Abstract

We report the attempt of optical quantization and coding in 5-bit parallel format for photonic A/D conversion. The proposed system is designed to realize generation of 32 different optical codes in proportion to the corresponding signal levels when fed a certain range of amplitude-varied input pulses to the setup. Optical coding in a bit-parallel format made it possible, that provides 5bit optical codes from 32 optical quantized pulses. The 5-bit parallel operation of an optical quantization and coding module with 5 multi-ports was tested in our experimental setup.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Liu, M. T. Hill, N. Calabretta, E. Tangdiongga, R. Geldenhuys, S. Zhang, Z. Li, H. De Waardt, G. D. Khoe, and H. J. S. Dorren, “All-optical signal processing for optical packet switching networks,” Proc. SPIE 5907, 59070J (2005).
    [CrossRef]
  2. R. H. Walden, “Analog-to-digital converter survey and analysis,” IEEE J. Sel. Areas Commun. 17, 539–550 (1999).
    [CrossRef]
  3. B. L. Shoop, Photonic Analog-to-Digital Conversion (Springer-Verlag, 2001).
  4. G. C. Valley, “Photonic analog-to-digital converters,” Opt. Express 15, 1955–1982 (2007).
    [CrossRef] [PubMed]
  5. H. F. Taylor, “An electro-optic analog-to-digital converter,” Proc. IEEE 63, 1524–1525 (1975).
    [CrossRef]
  6. C. S. Langhorst and H.-G. Weber, “Optical sampling techniques,” J. Opt. Fiber. Commun. Rep. 2, 86–114 (2005).
    [CrossRef]
  7. T. Kawanishi, T. Sakamoto, and M. Izutsu, “470GHz optical clock signal generation using reciprocating optical modulation,” ECOC2006, We4.6 (Canne, 2009).
  8. H. Ji, M. Pu, H. Hu, M. Galili, L. K. Oxenlowe, K. Yvind, J. M. Hvam, and P. Jeppesen, “Optical waveform sampling and error-free demultiplexing of 1.28 Tb/s serial data in a nanoengineered silicon waveguide,” J. Lightwave Technol. 29, 426–431 (2011).
    [CrossRef]
  9. J. -M. Jeong and M. E. Marhic, “All-optical analog-to-digital and digital-to-analog conversion implemented by a nonlinear fiber interferometer,” Opt. Commun. 91, 115–122 (1992).
    [CrossRef]
  10. P. P. Ho, Q. Z. Wang, J. Chen, Q. D. Liu, and R. R. Alfano, “Ultrafast optical pulse digitization with unary spectrally encoded cross-phase modulation,” Appl. Opt. 36, 3425–3429 (1997).
    [CrossRef] [PubMed]
  11. T. Konishi, K. Tanimura, K. Asano, Y. Oshita, and Y. Ichioka, “All-optical analog-to-digital converter by use of self-frequency shifting in fiber and a pulse-shaping technique,” J. Opt. Soc. Am. B 19, 2817–2823 (2002).
    [CrossRef]
  12. S. Oda, A. Maruta, and K. Kitayama, “All-optical quantization scheme based on fiber nonlinearity,” IEEE Photon. Technol. Lett. 16, 587–589 (2004).
    [CrossRef]
  13. K. Ikeda, J. M. Abdul, H. Tobioka, T. Inoue, S. Namiki, and K. Kitayama, “Design considerations of all-optical A/D conversion: Nonlinear fiber-optic sagnac-loop interferometer-based optical quantizing and coding,” J. Light-wave Technol. 24, 2618–2628 (2006).
    [CrossRef]
  14. J. Stigwall and S. Galt, “Demonstration and analysis of a 40 gigasample/s interferometric analog-to-digital converter,” J. Lightwave Technol. 24, 1247–1256 (2004).
    [CrossRef]
  15. T. Nishitani, T. Konishi, and K. Itoh, “Optical coding scheme using optical interconnection for high sampling rate and high resolution photonic analog-to-digital conversion,” Opt. Express 15, 15812–15817 (2007).
    [CrossRef] [PubMed]
  16. T. Nishitani, T. Konishi, and K. Itoh, “All-optical M-ary ASK signal demultiplexer based on photonic analog-to-digital conversion,” Opt. Express 15, 17025–17031 (2007).
    [CrossRef] [PubMed]
  17. T. Nishitani, T. Konishi, and K. Itoh, “Resolution improvement of all-optical analog-to-digital conversion employing self-frequency shift and self-phase-modulation-induced spectral compression,” IEEE J. Sel. Top. Quantum Electron. 14, 724–732 (2008).
    [CrossRef]
  18. Y. Miyoshi, S. Takagi, S. Namiki, and K. Kitayama, “Multiperiod PM-NOLM With dynamic counter-propagating effects compensation for 5-Bit all-optical analog-to-digital conversion and its performance evaluations,” J. Light-wave Technol. 28, 415–422 (2010).
    [CrossRef]
  19. B. R. Washburn, J. A. Buck, and S. E. Ralph, “Transform-limited spectral compression due to self-phasemodulation in fibers,” Opt. Lett. 25, 445–447 (2000).
    [CrossRef]
  20. A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71, 1929–1960 (2000).
    [CrossRef]
  21. Y. Tsunoda and J. W. Goodman, “Combined optical AD conversion and page composition for holographic memory applications,” Appl. Opt. 16, 2607–2609 (1977).
    [CrossRef] [PubMed]

2011 (1)

2010 (1)

Y. Miyoshi, S. Takagi, S. Namiki, and K. Kitayama, “Multiperiod PM-NOLM With dynamic counter-propagating effects compensation for 5-Bit all-optical analog-to-digital conversion and its performance evaluations,” J. Light-wave Technol. 28, 415–422 (2010).
[CrossRef]

2009 (1)

T. Kawanishi, T. Sakamoto, and M. Izutsu, “470GHz optical clock signal generation using reciprocating optical modulation,” ECOC2006, We4.6 (Canne, 2009).

2008 (1)

T. Nishitani, T. Konishi, and K. Itoh, “Resolution improvement of all-optical analog-to-digital conversion employing self-frequency shift and self-phase-modulation-induced spectral compression,” IEEE J. Sel. Top. Quantum Electron. 14, 724–732 (2008).
[CrossRef]

2007 (3)

2006 (1)

K. Ikeda, J. M. Abdul, H. Tobioka, T. Inoue, S. Namiki, and K. Kitayama, “Design considerations of all-optical A/D conversion: Nonlinear fiber-optic sagnac-loop interferometer-based optical quantizing and coding,” J. Light-wave Technol. 24, 2618–2628 (2006).
[CrossRef]

2005 (2)

Y. Liu, M. T. Hill, N. Calabretta, E. Tangdiongga, R. Geldenhuys, S. Zhang, Z. Li, H. De Waardt, G. D. Khoe, and H. J. S. Dorren, “All-optical signal processing for optical packet switching networks,” Proc. SPIE 5907, 59070J (2005).
[CrossRef]

C. S. Langhorst and H.-G. Weber, “Optical sampling techniques,” J. Opt. Fiber. Commun. Rep. 2, 86–114 (2005).
[CrossRef]

2004 (2)

J. Stigwall and S. Galt, “Demonstration and analysis of a 40 gigasample/s interferometric analog-to-digital converter,” J. Lightwave Technol. 24, 1247–1256 (2004).
[CrossRef]

S. Oda, A. Maruta, and K. Kitayama, “All-optical quantization scheme based on fiber nonlinearity,” IEEE Photon. Technol. Lett. 16, 587–589 (2004).
[CrossRef]

2002 (1)

2001 (1)

B. L. Shoop, Photonic Analog-to-Digital Conversion (Springer-Verlag, 2001).

2000 (2)

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71, 1929–1960 (2000).
[CrossRef]

B. R. Washburn, J. A. Buck, and S. E. Ralph, “Transform-limited spectral compression due to self-phasemodulation in fibers,” Opt. Lett. 25, 445–447 (2000).
[CrossRef]

1999 (1)

R. H. Walden, “Analog-to-digital converter survey and analysis,” IEEE J. Sel. Areas Commun. 17, 539–550 (1999).
[CrossRef]

1997 (1)

1992 (1)

J. -M. Jeong and M. E. Marhic, “All-optical analog-to-digital and digital-to-analog conversion implemented by a nonlinear fiber interferometer,” Opt. Commun. 91, 115–122 (1992).
[CrossRef]

1977 (1)

1975 (1)

H. F. Taylor, “An electro-optic analog-to-digital converter,” Proc. IEEE 63, 1524–1525 (1975).
[CrossRef]

Abdul, J. M.

K. Ikeda, J. M. Abdul, H. Tobioka, T. Inoue, S. Namiki, and K. Kitayama, “Design considerations of all-optical A/D conversion: Nonlinear fiber-optic sagnac-loop interferometer-based optical quantizing and coding,” J. Light-wave Technol. 24, 2618–2628 (2006).
[CrossRef]

Alfano, R. R.

Asano, K.

Buck, J. A.

Calabretta, N.

Y. Liu, M. T. Hill, N. Calabretta, E. Tangdiongga, R. Geldenhuys, S. Zhang, Z. Li, H. De Waardt, G. D. Khoe, and H. J. S. Dorren, “All-optical signal processing for optical packet switching networks,” Proc. SPIE 5907, 59070J (2005).
[CrossRef]

Chen, J.

De Waardt, H.

Y. Liu, M. T. Hill, N. Calabretta, E. Tangdiongga, R. Geldenhuys, S. Zhang, Z. Li, H. De Waardt, G. D. Khoe, and H. J. S. Dorren, “All-optical signal processing for optical packet switching networks,” Proc. SPIE 5907, 59070J (2005).
[CrossRef]

Dorren, H. J. S.

Y. Liu, M. T. Hill, N. Calabretta, E. Tangdiongga, R. Geldenhuys, S. Zhang, Z. Li, H. De Waardt, G. D. Khoe, and H. J. S. Dorren, “All-optical signal processing for optical packet switching networks,” Proc. SPIE 5907, 59070J (2005).
[CrossRef]

Galili, M.

Galt, S.

Geldenhuys, R.

Y. Liu, M. T. Hill, N. Calabretta, E. Tangdiongga, R. Geldenhuys, S. Zhang, Z. Li, H. De Waardt, G. D. Khoe, and H. J. S. Dorren, “All-optical signal processing for optical packet switching networks,” Proc. SPIE 5907, 59070J (2005).
[CrossRef]

Goodman, J. W.

Hill, M. T.

Y. Liu, M. T. Hill, N. Calabretta, E. Tangdiongga, R. Geldenhuys, S. Zhang, Z. Li, H. De Waardt, G. D. Khoe, and H. J. S. Dorren, “All-optical signal processing for optical packet switching networks,” Proc. SPIE 5907, 59070J (2005).
[CrossRef]

Ho, P. P.

Hu, H.

Hvam, J. M.

Ichioka, Y.

Ikeda, K.

K. Ikeda, J. M. Abdul, H. Tobioka, T. Inoue, S. Namiki, and K. Kitayama, “Design considerations of all-optical A/D conversion: Nonlinear fiber-optic sagnac-loop interferometer-based optical quantizing and coding,” J. Light-wave Technol. 24, 2618–2628 (2006).
[CrossRef]

Inoue, T.

K. Ikeda, J. M. Abdul, H. Tobioka, T. Inoue, S. Namiki, and K. Kitayama, “Design considerations of all-optical A/D conversion: Nonlinear fiber-optic sagnac-loop interferometer-based optical quantizing and coding,” J. Light-wave Technol. 24, 2618–2628 (2006).
[CrossRef]

Itoh, K.

Izutsu, M.

T. Kawanishi, T. Sakamoto, and M. Izutsu, “470GHz optical clock signal generation using reciprocating optical modulation,” ECOC2006, We4.6 (Canne, 2009).

Jeong, J. -M.

J. -M. Jeong and M. E. Marhic, “All-optical analog-to-digital and digital-to-analog conversion implemented by a nonlinear fiber interferometer,” Opt. Commun. 91, 115–122 (1992).
[CrossRef]

Jeppesen, P.

Ji, H.

Kawanishi, T.

T. Kawanishi, T. Sakamoto, and M. Izutsu, “470GHz optical clock signal generation using reciprocating optical modulation,” ECOC2006, We4.6 (Canne, 2009).

Khoe, G. D.

Y. Liu, M. T. Hill, N. Calabretta, E. Tangdiongga, R. Geldenhuys, S. Zhang, Z. Li, H. De Waardt, G. D. Khoe, and H. J. S. Dorren, “All-optical signal processing for optical packet switching networks,” Proc. SPIE 5907, 59070J (2005).
[CrossRef]

Kitayama, K.

Y. Miyoshi, S. Takagi, S. Namiki, and K. Kitayama, “Multiperiod PM-NOLM With dynamic counter-propagating effects compensation for 5-Bit all-optical analog-to-digital conversion and its performance evaluations,” J. Light-wave Technol. 28, 415–422 (2010).
[CrossRef]

K. Ikeda, J. M. Abdul, H. Tobioka, T. Inoue, S. Namiki, and K. Kitayama, “Design considerations of all-optical A/D conversion: Nonlinear fiber-optic sagnac-loop interferometer-based optical quantizing and coding,” J. Light-wave Technol. 24, 2618–2628 (2006).
[CrossRef]

S. Oda, A. Maruta, and K. Kitayama, “All-optical quantization scheme based on fiber nonlinearity,” IEEE Photon. Technol. Lett. 16, 587–589 (2004).
[CrossRef]

Konishi, T.

Langhorst, C. S.

C. S. Langhorst and H.-G. Weber, “Optical sampling techniques,” J. Opt. Fiber. Commun. Rep. 2, 86–114 (2005).
[CrossRef]

Li, Z.

Y. Liu, M. T. Hill, N. Calabretta, E. Tangdiongga, R. Geldenhuys, S. Zhang, Z. Li, H. De Waardt, G. D. Khoe, and H. J. S. Dorren, “All-optical signal processing for optical packet switching networks,” Proc. SPIE 5907, 59070J (2005).
[CrossRef]

Liu, Q. D.

Liu, Y.

Y. Liu, M. T. Hill, N. Calabretta, E. Tangdiongga, R. Geldenhuys, S. Zhang, Z. Li, H. De Waardt, G. D. Khoe, and H. J. S. Dorren, “All-optical signal processing for optical packet switching networks,” Proc. SPIE 5907, 59070J (2005).
[CrossRef]

Marhic, M. E.

J. -M. Jeong and M. E. Marhic, “All-optical analog-to-digital and digital-to-analog conversion implemented by a nonlinear fiber interferometer,” Opt. Commun. 91, 115–122 (1992).
[CrossRef]

Maruta, A.

S. Oda, A. Maruta, and K. Kitayama, “All-optical quantization scheme based on fiber nonlinearity,” IEEE Photon. Technol. Lett. 16, 587–589 (2004).
[CrossRef]

Miyoshi, Y.

Y. Miyoshi, S. Takagi, S. Namiki, and K. Kitayama, “Multiperiod PM-NOLM With dynamic counter-propagating effects compensation for 5-Bit all-optical analog-to-digital conversion and its performance evaluations,” J. Light-wave Technol. 28, 415–422 (2010).
[CrossRef]

Namiki, S.

Y. Miyoshi, S. Takagi, S. Namiki, and K. Kitayama, “Multiperiod PM-NOLM With dynamic counter-propagating effects compensation for 5-Bit all-optical analog-to-digital conversion and its performance evaluations,” J. Light-wave Technol. 28, 415–422 (2010).
[CrossRef]

K. Ikeda, J. M. Abdul, H. Tobioka, T. Inoue, S. Namiki, and K. Kitayama, “Design considerations of all-optical A/D conversion: Nonlinear fiber-optic sagnac-loop interferometer-based optical quantizing and coding,” J. Light-wave Technol. 24, 2618–2628 (2006).
[CrossRef]

Nishitani, T.

Oda, S.

S. Oda, A. Maruta, and K. Kitayama, “All-optical quantization scheme based on fiber nonlinearity,” IEEE Photon. Technol. Lett. 16, 587–589 (2004).
[CrossRef]

Oshita, Y.

Oxenlowe, L. K.

Pu, M.

Ralph, S. E.

Sakamoto, T.

T. Kawanishi, T. Sakamoto, and M. Izutsu, “470GHz optical clock signal generation using reciprocating optical modulation,” ECOC2006, We4.6 (Canne, 2009).

Shoop, B. L.

B. L. Shoop, Photonic Analog-to-Digital Conversion (Springer-Verlag, 2001).

Stigwall, J.

Takagi, S.

Y. Miyoshi, S. Takagi, S. Namiki, and K. Kitayama, “Multiperiod PM-NOLM With dynamic counter-propagating effects compensation for 5-Bit all-optical analog-to-digital conversion and its performance evaluations,” J. Light-wave Technol. 28, 415–422 (2010).
[CrossRef]

Tangdiongga, E.

Y. Liu, M. T. Hill, N. Calabretta, E. Tangdiongga, R. Geldenhuys, S. Zhang, Z. Li, H. De Waardt, G. D. Khoe, and H. J. S. Dorren, “All-optical signal processing for optical packet switching networks,” Proc. SPIE 5907, 59070J (2005).
[CrossRef]

Tanimura, K.

Taylor, H. F.

H. F. Taylor, “An electro-optic analog-to-digital converter,” Proc. IEEE 63, 1524–1525 (1975).
[CrossRef]

Tobioka, H.

K. Ikeda, J. M. Abdul, H. Tobioka, T. Inoue, S. Namiki, and K. Kitayama, “Design considerations of all-optical A/D conversion: Nonlinear fiber-optic sagnac-loop interferometer-based optical quantizing and coding,” J. Light-wave Technol. 24, 2618–2628 (2006).
[CrossRef]

Tsunoda, Y.

Valley, G. C.

Walden, R. H.

R. H. Walden, “Analog-to-digital converter survey and analysis,” IEEE J. Sel. Areas Commun. 17, 539–550 (1999).
[CrossRef]

Wang, Q. Z.

Washburn, B. R.

Weber, H.-G.

C. S. Langhorst and H.-G. Weber, “Optical sampling techniques,” J. Opt. Fiber. Commun. Rep. 2, 86–114 (2005).
[CrossRef]

Weiner, A. M.

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71, 1929–1960 (2000).
[CrossRef]

Yvind, K.

Zhang, S.

Y. Liu, M. T. Hill, N. Calabretta, E. Tangdiongga, R. Geldenhuys, S. Zhang, Z. Li, H. De Waardt, G. D. Khoe, and H. J. S. Dorren, “All-optical signal processing for optical packet switching networks,” Proc. SPIE 5907, 59070J (2005).
[CrossRef]

Appl. Opt. (2)

IEEE J. Sel. Areas Commun. (1)

R. H. Walden, “Analog-to-digital converter survey and analysis,” IEEE J. Sel. Areas Commun. 17, 539–550 (1999).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

T. Nishitani, T. Konishi, and K. Itoh, “Resolution improvement of all-optical analog-to-digital conversion employing self-frequency shift and self-phase-modulation-induced spectral compression,” IEEE J. Sel. Top. Quantum Electron. 14, 724–732 (2008).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

S. Oda, A. Maruta, and K. Kitayama, “All-optical quantization scheme based on fiber nonlinearity,” IEEE Photon. Technol. Lett. 16, 587–589 (2004).
[CrossRef]

J. Light-wave Technol. (2)

K. Ikeda, J. M. Abdul, H. Tobioka, T. Inoue, S. Namiki, and K. Kitayama, “Design considerations of all-optical A/D conversion: Nonlinear fiber-optic sagnac-loop interferometer-based optical quantizing and coding,” J. Light-wave Technol. 24, 2618–2628 (2006).
[CrossRef]

Y. Miyoshi, S. Takagi, S. Namiki, and K. Kitayama, “Multiperiod PM-NOLM With dynamic counter-propagating effects compensation for 5-Bit all-optical analog-to-digital conversion and its performance evaluations,” J. Light-wave Technol. 28, 415–422 (2010).
[CrossRef]

J. Lightwave Technol. (2)

J. Opt. Fiber. Commun. Rep. (1)

C. S. Langhorst and H.-G. Weber, “Optical sampling techniques,” J. Opt. Fiber. Commun. Rep. 2, 86–114 (2005).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

J. -M. Jeong and M. E. Marhic, “All-optical analog-to-digital and digital-to-analog conversion implemented by a nonlinear fiber interferometer,” Opt. Commun. 91, 115–122 (1992).
[CrossRef]

Opt. Express (3)

Opt. Lett. (1)

Proc. IEEE (1)

H. F. Taylor, “An electro-optic analog-to-digital converter,” Proc. IEEE 63, 1524–1525 (1975).
[CrossRef]

Proc. SPIE (1)

Y. Liu, M. T. Hill, N. Calabretta, E. Tangdiongga, R. Geldenhuys, S. Zhang, Z. Li, H. De Waardt, G. D. Khoe, and H. J. S. Dorren, “All-optical signal processing for optical packet switching networks,” Proc. SPIE 5907, 59070J (2005).
[CrossRef]

Rev. Sci. Instrum. (1)

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71, 1929–1960 (2000).
[CrossRef]

Other (2)

B. L. Shoop, Photonic Analog-to-Digital Conversion (Springer-Verlag, 2001).

T. Kawanishi, T. Sakamoto, and M. Izutsu, “470GHz optical clock signal generation using reciprocating optical modulation,” ECOC2006, We4.6 (Canne, 2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic diagram of optical quantization and coding.

Fig. 2
Fig. 2

Experimental setup of 5-bit Parallel Operation of Optical Quantization and Coding Module with 5 Multi-Ports for Photonic Analog-to-Digital Conversion; EDFA : Eribium doped fiber amplifier, SMF : Single mode fiber, HNLF:High nonlinear fiber ,ATT : Optical attenuator, OBPF : Optical band pass filter, C:Collimator, CL: Cylindrical Lens, L:Spherical Lens, G:Diffractive Grating, M:Coding Mask, IR-Camera: Infrared camera.

Fig. 3
Fig. 3

Spatial mask M.

Fig. 4
Fig. 4

Experimental results of optical quantization; (a) Center frequency shift as a function of input peak power and (b) Output spectra of colored level identification signals.

Fig. 5
Fig. 5

Experimental results of 5-bit Parallel Operation of Optical Quantization and Coding; (a) 32 output multiple-bit binary codes and (b) Transfer function of each output port b1-b5.

Fig. 6
Fig. 6

Experimental results of temporal profiles; (a) After quantization (before coding) and (b) After coding.

Fig. 7
Fig. 7

BER curves calculated for signals of the back-to-back and the third port b3 (the output center wavelength;1593nm) as a function of receiver input power at the sampling rate 10GS/s.

Fig. 8
Fig. 8

Experimentally obtained transfer function of 5bit optical quantization and coding.

Fig. 9
Fig. 9

Integral nonlinearity error and differential nonlinearity error.

Tables (1)

Tables Icon

Table 1 Binary Conversion Table

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

E N O B = 20 l o g ( P S / P N ) 6.02
P S = P F S 12 ,
P N 1 12 ( P F S 2 N ) 2 + 1 2 N i = 1 2 N 1 ( Δ P S t e p i ) 2

Metrics