted and annealed polycrystalline silicon thin films using white light,” Appl. Phys. Lett. 88(18), 181107 (2006).
[CrossRef]

Nibarger, J. P.

M. Li, S. Menon, J. P. Nibarger, and G. N. Gibson, “Ultrafast electron dynamics in femtosecond optical breakdown of dielectrics,” Phys. Rev. Lett. 82(11), 2394–2397 (1999).
[CrossRef]

Ohki, Y.

S. Munekuni, T. Yamanaka, Y. Shimogaichi, R. Tohmon, Y. Ohki, K. Nagasawa, and Y. Hama, “Various types of nonbridging oxygen hole center in high-purity silica glass,” J. Appl. Phys. 68(3), 1212–1217 (1990).
[CrossRef]

Ostendorf, A.

T. Burmester, M. Meier, H. Haferkamp, S. Barcikowski, J. Bunte, and A. Ostendorf, “Femtosecond laser cleaning of metallic cultural heritage and antique artworks,” Lasers Conser. Artworks 100, 61–69 (2005).
[CrossRef]

Othonos, A.

E. Lioudakis, A. Othonos, and A. G. Nassiopoulou, “Probing carrier dynamics in implanted and annealed polycrystalline silicon thin films using white light,” Appl. Phys. Lett. 88(18), 181107 (2006).
[CrossRef]

Ozkan, A. M.

A. M. Ozkan, A. P. Malshe, T. A. Railkar, W. D. Brownd, M. D. Shirk, and P. A. Molian, “Femtosecond laser-induced periodic structure writing on diamond crystals and microclusters,” Appl. Phys. Lett. 75, 3716 (1999).
[CrossRef]

Pan, C.-L.

J.-M. Shieh, Z.-H. Chen, B.-T. Dai, Y.-C. Wang, A. Zaitsev, and C.-L. Pan, “Near-infrared femtosecond laser-induced crystallization of amorphous silicon,” Appl. Phys. Lett. 85(7), 1232 (2004).
[CrossRef]

Perdrix, M.

H. Merdji, S. Guizard, P. Martin, G. Petite, F. Quéré, B. Carré, J. F. Hergott, L. Le Déroff, P. Salières, O. Gobert, P. Meynadier, and M. Perdrix, “Ultrafast electron relaxation measurements on α-SiO2 using high-order harmonics generation,” Laser Part. Beams 18(3), 489–494 (2000).
[CrossRef]

Petita, S.

W. Liu, S. Petita, A. Beckera, N. Aközbekb, C. M. Bowdenb, and S. L. China, “Intensity clamping of a femtosecond laser pulse in condensed matter,” Opt. Commun. 202(1-3), 189–197 (2002).
[CrossRef]

Petite, G.

H. Merdji, S. Guizard, P. Martin, G. Petite, F. Quéré, B. Carré, J. F. Hergott, L. Le Déroff, P. Salières, O. Gobert, P. Meynadier, and M. Perdrix, “Ultrafast electron relaxation measurements on α-SiO2 using high-order harmonics generation,” Laser Part. Beams 18(3), 489–494 (2000).
[CrossRef]

Quéré, F.

H. Merdji, S. Guizard, P. Martin, G. Petite, F. Quéré, B. Carré, J. F. Hergott, L. Le Déroff, P. Salières, O. Gobert, P. Meynadier, and M. Perdrix, “Ultrafast electron relaxation measurements on α-SiO2 using high-order harmonics generation,” Laser Part. Beams 18(3), 489–494 (2000).
[CrossRef]

Railkar, T. A.

A. M. Ozkan, A. P. Malshe, T. A. Railkar, W. D. Brownd, M. D. Shirk, and P. A. Molian, “Femtosecond laser-induced periodic structure writing on diamond crystals and microclusters,” Appl. Phys. Lett. 75, 3716 (1999).
[CrossRef]

Rajgara, F. A.

Reddy, N. C. S.

Richardson, K.

A. Zoubir, C. Rivero, R. Grodsky, K. Richardson, M. Richardson, T. Cardinal, and M. Couzi, “Laser-induced defects in fused silica by femtosecond IR irradiationPhys. Rev. B 73(22), 224117 (2006).
[CrossRef]

Richardson, M.

A. Zoubir, C. Rivero, R. Grodsky, K. Richardson, M. Richardson, T. Cardinal, and M. Couzi, “Laser-induced defects in fused silica by femtosecond IR irradiationPhys. Rev. B 73(22), 224117 (2006).
[CrossRef]

Rivero, C.

A. Zoubir, C. Rivero, R. Grodsky, K. Richardson, M. Richardson, T. Cardinal, and M. Couzi, “Laser-induced defects in fused silica by femtosecond IR irradiationPhys. Rev. B 73(22), 224117 (2006).
[CrossRef]

Rosenfeld, A.

A. Mermillod-Blondin, J. Bonse, A. Rosenfeld, I. V. Hertel, Yu. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, and R. Stoian, “Dynamics of femtosecond laser induced voidlike structures in fused silica,” Appl. Phys. Lett. 94(4), 041911 (2009).
[CrossRef]

D. Ashkenasi, M. Lorenz, R. Stoian, and A. Rosenfeld, “Surface damage threshold and structuring of dielectrics using femtosecond laser pulses: the role of incubation,” Appl. Surf. Sci. 150(1-4), 101–106 (1999).
[CrossRef]

Salières, P.

H. Merdji, S. Guizard, P. Martin, G. Petite, F. Quéré, B. Carré, J. F. Hergott, L. Le Déroff, P. Salières, O. Gobert, P. Meynadier, and M. Perdrix, “Ultrafast electron relaxation measurements on α-SiO2 using high-order harmonics generation,” Laser Part. Beams 18(3), 489–494 (2000).
[CrossRef]

Sandhu, A. S.

Schille, J.

J. Schille, R. Eberta, U. Loeschnera, P. Scullyb, N. Goddard, and H. Exnera, “High repetition rate femto second laser processing of metals,” Proc. SPIE 7589, 758915, 758915–11 (2010).
[CrossRef]

Schmidt, B.

H.-J. Fitting, A. N. Trukhin, T. Barfels, B. Schmidt, and A. V. Czarnowski, “Radiation induced defects in SiO2,” Radiation Effects Defects Solids. 157(6), 575–581 (2002).
[CrossRef]

Scullyb, P.

J. Schille, R. Eberta, U. Loeschnera, P. Scullyb, N. Goddard, and H. Exnera, “High repetition rate femto second laser processing of metals,” Proc. SPIE 7589, 758915, 758915–11 (2010).
[CrossRef]

Shieh, J.-M.

J.-M. Shieh, Z.-H. Chen, B.-T. Dai, Y.-C. Wang, A. Zaitsev, and C.-L. Pan, “Near-infrared femtosecond laser-induced crystallization of amorphous silicon,” Appl. Phys. Lett. 85(7), 1232 (2004).
[CrossRef]

Shimogaichi, Y.

S. Munekuni, T. Yamanaka, Y. Shimogaichi, R. Tohmon, Y. Ohki, K. Nagasawa, and Y. Hama, “Various types of nonbridging oxygen hole center in high-purity silica glass,” J. Appl. Phys. 68(3), 1212–1217 (1990).
[CrossRef]

Shirk, M. D.

A. M. Ozkan, A. P. Malshe, T. A. Railkar, W. D. Brownd, M. D. Shirk, and P. A. Molian, “Femtosecond laser-induced periodic structure writing on diamond crystals and microclusters,” Appl. Phys. Lett. 75, 3716 (1999).
[CrossRef]

Stoian, R.

A. Mermillod-Blondin, J. Bonse, A. Rosenfeld, I. V. Hertel, Yu. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, and R. Stoian, “Dynamics of femtosecond laser induced voidlike structures in fused silica,” Appl. Phys. Lett. 94(4), 041911 (2009).
[CrossRef]

D. Ashkenasi, M. Lorenz, R. Stoian, and A. Rosenfeld, “Surface damage threshold and structuring of dielectrics using femtosecond laser pulses: the role of incubation,” Appl. Surf. Sci. 150(1-4), 101–106 (1999).
[CrossRef]

Taleb-Ibrahimi, A.

F. J. Himpsel, F. R. McFeely, A. Taleb-Ibrahimi, J. A. Yarmoff, and G. Hollinger, “Microscopic structure of the SiO2/Si interface,” Phys. Rev. B Condens. Matter 38(9), 6084–6096 (1988).
[CrossRef] [PubMed]

Tauc, J.

Z. Vardeny and J. Tauc, “Hot-carrier thermalization in amorphous silicon,” Phys. Rev. Lett. 46(18), 1223–1226 (1981).
[CrossRef]

Tohmon, R.

S. Munekuni, T. Yamanaka, Y. Shimogaichi, R. Tohmon, Y. Ohki, K. Nagasawa, and Y. Hama, “Various types of nonbridging oxygen hole center in high-purity silica glass,” J. Appl. Phys. 68(3), 1212–1217 (1990).
[CrossRef]

Trukhin, A. N.

H.-J. Fitting, A. N. Trukhin, T. Barfels, B. Schmidt, and A. V. Czarnowski, “Radiation induced defects in SiO2,” Radiation Effects Defects Solids. 157(6), 575–581 (2002).
[CrossRef]

Ucer, K. B.

Y. Kostoulas, K. B. Ucer, G. W. Wicks, and P. M. Fauchet, “Femtosecond carrier dynamics in low‐temperature grown Ga0.51In0.49P,” Appl. Phys. Lett. 67(25), 3756 (1995).
[CrossRef]

Vardeny, Z.

Z. Vardeny and J. Tauc, “Hot-carrier thermalization in amorphous silicon,” Phys. Rev. Lett. 46(18), 1223–1226 (1981).
[CrossRef]

Vorobyev, A. Y.

A. Y. Vorobyev and C. Guo, “Colorizing metals with femtosecond laser pulses,” Appl. Phys. Lett. 92(4), 041914 (2008).
[CrossRef]

Wang, Y.-C.

J.-M. Shieh, Z.-H. Chen, B.-T. Dai, Y.-C. Wang, A. Zaitsev, and C.-L. Pan, “Near-infrared femtosecond laser-induced crystallization of amorphous silicon,” Appl. Phys. Lett. 85(7), 1232 (2004).
[CrossRef]

Weiner, A. M.

I. H. Chowdhury, A. Q. Wu, X. Xu, and A. M. Weiner, “Ultra-fast laser absorption and ablation dynamics in wide-band-gap dielectrics,” Appl. Phys., A Mater. Sci. Process. 81(8), 1627–1632 (2005).
[CrossRef]

I. H. Chowdhury, X. Xu, and A. M. Weiner, “Ultrafast double-pulse ablation of fused silica,” Appl. Phys. Lett. 86(15), 151110 (2005).
[CrossRef]

Wicks, G. W.

Y. Kostoulas, K. B. Ucer, G. W. Wicks, and P. M. Fauchet, “Femtosecond carrier dynamics in low‐temperature grown Ga0.51In0.49P,” Appl. Phys. Lett. 67(25), 3756 (1995).
[CrossRef]

Wu, A. Q.

I. H. Chowdhury, A. Q. Wu, X. Xu, and A. M. Weiner, “Ultra-fast laser absorption and ablation dynamics in wide-band-gap dielectrics,” Appl. Phys., A Mater. Sci. Process. 81(8), 1627–1632 (2005).
[CrossRef]

Xu, X.

I. H. Chowdhury, A. Q. Wu, X. Xu, and A. M. Weiner, “Ultra-fast laser absorption and ablation dynamics in wide-band-gap dielectrics,” Appl. Phys., A Mater. Sci. Process. 81(8), 1627–1632 (2005).
[CrossRef]

I. H. Chowdhury, X. Xu, and A. M. Weiner, “Ultrafast double-pulse ablation of fused silica,” Appl. Phys. Lett. 86(15), 151110 (2005).
[CrossRef]

Yamanaka, T.

S. Munekuni, T. Yamanaka, Y. Shimogaichi, R. Tohmon, Y. Ohki, K. Nagasawa, and Y. Hama, “Various types of nonbridging oxygen hole center in high-purity silica glass,” J. Appl. Phys. 68(3), 1212–1217 (1990).
[CrossRef]

Yarmoff, J. A.

F. J. Himpsel, F. R. McFeely, A. Taleb-Ibrahimi, J. A. Yarmoff, and G. Hollinger, “Microscopic structure of the SiO2/Si interface,” Phys. Rev. B Condens. Matter 38(9), 6084–6096 (1988).
[CrossRef] [PubMed]

Zaitsev, A.

J.-M. Shieh, Z.-H. Chen, B.-T. Dai, Y.-C. Wang, A. Zaitsev, and C.-L. Pan, “Near-infrared femtosecond laser-induced crystallization of amorphous silicon,” Appl. Phys. Lett. 85(7), 1232 (2004).
[CrossRef]

Zoubir, A.

A. Zoubir, C. Rivero, R. Grodsky, K. Richardson, M. Richardson, T. Cardinal, and M. Couzi, “Laser-induced defects in fused silica by femtosecond IR irradiationPhys. Rev. B 73(22), 224117 (2006).
[CrossRef]

Appl. Phys. Lett.

A. M. Ozkan, A. P. Malshe, T. A. Railkar, W. D. Brownd, M. D. Shirk, and P. A. Molian, “Femtosecond laser-induced periodic structure writing on diamond crystals and microclusters,” Appl. Phys. Lett. 75, 3716 (1999).
[CrossRef]

A. Y. Vorobyev and C. Guo, “Colorizing metals with femtosecond laser pulses,” Appl. Phys. Lett. 92(4), 041914 (2008).
[CrossRef]

J.-M. Shieh, Z.-H. Chen, B.-T. Dai, Y.-C. Wang, A. Zaitsev, and C.-L. Pan, “Near-infrared femtosecond laser-induced crystallization of amorphous silicon,” Appl. Phys. Lett. 85(7), 1232 (2004).
[CrossRef]

I. H. Chowdhury, X. Xu, and A. M. Weiner, “Ultrafast double-pulse ablation of fused silica,” Appl. Phys. Lett. 86(15), 151110 (2005).
[CrossRef]

E. Lioudakis, A. Othonos, and A. G. Nassiopoulou, “Probing carrier dynamics in implanted and annealed polycrystalline silicon thin films using white light,” Appl. Phys. Lett. 88(18), 181107 (2006).
[CrossRef]

A. Mermillod-Blondin, J. Bonse, A. Rosenfeld, I. V. Hertel, Yu. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, and R. Stoian, “Dynamics of femtosecond laser induced voidlike structures in fused silica,” Appl. Phys. Lett. 94(4), 041911 (2009).
[CrossRef]

Y. Kostoulas, K. B. Ucer, G. W. Wicks, and P. M. Fauchet, “Femtosecond carrier dynamics in low‐temperature grown Ga0.51In0.49P,” Appl. Phys. Lett. 67(25), 3756 (1995).
[CrossRef]

Appl. Phys., A Mater. Sci. Process.

S. Martin, A. Hertwig, M. Lenzner, J. Krüger, and W. Kautek, “Spot-size dependence of the ablation threshold in dielectrics for femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 77(7), 883–884 (2003).
[CrossRef]

I. H. Chowdhury, A. Q. Wu, X. Xu, and A. M. Weiner, “Ultra-fast laser absorption and ablation dynamics in wide-band-gap dielectrics,” Appl. Phys., A Mater. Sci. Process. 81(8), 1627–1632 (2005).
[CrossRef]

Appl. Surf. Sci.

D. Ashkenasi, M. Lorenz, R. Stoian, and A. Rosenfeld, “Surface damage threshold and structuring of dielectrics using femtosecond laser pulses: the role of incubation,” Appl. Surf. Sci. 150(1-4), 101–106 (1999).
[CrossRef]

J. Appl. Phys.

S. Munekuni, T. Yamanaka, Y. Shimogaichi, R. Tohmon, Y. Ohki, K. Nagasawa, and Y. Hama, “Various types of nonbridging oxygen hole center in high-purity silica glass,” J. Appl. Phys. 68(3), 1212–1217 (1990).
[CrossRef]

Laser Part. Beams

H. Merdji, S. Guizard, P. Martin, G. Petite, F. Quéré, B. Carré, J. F. Hergott, L. Le Déroff, P. Salières, O. Gobert, P. Meynadier, and M. Perdrix, “Ultrafast electron relaxation measurements on α-SiO2 using high-order harmonics generation,” Laser Part. Beams 18(3), 489–494 (2000).
[CrossRef]

Lasers Conser. Artworks

T. Burmester, M. Meier, H. Haferkamp, S. Barcikowski, J. Bunte, and A. Ostendorf, “Femtosecond laser cleaning of metallic cultural heritage and antique artworks,” Lasers Conser. Artworks 100, 61–69 (2005).
[CrossRef]

Opt. Commun.

W. Liu, S. Petita, A. Beckera, N. Aközbekb, C. M. Bowdenb, and S. L. China, “Intensity clamping of a femtosecond laser pulse in condensed matter,” Opt. Commun. 202(1-3), 189–197 (2002).
[CrossRef]

Opt. Express

Phys. Rev. B

A. Zoubir, C. Rivero, R. Grodsky, K. Richardson, M. Richardson, T. Cardinal, and M. Couzi, “Laser-induced defects in fused silica by femtosecond IR irradiationPhys. Rev. B 73(22), 224117 (2006).
[CrossRef]

Phys. Rev. B Condens. Matter

F. J. Himpsel, F. R. McFeely, A. Taleb-Ibrahimi, J. A. Yarmoff, and G. Hollinger, “Microscopic structure of the SiO2/Si interface,” Phys. Rev. B Condens. Matter 38(9), 6084–6096 (1988).
[CrossRef] [PubMed]

Phys. Rev. Lett.

Z. Vardeny and J. Tauc, “Hot-carrier thermalization in amorphous silicon,” Phys. Rev. Lett. 46(18), 1223–1226 (1981).
[CrossRef]

M. Li, S. Menon, J. P. Nibarger, and G. N. Gibson, “Ultrafast electron dynamics in femtosecond optical breakdown of dielectrics,” Phys. Rev. Lett. 82(11), 2394–2397 (1999).
[CrossRef]

Proc. SPIE

J. Schille, R. Eberta, U. Loeschnera, P. Scullyb, N. Goddard, and H. Exnera, “High repetition rate femto second laser processing of metals,” Proc. SPIE 7589, 758915, 758915–11 (2010).
[CrossRef]

Radiation Effects Defects Solids.

H.-J. Fitting, A. N. Trukhin, T. Barfels, B. Schmidt, and A. V. Czarnowski, “Radiation induced defects in SiO2,” Radiation Effects Defects Solids. 157(6), 575–581 (2002).
[CrossRef]

Other

A. Wagner, R. A. Haight, and P. Longo, “MARS2: An advanced femtosecond laser mask repair tool,” Proceedings of 22nd Annual BACUS Symposium on Photomask Technology, 4889, 457 (2002).

J. Shah, Ultrafast spectroscopy of semiconductors and semiconductor nanostructures (Springer-Verlag, Berlin, 314–323, 1996).

http://www.cuhk.edu.hk/ipro/pressrelease/Raymond%20Kwok-e.htm, http://www.uksaf.org/software.html

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Squared ablation diameter as a function of the laser energy with two different lenses. The insert images are the SEM images of fused silica surfaces with the 10 cm focal-lens (c, e) and the objective lens (a, b, d) at various excitation energies.

Fig. 2
Fig. 2

SEM images of fused silica surfaces with the 10 cm focal-lens (c, e) and the objective lens (a, b, d) at various excitation energies.

Fig. 3
Fig. 3

Non-degenerate pump-probe experimental setup. P: polarizer, λ/2: half-wave plate, I: iris, C: color filter, S: sample, 3D: three-dimension stage, CCD: CCD camera, Com: computer, Sp: spectrometer

Fig. 4
Fig. 4

Supercontinuum spectra in various condensed media.

Fig. 5
Fig. 5

(a) Differential reflection intensity distribution of the probe in the spectrum delay time space when the pump central wavelength is 800 nm with excitation energy accumulation. (b, c) is cross sections of (a) at three spectral locations and several time delays.

Fig. 6
Fig. 6

XPS Si 2p spectra of a fused silica sample, (a) without laser irradiation (b) with laser irradiation at 5 mW and 10000 laser pulses.

Fig. 7
Fig. 7

(a) Differential reflection intensity distribution of the probe in the spectrum delay time space when the pump central wavelength is 800 nm with the fresh spot measurements. (b, c) is cross sections of (a) at three spectral locations and several time delays.

Tables (1)

Tables Icon

Table 1 Parameters of Materials for Supercontinuum Generation

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

D 2 = 2 ω 0 2 ln ( F 0 F t h )
S i S i h ν S i S + i + e
S i O H h ν S i O + H
S i O S i h ν S i O + S i

Metrics