Abstract

We demonstrate that a single all-optical sensor based on laser diode self-mixing interferometry can monitor the independent displacement of individual portions of a surface. The experimental evidence was achieved using a metallic sample in a translatory motion while partly ablated by a ps-pulsed fiber laser. A model based on the Lang-Kobayashi approach gives an excellent explanation of the experimental results.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Giuliani, M. Norgia, S. Donati, and T. Bosch, “Laser diode self-mixing technique for sensing applications,” J. Opt. A, Pure Appl. Opt. 4(6), S283–S294 (2002).
    [CrossRef]
  2. S. Ottonelli, M. Dabbicco, F. De Lucia, M. di Vietro, and G. Scamarcio, “Laser-self-mixing interferometry for mechatronics applications,” Sensors (Basel Switzerland) 9(5), 3527–3548 (2009).
    [CrossRef]
  3. M. Norgia, S. Donati, and A. D'Alessandro, “Interferometric measurement of displacement on a diffusing target by a speckle tracking technique,” IEEE J. Quantum Electron. 37(6), 800–806 (2001).
    [CrossRef]
  4. F. Gouaux, N. Servagent, and T. Bosch, “Absolute distance measurement with an optical feedback interferometer,” Appl. Opt. 37(28), 6684–6689 (1998).
    [CrossRef] [PubMed]
  5. U. Zabit, R. Atashkhooei, T. Bosch, S. Royo, F. Bony, and A. D. Rakic, “Adaptive self-mixing vibrometer based on a liquid lens,” Opt. Lett. 35(8), 1278–1280 (2010).
    [CrossRef] [PubMed]
  6. L. Scalise, Y. Yu, G. Giuliani, G. Plantier, and T. Bosch, “Self-mixing laser diode velocimetry: application to vibration and velocity measurement,” IEEE Trans. Instrum. Meas. 53(1), 223–232 (2004).
    [CrossRef]
  7. R. Kliese, Y. L. Lim, T. Bosch, and A. D. Rakić, “GaN laser self-mixing velocimeter for measuring slow flows,” Opt. Lett. 35(6), 814–816 (2010).
    [CrossRef] [PubMed]
  8. S. Ottonelli, F. De Lucia, M. Di Vietro, M. Dabbicco, G. Scamarcio, and F. P. Mezzapesa, “A compact three degrees-of-freedom motion sensor based on the laser-self-mixing effect,” IEEE Photon. Technol. Lett. 20(16), 1360–1362 (2008).
    [CrossRef]
  9. X. Dai, M. Wang, and C. Zhou, “Multiplexing self-mixing interference in fiber ring lasers,” IEEE Photon. Technol. Lett. 22(21), 1619–1621 (2010).
    [CrossRef]
  10. Y. L. Lim, R. Kliese, K. Bertling, K. Tanimizu, P. A. Jacobs, and A. D. Rakić, “Self-mixing flow sensor using a monolithic VCSEL array with parallel readout,” Opt. Express 18(11), 11720–11727 (2010).
    [CrossRef] [PubMed]
  11. F. Zhao, “Sub-aperture interferometers: multiple target sub-beams are derived from the same measurement beam,” NASA Tech Briefs (2010), pp. 29–30.
  12. F. P. Mezzapesa, A. Ancona, T. Sibillano, F. De Lucia, M. Dabbicco, P. Mario Lugarà, and G. Scamarcio, “High-resolution monitoring of the hole depth during ultrafast laser ablation drilling by diode laser self-mixing interferometry,” Opt. Lett. 36(6), 822–824 (2011).
    [CrossRef] [PubMed]
  13. R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. 16(3), 347–355 (1980).
    [CrossRef]
  14. A. Ancona, D. Nodop, J. Limpert, S. Nolte, and A. Tünnermann, “Microdrilling of metals with an inexpensive and compact ultra-short-pulse fiber amplified microchip laser,” Appl. Phys., A Mater. Sci. Process. 94(1), 19–24 (2009).
    [CrossRef]
  15. S. Nolte, C. Momma, G. Kamlage, A. Ostendorf, C. Fallnich, F. von Alvensleben, and H. Welling, “Polarization effects in ultrashort-pulse laser drilling,” Appl. Phys., A Mater. Sci. Process. 68(5), 563–567 (1999).
    [CrossRef]
  16. D. M. Kane and K. A. Shore, in Unlocking Dynamical Diversity – Optical Feedback Effects on Semiconductor Diode Lasers (John Wiley and Sons, 2005), Chap. 7.
  17. M. Wang and G. Lai, “Self-mixing microscopic interferometer for the measurement of micro-profile,” Opt. Commun. 238(4–6), 237–244 (2004).
    [CrossRef]
  18. F. De Lucia, M. Putignano, S. Ottonelli, M. di Vietro, M. Dabbicco, and G. Scamarcio, “Laser-self-mixing interferometry in the Gaussian beam approximation: experiments and theory,” Opt. Express 18(10), 10323–10333 (2010).
    [CrossRef] [PubMed]
  19. A. E. Siegman, in Lasers, 3rd ed. (University Science Books, Mill Valley, 1986).

2011

2010

2009

S. Ottonelli, M. Dabbicco, F. De Lucia, M. di Vietro, and G. Scamarcio, “Laser-self-mixing interferometry for mechatronics applications,” Sensors (Basel Switzerland) 9(5), 3527–3548 (2009).
[CrossRef]

A. Ancona, D. Nodop, J. Limpert, S. Nolte, and A. Tünnermann, “Microdrilling of metals with an inexpensive and compact ultra-short-pulse fiber amplified microchip laser,” Appl. Phys., A Mater. Sci. Process. 94(1), 19–24 (2009).
[CrossRef]

2008

S. Ottonelli, F. De Lucia, M. Di Vietro, M. Dabbicco, G. Scamarcio, and F. P. Mezzapesa, “A compact three degrees-of-freedom motion sensor based on the laser-self-mixing effect,” IEEE Photon. Technol. Lett. 20(16), 1360–1362 (2008).
[CrossRef]

2004

L. Scalise, Y. Yu, G. Giuliani, G. Plantier, and T. Bosch, “Self-mixing laser diode velocimetry: application to vibration and velocity measurement,” IEEE Trans. Instrum. Meas. 53(1), 223–232 (2004).
[CrossRef]

M. Wang and G. Lai, “Self-mixing microscopic interferometer for the measurement of micro-profile,” Opt. Commun. 238(4–6), 237–244 (2004).
[CrossRef]

2002

G. Giuliani, M. Norgia, S. Donati, and T. Bosch, “Laser diode self-mixing technique for sensing applications,” J. Opt. A, Pure Appl. Opt. 4(6), S283–S294 (2002).
[CrossRef]

2001

M. Norgia, S. Donati, and A. D'Alessandro, “Interferometric measurement of displacement on a diffusing target by a speckle tracking technique,” IEEE J. Quantum Electron. 37(6), 800–806 (2001).
[CrossRef]

1999

S. Nolte, C. Momma, G. Kamlage, A. Ostendorf, C. Fallnich, F. von Alvensleben, and H. Welling, “Polarization effects in ultrashort-pulse laser drilling,” Appl. Phys., A Mater. Sci. Process. 68(5), 563–567 (1999).
[CrossRef]

1998

1980

R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. 16(3), 347–355 (1980).
[CrossRef]

Ancona, A.

F. P. Mezzapesa, A. Ancona, T. Sibillano, F. De Lucia, M. Dabbicco, P. Mario Lugarà, and G. Scamarcio, “High-resolution monitoring of the hole depth during ultrafast laser ablation drilling by diode laser self-mixing interferometry,” Opt. Lett. 36(6), 822–824 (2011).
[CrossRef] [PubMed]

A. Ancona, D. Nodop, J. Limpert, S. Nolte, and A. Tünnermann, “Microdrilling of metals with an inexpensive and compact ultra-short-pulse fiber amplified microchip laser,” Appl. Phys., A Mater. Sci. Process. 94(1), 19–24 (2009).
[CrossRef]

Atashkhooei, R.

Bertling, K.

Bony, F.

Bosch, T.

R. Kliese, Y. L. Lim, T. Bosch, and A. D. Rakić, “GaN laser self-mixing velocimeter for measuring slow flows,” Opt. Lett. 35(6), 814–816 (2010).
[CrossRef] [PubMed]

U. Zabit, R. Atashkhooei, T. Bosch, S. Royo, F. Bony, and A. D. Rakic, “Adaptive self-mixing vibrometer based on a liquid lens,” Opt. Lett. 35(8), 1278–1280 (2010).
[CrossRef] [PubMed]

L. Scalise, Y. Yu, G. Giuliani, G. Plantier, and T. Bosch, “Self-mixing laser diode velocimetry: application to vibration and velocity measurement,” IEEE Trans. Instrum. Meas. 53(1), 223–232 (2004).
[CrossRef]

G. Giuliani, M. Norgia, S. Donati, and T. Bosch, “Laser diode self-mixing technique for sensing applications,” J. Opt. A, Pure Appl. Opt. 4(6), S283–S294 (2002).
[CrossRef]

F. Gouaux, N. Servagent, and T. Bosch, “Absolute distance measurement with an optical feedback interferometer,” Appl. Opt. 37(28), 6684–6689 (1998).
[CrossRef] [PubMed]

Dabbicco, M.

F. P. Mezzapesa, A. Ancona, T. Sibillano, F. De Lucia, M. Dabbicco, P. Mario Lugarà, and G. Scamarcio, “High-resolution monitoring of the hole depth during ultrafast laser ablation drilling by diode laser self-mixing interferometry,” Opt. Lett. 36(6), 822–824 (2011).
[CrossRef] [PubMed]

F. De Lucia, M. Putignano, S. Ottonelli, M. di Vietro, M. Dabbicco, and G. Scamarcio, “Laser-self-mixing interferometry in the Gaussian beam approximation: experiments and theory,” Opt. Express 18(10), 10323–10333 (2010).
[CrossRef] [PubMed]

S. Ottonelli, M. Dabbicco, F. De Lucia, M. di Vietro, and G. Scamarcio, “Laser-self-mixing interferometry for mechatronics applications,” Sensors (Basel Switzerland) 9(5), 3527–3548 (2009).
[CrossRef]

S. Ottonelli, F. De Lucia, M. Di Vietro, M. Dabbicco, G. Scamarcio, and F. P. Mezzapesa, “A compact three degrees-of-freedom motion sensor based on the laser-self-mixing effect,” IEEE Photon. Technol. Lett. 20(16), 1360–1362 (2008).
[CrossRef]

Dai, X.

X. Dai, M. Wang, and C. Zhou, “Multiplexing self-mixing interference in fiber ring lasers,” IEEE Photon. Technol. Lett. 22(21), 1619–1621 (2010).
[CrossRef]

D'Alessandro, A.

M. Norgia, S. Donati, and A. D'Alessandro, “Interferometric measurement of displacement on a diffusing target by a speckle tracking technique,” IEEE J. Quantum Electron. 37(6), 800–806 (2001).
[CrossRef]

De Lucia, F.

F. P. Mezzapesa, A. Ancona, T. Sibillano, F. De Lucia, M. Dabbicco, P. Mario Lugarà, and G. Scamarcio, “High-resolution monitoring of the hole depth during ultrafast laser ablation drilling by diode laser self-mixing interferometry,” Opt. Lett. 36(6), 822–824 (2011).
[CrossRef] [PubMed]

F. De Lucia, M. Putignano, S. Ottonelli, M. di Vietro, M. Dabbicco, and G. Scamarcio, “Laser-self-mixing interferometry in the Gaussian beam approximation: experiments and theory,” Opt. Express 18(10), 10323–10333 (2010).
[CrossRef] [PubMed]

S. Ottonelli, M. Dabbicco, F. De Lucia, M. di Vietro, and G. Scamarcio, “Laser-self-mixing interferometry for mechatronics applications,” Sensors (Basel Switzerland) 9(5), 3527–3548 (2009).
[CrossRef]

S. Ottonelli, F. De Lucia, M. Di Vietro, M. Dabbicco, G. Scamarcio, and F. P. Mezzapesa, “A compact three degrees-of-freedom motion sensor based on the laser-self-mixing effect,” IEEE Photon. Technol. Lett. 20(16), 1360–1362 (2008).
[CrossRef]

di Vietro, M.

F. De Lucia, M. Putignano, S. Ottonelli, M. di Vietro, M. Dabbicco, and G. Scamarcio, “Laser-self-mixing interferometry in the Gaussian beam approximation: experiments and theory,” Opt. Express 18(10), 10323–10333 (2010).
[CrossRef] [PubMed]

S. Ottonelli, M. Dabbicco, F. De Lucia, M. di Vietro, and G. Scamarcio, “Laser-self-mixing interferometry for mechatronics applications,” Sensors (Basel Switzerland) 9(5), 3527–3548 (2009).
[CrossRef]

S. Ottonelli, F. De Lucia, M. Di Vietro, M. Dabbicco, G. Scamarcio, and F. P. Mezzapesa, “A compact three degrees-of-freedom motion sensor based on the laser-self-mixing effect,” IEEE Photon. Technol. Lett. 20(16), 1360–1362 (2008).
[CrossRef]

Donati, S.

G. Giuliani, M. Norgia, S. Donati, and T. Bosch, “Laser diode self-mixing technique for sensing applications,” J. Opt. A, Pure Appl. Opt. 4(6), S283–S294 (2002).
[CrossRef]

M. Norgia, S. Donati, and A. D'Alessandro, “Interferometric measurement of displacement on a diffusing target by a speckle tracking technique,” IEEE J. Quantum Electron. 37(6), 800–806 (2001).
[CrossRef]

Fallnich, C.

S. Nolte, C. Momma, G. Kamlage, A. Ostendorf, C. Fallnich, F. von Alvensleben, and H. Welling, “Polarization effects in ultrashort-pulse laser drilling,” Appl. Phys., A Mater. Sci. Process. 68(5), 563–567 (1999).
[CrossRef]

Giuliani, G.

L. Scalise, Y. Yu, G. Giuliani, G. Plantier, and T. Bosch, “Self-mixing laser diode velocimetry: application to vibration and velocity measurement,” IEEE Trans. Instrum. Meas. 53(1), 223–232 (2004).
[CrossRef]

G. Giuliani, M. Norgia, S. Donati, and T. Bosch, “Laser diode self-mixing technique for sensing applications,” J. Opt. A, Pure Appl. Opt. 4(6), S283–S294 (2002).
[CrossRef]

Gouaux, F.

Jacobs, P. A.

Kamlage, G.

S. Nolte, C. Momma, G. Kamlage, A. Ostendorf, C. Fallnich, F. von Alvensleben, and H. Welling, “Polarization effects in ultrashort-pulse laser drilling,” Appl. Phys., A Mater. Sci. Process. 68(5), 563–567 (1999).
[CrossRef]

Kliese, R.

Kobayashi, K.

R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. 16(3), 347–355 (1980).
[CrossRef]

Lai, G.

M. Wang and G. Lai, “Self-mixing microscopic interferometer for the measurement of micro-profile,” Opt. Commun. 238(4–6), 237–244 (2004).
[CrossRef]

Lang, R.

R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. 16(3), 347–355 (1980).
[CrossRef]

Lim, Y. L.

Limpert, J.

A. Ancona, D. Nodop, J. Limpert, S. Nolte, and A. Tünnermann, “Microdrilling of metals with an inexpensive and compact ultra-short-pulse fiber amplified microchip laser,” Appl. Phys., A Mater. Sci. Process. 94(1), 19–24 (2009).
[CrossRef]

Mario Lugarà, P.

Mezzapesa, F. P.

F. P. Mezzapesa, A. Ancona, T. Sibillano, F. De Lucia, M. Dabbicco, P. Mario Lugarà, and G. Scamarcio, “High-resolution monitoring of the hole depth during ultrafast laser ablation drilling by diode laser self-mixing interferometry,” Opt. Lett. 36(6), 822–824 (2011).
[CrossRef] [PubMed]

S. Ottonelli, F. De Lucia, M. Di Vietro, M. Dabbicco, G. Scamarcio, and F. P. Mezzapesa, “A compact three degrees-of-freedom motion sensor based on the laser-self-mixing effect,” IEEE Photon. Technol. Lett. 20(16), 1360–1362 (2008).
[CrossRef]

Momma, C.

S. Nolte, C. Momma, G. Kamlage, A. Ostendorf, C. Fallnich, F. von Alvensleben, and H. Welling, “Polarization effects in ultrashort-pulse laser drilling,” Appl. Phys., A Mater. Sci. Process. 68(5), 563–567 (1999).
[CrossRef]

Nodop, D.

A. Ancona, D. Nodop, J. Limpert, S. Nolte, and A. Tünnermann, “Microdrilling of metals with an inexpensive and compact ultra-short-pulse fiber amplified microchip laser,” Appl. Phys., A Mater. Sci. Process. 94(1), 19–24 (2009).
[CrossRef]

Nolte, S.

A. Ancona, D. Nodop, J. Limpert, S. Nolte, and A. Tünnermann, “Microdrilling of metals with an inexpensive and compact ultra-short-pulse fiber amplified microchip laser,” Appl. Phys., A Mater. Sci. Process. 94(1), 19–24 (2009).
[CrossRef]

S. Nolte, C. Momma, G. Kamlage, A. Ostendorf, C. Fallnich, F. von Alvensleben, and H. Welling, “Polarization effects in ultrashort-pulse laser drilling,” Appl. Phys., A Mater. Sci. Process. 68(5), 563–567 (1999).
[CrossRef]

Norgia, M.

G. Giuliani, M. Norgia, S. Donati, and T. Bosch, “Laser diode self-mixing technique for sensing applications,” J. Opt. A, Pure Appl. Opt. 4(6), S283–S294 (2002).
[CrossRef]

M. Norgia, S. Donati, and A. D'Alessandro, “Interferometric measurement of displacement on a diffusing target by a speckle tracking technique,” IEEE J. Quantum Electron. 37(6), 800–806 (2001).
[CrossRef]

Ostendorf, A.

S. Nolte, C. Momma, G. Kamlage, A. Ostendorf, C. Fallnich, F. von Alvensleben, and H. Welling, “Polarization effects in ultrashort-pulse laser drilling,” Appl. Phys., A Mater. Sci. Process. 68(5), 563–567 (1999).
[CrossRef]

Ottonelli, S.

F. De Lucia, M. Putignano, S. Ottonelli, M. di Vietro, M. Dabbicco, and G. Scamarcio, “Laser-self-mixing interferometry in the Gaussian beam approximation: experiments and theory,” Opt. Express 18(10), 10323–10333 (2010).
[CrossRef] [PubMed]

S. Ottonelli, M. Dabbicco, F. De Lucia, M. di Vietro, and G. Scamarcio, “Laser-self-mixing interferometry for mechatronics applications,” Sensors (Basel Switzerland) 9(5), 3527–3548 (2009).
[CrossRef]

S. Ottonelli, F. De Lucia, M. Di Vietro, M. Dabbicco, G. Scamarcio, and F. P. Mezzapesa, “A compact three degrees-of-freedom motion sensor based on the laser-self-mixing effect,” IEEE Photon. Technol. Lett. 20(16), 1360–1362 (2008).
[CrossRef]

Plantier, G.

L. Scalise, Y. Yu, G. Giuliani, G. Plantier, and T. Bosch, “Self-mixing laser diode velocimetry: application to vibration and velocity measurement,” IEEE Trans. Instrum. Meas. 53(1), 223–232 (2004).
[CrossRef]

Putignano, M.

Rakic, A. D.

Royo, S.

Scalise, L.

L. Scalise, Y. Yu, G. Giuliani, G. Plantier, and T. Bosch, “Self-mixing laser diode velocimetry: application to vibration and velocity measurement,” IEEE Trans. Instrum. Meas. 53(1), 223–232 (2004).
[CrossRef]

Scamarcio, G.

F. P. Mezzapesa, A. Ancona, T. Sibillano, F. De Lucia, M. Dabbicco, P. Mario Lugarà, and G. Scamarcio, “High-resolution monitoring of the hole depth during ultrafast laser ablation drilling by diode laser self-mixing interferometry,” Opt. Lett. 36(6), 822–824 (2011).
[CrossRef] [PubMed]

F. De Lucia, M. Putignano, S. Ottonelli, M. di Vietro, M. Dabbicco, and G. Scamarcio, “Laser-self-mixing interferometry in the Gaussian beam approximation: experiments and theory,” Opt. Express 18(10), 10323–10333 (2010).
[CrossRef] [PubMed]

S. Ottonelli, M. Dabbicco, F. De Lucia, M. di Vietro, and G. Scamarcio, “Laser-self-mixing interferometry for mechatronics applications,” Sensors (Basel Switzerland) 9(5), 3527–3548 (2009).
[CrossRef]

S. Ottonelli, F. De Lucia, M. Di Vietro, M. Dabbicco, G. Scamarcio, and F. P. Mezzapesa, “A compact three degrees-of-freedom motion sensor based on the laser-self-mixing effect,” IEEE Photon. Technol. Lett. 20(16), 1360–1362 (2008).
[CrossRef]

Servagent, N.

Sibillano, T.

Tanimizu, K.

Tünnermann, A.

A. Ancona, D. Nodop, J. Limpert, S. Nolte, and A. Tünnermann, “Microdrilling of metals with an inexpensive and compact ultra-short-pulse fiber amplified microchip laser,” Appl. Phys., A Mater. Sci. Process. 94(1), 19–24 (2009).
[CrossRef]

von Alvensleben, F.

S. Nolte, C. Momma, G. Kamlage, A. Ostendorf, C. Fallnich, F. von Alvensleben, and H. Welling, “Polarization effects in ultrashort-pulse laser drilling,” Appl. Phys., A Mater. Sci. Process. 68(5), 563–567 (1999).
[CrossRef]

Wang, M.

X. Dai, M. Wang, and C. Zhou, “Multiplexing self-mixing interference in fiber ring lasers,” IEEE Photon. Technol. Lett. 22(21), 1619–1621 (2010).
[CrossRef]

M. Wang and G. Lai, “Self-mixing microscopic interferometer for the measurement of micro-profile,” Opt. Commun. 238(4–6), 237–244 (2004).
[CrossRef]

Welling, H.

S. Nolte, C. Momma, G. Kamlage, A. Ostendorf, C. Fallnich, F. von Alvensleben, and H. Welling, “Polarization effects in ultrashort-pulse laser drilling,” Appl. Phys., A Mater. Sci. Process. 68(5), 563–567 (1999).
[CrossRef]

Yu, Y.

L. Scalise, Y. Yu, G. Giuliani, G. Plantier, and T. Bosch, “Self-mixing laser diode velocimetry: application to vibration and velocity measurement,” IEEE Trans. Instrum. Meas. 53(1), 223–232 (2004).
[CrossRef]

Zabit, U.

Zhou, C.

X. Dai, M. Wang, and C. Zhou, “Multiplexing self-mixing interference in fiber ring lasers,” IEEE Photon. Technol. Lett. 22(21), 1619–1621 (2010).
[CrossRef]

Appl. Opt.

Appl. Phys., A Mater. Sci. Process.

A. Ancona, D. Nodop, J. Limpert, S. Nolte, and A. Tünnermann, “Microdrilling of metals with an inexpensive and compact ultra-short-pulse fiber amplified microchip laser,” Appl. Phys., A Mater. Sci. Process. 94(1), 19–24 (2009).
[CrossRef]

S. Nolte, C. Momma, G. Kamlage, A. Ostendorf, C. Fallnich, F. von Alvensleben, and H. Welling, “Polarization effects in ultrashort-pulse laser drilling,” Appl. Phys., A Mater. Sci. Process. 68(5), 563–567 (1999).
[CrossRef]

IEEE J. Quantum Electron.

M. Norgia, S. Donati, and A. D'Alessandro, “Interferometric measurement of displacement on a diffusing target by a speckle tracking technique,” IEEE J. Quantum Electron. 37(6), 800–806 (2001).
[CrossRef]

R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. 16(3), 347–355 (1980).
[CrossRef]

IEEE Photon. Technol. Lett.

S. Ottonelli, F. De Lucia, M. Di Vietro, M. Dabbicco, G. Scamarcio, and F. P. Mezzapesa, “A compact three degrees-of-freedom motion sensor based on the laser-self-mixing effect,” IEEE Photon. Technol. Lett. 20(16), 1360–1362 (2008).
[CrossRef]

X. Dai, M. Wang, and C. Zhou, “Multiplexing self-mixing interference in fiber ring lasers,” IEEE Photon. Technol. Lett. 22(21), 1619–1621 (2010).
[CrossRef]

IEEE Trans. Instrum. Meas.

L. Scalise, Y. Yu, G. Giuliani, G. Plantier, and T. Bosch, “Self-mixing laser diode velocimetry: application to vibration and velocity measurement,” IEEE Trans. Instrum. Meas. 53(1), 223–232 (2004).
[CrossRef]

J. Opt. A, Pure Appl. Opt.

G. Giuliani, M. Norgia, S. Donati, and T. Bosch, “Laser diode self-mixing technique for sensing applications,” J. Opt. A, Pure Appl. Opt. 4(6), S283–S294 (2002).
[CrossRef]

Opt. Commun.

M. Wang and G. Lai, “Self-mixing microscopic interferometer for the measurement of micro-profile,” Opt. Commun. 238(4–6), 237–244 (2004).
[CrossRef]

Opt. Express

Opt. Lett.

Sensors (Basel Switzerland)

S. Ottonelli, M. Dabbicco, F. De Lucia, M. di Vietro, and G. Scamarcio, “Laser-self-mixing interferometry for mechatronics applications,” Sensors (Basel Switzerland) 9(5), 3527–3548 (2009).
[CrossRef]

Other

F. Zhao, “Sub-aperture interferometers: multiple target sub-beams are derived from the same measurement beam,” NASA Tech Briefs (2010), pp. 29–30.

A. E. Siegman, in Lasers, 3rd ed. (University Science Books, Mill Valley, 1986).

D. M. Kane and K. A. Shore, in Unlocking Dynamical Diversity – Optical Feedback Effects on Semiconductor Diode Lasers (John Wiley and Sons, 2005), Chap. 7.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic layout of the experimental setup. M: mirror. L: focusing lens. BS: dichroic beamsplitter. MS: mechanical shutter. VA: variable attenuator. L1, L2: collimating aspheric lens. LD1, LD2: laser diode. PD1, PD2: integrated monitor photodiode. The schematic at the bottom left shows the target plate and probe laser beams, LD1 and LD2 respectively.

Fig. 2
Fig. 2

Left: Representative oscilloscope traces showing the time dependence of the signals detected by (a) the external photodiode (PDext), (b) the integrated photodiode PD1 and (c) the integrated photodiode PD2, during the laser percussion drilling of a 100 µm-thick stainless steel plate. The target displacement is controlled by a linear stepper motor stage moving at about 0.2 mm/sec. Relative distance between the collimating lens L1 and the diode emitting window: f1. The laser fluence was ~1.35 J/cm2. Inset: PD1 signal during the percussion drilling shown on an enlarged scale.

Fig. 3
Fig. 3

Representative oscilloscope traces showing the time dependence of the signals detected by: (a) the integrated photodiode PD1 and (c) the integrated photodiode PD2. (b) Zoom of PD1 signal during the ablation time. (d) Normalized power spectrum of the PD1 trace. The dashed line envelops the low and high-frequency peaks. The target displacement is controlled by a linear stepper-motor stage moving at about 0.2 mm/sec. Relative distance between the collimating lens L1 and the diode emitting window: f1 + 35 µm. The variable attenuator filters the optical feedback of 25% less than in Fig. 2. Laser fluence for the percussion drilling ~1.35 J/cm2.

Fig. 4
Fig. 4

Representative oscilloscope traces showing the time dependence of the signals detected by: (a) the integrated photodiode PD1 and (c) the integrated photodiode PD2. (b) Zoom of PD1 signal during the ablation time. (d) Normalized power spectrum of the PD1 trace. The target displacement is controlled by a linear stepper-motor stage moving at about 0.2 mm/sec. Relative distance between the collimating lens L1 and the diode emitting window: f1 + 35 µm. The variable attenuator filters the optical feedback of 50% less than in Fig. 2. Laser fluence for the percussion drilling ~1.35 J/cm2.

Fig. 5
Fig. 5

Gedanken experiment of a multiparametric sensor based on SMI technique.

Fig. 6
Fig. 6

Image plot of the Gaussian beam intensity after a cavity half-round trip. (a) dl = 11 mm; (b) dl = 11.035 mm. The target 2 is enclosed by the red circle (in scale). Parametric regime: beam-waist = 1.55 μm, f1 = 11 mm, f = 57.4 mm, d = 560 mm, dTA = 57.4 mm, Rext = 0.97, R = 0.35, εloss = 0.9, ad = 3 μm and at = 15 μm.

Fig. 7
Fig. 7

Left: Experimental results. Representative portions of the PD1 signals of Fig. 2(b) (a), Fig. 3(b) (c), and Fig. 4(b) (e), respectively. Right: Numerical results. Interferometric signal IPD1 for the feedback parameters: (b) m1 = 0.04, m2 = 0.4; (d) m1 = 0.12, m2 = 0.08 and (f) m1 = 0.4, m2 = 0.04, respectively. Target velocity: v1 = Δl1/Δt = 0.4 mm/s; v2 = Δl2/Δt = 8.5 mm/s. The other parameters are given in the text.

Fig. 8
Fig. 8

Normalized power spectrum of the numerical results shown in: (a) Fig. 7(b), (b) Fig. 7(d) and (c) Fig. 7(f), respectively.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

dE(t) dt = 1 2 ( 1 + α ) ( G(N(t) N 0 )- 1 τ p ) E(t) + k 1 τ c E(t τ 1 )e -i ω 0 τ 1 + k 2 τ c E(t τ 2 )e -i ω 0 τ 2 dN(t) dt = μ N(t) τ e G(N(t) N 0 | E(t) | 2
k i = ε i R e x t R ( 1 R )
ε i = ε l o s s P i , b a c k P o u t
E = E 0 e i ( ω F ω 0 ) t
N ( t ) = N 0
I PD1 =|E 0 | 2 ( τ p τ e ) I sol ( 1 + m 1 cos( ω F τ 1 )+m 2 cos ( ω F τ 2 ) )
ω F = ω 0 - m 1 2 τ p ( α cos( ω F τ 1 )+ sin ( ω F τ 1 ) ) m 2 2 τ p ( α cos( ω F τ 2 )+ sin ( ω F τ 2 ) )
m i = 2 τ p τ c R e x t R ( 1 R ) × ε l o s s P i , b a c k P o u t
E g a u s s ( x , y , z , t ) = A 0 q ( z = 0 ) ( 1 R ( z ) + i 2 k 0 W 2 ( z ) ) exp ( i k 0 x 2 + y 2 2 R ( z ) x 2 + y 2 W 2 ( z ) )
1 q ( z ) = 1 R ( z ) + i 2 k 0 W 2 ( z )
q ( z o u t ) = A q ( z i n ) + B C q ( z i n ) + D
A = 1 f 1 f ( d f f 1 f + d T A f d d T A + f 1 d T A ) B = 1 f 1 f ( d ( f 1 d l ) ( f d T A ) f 2 d T A d l + f 1 ( d l d T A + f ( d l + d T A ) ) ) C = 1 f 1 f ( d f 1 f ) D = A
A = 1 f 1 2 f 2 ( ( 2 ( f 1 d l ) ( f d T A ) d 2 2 ( ( f d T A ) f 1 2 + ( f 2 2 ( d T A + d l ) f + 2 d T A d l ) f 1 f d l ( f 2 d T A ) ) d ) + ( 2 f 2 d T A d l + f 1 2 ( f 2 2 ( d T A + d l ) f + 2 d T A d l ) 2 f 1 f ( f ( d T A + d l ) 2 d T A d l ) ) ) B = 1 f 1 2 f 2 ( ( 2 ( d ( f 1 d l ) + f d l + f 1 ( d l f ) ) ( d ( f 1 d l ) ( f d T A ) f d l d T A + f 1 ( f ( d T A + d l ) d l d T A ) ) ) C = 1 f 1 2 f 2 ( 2 ( d + f 1 + f ) ( f 1 ( f d T A ) f d l + d ( d T A f ) ) ) D = A
P t r a n s ( z = z a ) P i n c ( z = z a ) = 0 a ( 2 π d ρ | E g ( ρ , z = z a ) | 2 ) 0 ( 2 π d ρ | E g ( ρ , z = z a ) | 2 ) = ( 1 exp ( 2 a 2 W 2 ( z = z a ) ) )
P 1 , b a c k ( 2 l 1 ) P o u t = P * 1 , b a c k ( 2 l 1 ) P o u t P t r a n s ( 2 l 1 ) P t r a n s ( l 1 ) P t r a n s ( l 1 ) P o u t = ( 1 exp ( 2 a d 2 W 2 ( 2 l 1 ) ) ) × exp ( 2 a t 2 W 2 ( l 1 ) ) P 2 , b a c k ( 2 l 2 ) P o u t = P t r a n s ( 2 l 2 ) P t r a n s ( l 2 ) P t r a n s ( l 2 ) P o u t = ( 1 exp ( 2 a d 2 W 2 ( 2 l 2 ) ) ) × ( 1 exp ( 2 a t 2 W 2 ( l 2 ) ) )

Metrics