Abstract

We present an optical write / read system for high density optical data storage in 3-D. The microholographic approach relies on submicron-sized reflection gratings that encode the digital data. As in conventional optical data storage, the physical limitations are imposed by both the diffraction of light and resolution of the recording material. We demonstrate resolution-limited volume recording in photopolymer materials sensitive in the green and violet spectral range. The volume occupied by a micrograting scales down by the transition in the write / read wavelength. Readout yields a micrograting width of 306 nm at 532 nm and 197 nm at 405 nm. To our knowledge these are the smallest volume holograms ever recorded. The recordings demonstrate the potential of the technique for volumetric optical structuring, data storage and encryption.

© 2011 OSA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Mansuripur, The Physical Principles of Magneto-optical Recording (Cambridge Univ. Press, 1995), Chap. 1.
  2. T. Wilson, Y. Kawata, and S. Kawata, “Readout of three-dimensional optical memories,” Opt. Lett. 21(13), 1003–1005 (1996).
    [CrossRef] [PubMed]
  3. S. Hunter, F. Kiamilev, S. C. Esener, D. A. Parthenopoulos, and P. M. Rentzepis, “Potentials of two-photon based 3-D optical memories for high performance computing,” Appl. Opt. 29(14), 2058–2066 (1990).
    [CrossRef] [PubMed]
  4. J. W. Perry, B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, and S. R. Marder, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
    [CrossRef]
  5. M. M. Wang and S. C. Esener, “Three-dimensional optical data storage in a fluorescent dye-doped photopolymer,” Appl. Opt. 39(11), 1826–1834 (2000).
    [CrossRef] [PubMed]
  6. S. Kawata and Y. Kawata, “Three-dimensional optical data storage using photochromic materials,” Chem. Rev. 100(5), 1777–1788 (2000).
    [CrossRef] [PubMed]
  7. J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265(5173), 749–752 (1994).
    [CrossRef] [PubMed]
  8. S. Homan and A. E. Willner, “High-capacity optical storage using multiple wavelengths, multiple layers and volume holograms,” Electron. Lett. 31(8), 621–623 (1995).
    [CrossRef]
  9. H. J. Coufal, D. Psaltis, and G. T. Sincerbox, eds., Holographic Data Storage (Springer-Verlag, 2000).
  10. H. J. Eichler, P. Kuemmel, S. Orlic, and A. Wappelt, “High density disk storage by multiplexed microholograms,” IEEE J. Sel. Top. Quantum Electron. 4(5), 840–848 (1998).
    [CrossRef]
  11. S. Orlic, S. Ulm, and H. J. Eichler, “3D bit-oriented optical storage in photopolymers,” J. Opt. A, Pure Appl. Opt. 3(1), 72–81 (2001).
    [CrossRef]
  12. R. R. McLeod, A. J. Daiber, M. E. McDonald, T. L. Robertson, T. Slagle, S. L. Sochava, and L. Hesselink, “Microholographic multilayer optical disk data storage,” Appl. Opt. 44(16), 3197–3207 (2005).
    [CrossRef] [PubMed]
  13. M. Dubois, X. Shi, C. Erben, B. Lawrence, E. Boden, and K. Longley, “Microholograms recorded in a thermoplastic medium for three-dimensional data storage,” Jpn. J. Appl. Phys. 45(2B), 1239–1245 (2006).
    [CrossRef]
  14. K. Saito and S. Kobayashi, “Analysis of micro-reflector 3D optical disc recording,” Proc. SPIE 6282, 628213 (2007).
    [CrossRef]
  15. D. Day, M. Gu, and A. Smallridge, “Rewritable 3D bit optical data storage in a PMMA-based photorefractive polymer,” Adv. Mater. (Deerfield Beach Fla.) 13(12-13), 1005–1007 (2001).
    [CrossRef]
  16. X. P. Li, J. W. M. Chon, S. H. Wu, R. A. Evans, and M. Gu, “Rewritable polarization-encoded multilayer data storage in 2,5-dimethyl-4-(p-nitrophenylazo)anisole doped polymer,” Opt. Lett. 32(3), 277–279 (2007).
    [CrossRef] [PubMed]
  17. P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
    [CrossRef] [PubMed]
  18. W. S. Colburn and K. A. Haines, “Volume hologram formation in photopolymer materials,” Appl. Opt. 10(7), 1636–1641 (1971).
    [CrossRef] [PubMed]
  19. G. Odian, Principles of Polymerisation, 4th ed. (John Wiles & Sons Inc., 2004).
  20. R. T. Ingwall and D. A. Waldman, in Holographic Data Storage, H. J. Coufal, D. Psaltis, G. T. Sincerbox, eds. (Springer-Verlag, 2000), Chap. Photopolymer systems.
  21. S. Orlic, E. Dietz, T. Feid, S. Frohmann, and C. Mueller, “Optical investigation of photopolymer systems for microholographic storage,” J. Opt. A, Pure Appl. Opt. 11(2), 024014 (2009).
    [CrossRef]
  22. L. Dhar, M. G. Schnoes, H. E. Katz, A. Hale, and M. L. Schilling, in Holographic Data Storage, H. J. Coufal, D. Psaltis, G. T. Sincerbox, eds. (Springer-Verlag, 2000), Chap. Photopolymers for digital holographic storage.
  23. B. Kippelen, in Holographic Data Storage, H. J. Coufal, D. Psaltis, G. T. Sincerbox, eds. (Springer-Verlag, 2000), Chap. Overview of photorefractive polymers for holographic data storage.
  24. D. A. Waldman, R. T. Ingwall, P. K. Dhal, M. G. Horner, E. S. Kolb, H.-Y. S. Li, R. A. Minns, and H. G. Schild, “Cationic ring-opening photopolymerization methods for volume hologram recording,” Proc. SPIE 2689, 127–141 (1996).
    [CrossRef]
  25. D. A. Waldman, C. J. Butler, and D. H. Raguin, “CROP holographic storage media for optical data storage at greater than 100 bits/?m2,” Proc. SPIE 5216, 10–25 (2003).
    [CrossRef]
  26. D. A. Waldman, E. S. Kolb, C. Wang, “DHD™ CROP holographic storage media for advanced optical data storage,” Optical Data Storage (ODS), OSA Technical Digest Series WDPD 4–7 (2007).
  27. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).

2009 (2)

S. Orlic, E. Dietz, T. Feid, S. Frohmann, and C. Mueller, “Optical investigation of photopolymer systems for microholographic storage,” J. Opt. A, Pure Appl. Opt. 11(2), 024014 (2009).
[CrossRef]

P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[CrossRef] [PubMed]

2007 (2)

2006 (1)

M. Dubois, X. Shi, C. Erben, B. Lawrence, E. Boden, and K. Longley, “Microholograms recorded in a thermoplastic medium for three-dimensional data storage,” Jpn. J. Appl. Phys. 45(2B), 1239–1245 (2006).
[CrossRef]

2005 (1)

2003 (1)

D. A. Waldman, C. J. Butler, and D. H. Raguin, “CROP holographic storage media for optical data storage at greater than 100 bits/?m2,” Proc. SPIE 5216, 10–25 (2003).
[CrossRef]

2001 (2)

D. Day, M. Gu, and A. Smallridge, “Rewritable 3D bit optical data storage in a PMMA-based photorefractive polymer,” Adv. Mater. (Deerfield Beach Fla.) 13(12-13), 1005–1007 (2001).
[CrossRef]

S. Orlic, S. Ulm, and H. J. Eichler, “3D bit-oriented optical storage in photopolymers,” J. Opt. A, Pure Appl. Opt. 3(1), 72–81 (2001).
[CrossRef]

2000 (2)

S. Kawata and Y. Kawata, “Three-dimensional optical data storage using photochromic materials,” Chem. Rev. 100(5), 1777–1788 (2000).
[CrossRef] [PubMed]

M. M. Wang and S. C. Esener, “Three-dimensional optical data storage in a fluorescent dye-doped photopolymer,” Appl. Opt. 39(11), 1826–1834 (2000).
[CrossRef] [PubMed]

1999 (1)

J. W. Perry, B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, and S. R. Marder, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

1998 (1)

H. J. Eichler, P. Kuemmel, S. Orlic, and A. Wappelt, “High density disk storage by multiplexed microholograms,” IEEE J. Sel. Top. Quantum Electron. 4(5), 840–848 (1998).
[CrossRef]

1996 (2)

T. Wilson, Y. Kawata, and S. Kawata, “Readout of three-dimensional optical memories,” Opt. Lett. 21(13), 1003–1005 (1996).
[CrossRef] [PubMed]

D. A. Waldman, R. T. Ingwall, P. K. Dhal, M. G. Horner, E. S. Kolb, H.-Y. S. Li, R. A. Minns, and H. G. Schild, “Cationic ring-opening photopolymerization methods for volume hologram recording,” Proc. SPIE 2689, 127–141 (1996).
[CrossRef]

1995 (1)

S. Homan and A. E. Willner, “High-capacity optical storage using multiple wavelengths, multiple layers and volume holograms,” Electron. Lett. 31(8), 621–623 (1995).
[CrossRef]

1994 (1)

J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265(5173), 749–752 (1994).
[CrossRef] [PubMed]

1990 (1)

1971 (1)

1969 (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).

Ananthavel, S. P.

J. W. Perry, B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, and S. R. Marder, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

Barlow, S.

J. W. Perry, B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, and S. R. Marder, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

Bashaw, M. C.

J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265(5173), 749–752 (1994).
[CrossRef] [PubMed]

Boden, E.

M. Dubois, X. Shi, C. Erben, B. Lawrence, E. Boden, and K. Longley, “Microholograms recorded in a thermoplastic medium for three-dimensional data storage,” Jpn. J. Appl. Phys. 45(2B), 1239–1245 (2006).
[CrossRef]

Butler, C. J.

D. A. Waldman, C. J. Butler, and D. H. Raguin, “CROP holographic storage media for optical data storage at greater than 100 bits/?m2,” Proc. SPIE 5216, 10–25 (2003).
[CrossRef]

Chon, J. W. M.

Colburn, W. S.

Cumpston, B. H.

J. W. Perry, B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, and S. R. Marder, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

Daiber, A. J.

Day, D.

D. Day, M. Gu, and A. Smallridge, “Rewritable 3D bit optical data storage in a PMMA-based photorefractive polymer,” Adv. Mater. (Deerfield Beach Fla.) 13(12-13), 1005–1007 (2001).
[CrossRef]

Dhal, P. K.

D. A. Waldman, R. T. Ingwall, P. K. Dhal, M. G. Horner, E. S. Kolb, H.-Y. S. Li, R. A. Minns, and H. G. Schild, “Cationic ring-opening photopolymerization methods for volume hologram recording,” Proc. SPIE 2689, 127–141 (1996).
[CrossRef]

Dietz, E.

S. Orlic, E. Dietz, T. Feid, S. Frohmann, and C. Mueller, “Optical investigation of photopolymer systems for microholographic storage,” J. Opt. A, Pure Appl. Opt. 11(2), 024014 (2009).
[CrossRef]

Dubois, M.

M. Dubois, X. Shi, C. Erben, B. Lawrence, E. Boden, and K. Longley, “Microholograms recorded in a thermoplastic medium for three-dimensional data storage,” Jpn. J. Appl. Phys. 45(2B), 1239–1245 (2006).
[CrossRef]

Dyer, D. L.

J. W. Perry, B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, and S. R. Marder, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

Ehrlich, J. E.

J. W. Perry, B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, and S. R. Marder, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

Eichler, H. J.

S. Orlic, S. Ulm, and H. J. Eichler, “3D bit-oriented optical storage in photopolymers,” J. Opt. A, Pure Appl. Opt. 3(1), 72–81 (2001).
[CrossRef]

H. J. Eichler, P. Kuemmel, S. Orlic, and A. Wappelt, “High density disk storage by multiplexed microholograms,” IEEE J. Sel. Top. Quantum Electron. 4(5), 840–848 (1998).
[CrossRef]

Erben, C.

M. Dubois, X. Shi, C. Erben, B. Lawrence, E. Boden, and K. Longley, “Microholograms recorded in a thermoplastic medium for three-dimensional data storage,” Jpn. J. Appl. Phys. 45(2B), 1239–1245 (2006).
[CrossRef]

Erskine, L. L.

J. W. Perry, B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, and S. R. Marder, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

Esener, S. C.

Evans, R. A.

Feid, T.

S. Orlic, E. Dietz, T. Feid, S. Frohmann, and C. Mueller, “Optical investigation of photopolymer systems for microholographic storage,” J. Opt. A, Pure Appl. Opt. 11(2), 024014 (2009).
[CrossRef]

Frohmann, S.

S. Orlic, E. Dietz, T. Feid, S. Frohmann, and C. Mueller, “Optical investigation of photopolymer systems for microholographic storage,” J. Opt. A, Pure Appl. Opt. 11(2), 024014 (2009).
[CrossRef]

Gu, M.

P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[CrossRef] [PubMed]

X. P. Li, J. W. M. Chon, S. H. Wu, R. A. Evans, and M. Gu, “Rewritable polarization-encoded multilayer data storage in 2,5-dimethyl-4-(p-nitrophenylazo)anisole doped polymer,” Opt. Lett. 32(3), 277–279 (2007).
[CrossRef] [PubMed]

D. Day, M. Gu, and A. Smallridge, “Rewritable 3D bit optical data storage in a PMMA-based photorefractive polymer,” Adv. Mater. (Deerfield Beach Fla.) 13(12-13), 1005–1007 (2001).
[CrossRef]

Haines, K. A.

Heanue, J. F.

J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265(5173), 749–752 (1994).
[CrossRef] [PubMed]

Heikal, A. A.

J. W. Perry, B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, and S. R. Marder, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

Hesselink, L.

Homan, S.

S. Homan and A. E. Willner, “High-capacity optical storage using multiple wavelengths, multiple layers and volume holograms,” Electron. Lett. 31(8), 621–623 (1995).
[CrossRef]

Horner, M. G.

D. A. Waldman, R. T. Ingwall, P. K. Dhal, M. G. Horner, E. S. Kolb, H.-Y. S. Li, R. A. Minns, and H. G. Schild, “Cationic ring-opening photopolymerization methods for volume hologram recording,” Proc. SPIE 2689, 127–141 (1996).
[CrossRef]

Hunter, S.

Ingwall, R. T.

D. A. Waldman, R. T. Ingwall, P. K. Dhal, M. G. Horner, E. S. Kolb, H.-Y. S. Li, R. A. Minns, and H. G. Schild, “Cationic ring-opening photopolymerization methods for volume hologram recording,” Proc. SPIE 2689, 127–141 (1996).
[CrossRef]

Kawata, S.

S. Kawata and Y. Kawata, “Three-dimensional optical data storage using photochromic materials,” Chem. Rev. 100(5), 1777–1788 (2000).
[CrossRef] [PubMed]

T. Wilson, Y. Kawata, and S. Kawata, “Readout of three-dimensional optical memories,” Opt. Lett. 21(13), 1003–1005 (1996).
[CrossRef] [PubMed]

Kawata, Y.

S. Kawata and Y. Kawata, “Three-dimensional optical data storage using photochromic materials,” Chem. Rev. 100(5), 1777–1788 (2000).
[CrossRef] [PubMed]

T. Wilson, Y. Kawata, and S. Kawata, “Readout of three-dimensional optical memories,” Opt. Lett. 21(13), 1003–1005 (1996).
[CrossRef] [PubMed]

Kiamilev, F.

Kobayashi, S.

K. Saito and S. Kobayashi, “Analysis of micro-reflector 3D optical disc recording,” Proc. SPIE 6282, 628213 (2007).
[CrossRef]

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).

Kolb, E. S.

D. A. Waldman, R. T. Ingwall, P. K. Dhal, M. G. Horner, E. S. Kolb, H.-Y. S. Li, R. A. Minns, and H. G. Schild, “Cationic ring-opening photopolymerization methods for volume hologram recording,” Proc. SPIE 2689, 127–141 (1996).
[CrossRef]

Kuebler, S. M.

J. W. Perry, B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, and S. R. Marder, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

Kuemmel, P.

H. J. Eichler, P. Kuemmel, S. Orlic, and A. Wappelt, “High density disk storage by multiplexed microholograms,” IEEE J. Sel. Top. Quantum Electron. 4(5), 840–848 (1998).
[CrossRef]

Lawrence, B.

M. Dubois, X. Shi, C. Erben, B. Lawrence, E. Boden, and K. Longley, “Microholograms recorded in a thermoplastic medium for three-dimensional data storage,” Jpn. J. Appl. Phys. 45(2B), 1239–1245 (2006).
[CrossRef]

Lee, I.-Y. S.

J. W. Perry, B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, and S. R. Marder, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

Li, H.-Y. S.

D. A. Waldman, R. T. Ingwall, P. K. Dhal, M. G. Horner, E. S. Kolb, H.-Y. S. Li, R. A. Minns, and H. G. Schild, “Cationic ring-opening photopolymerization methods for volume hologram recording,” Proc. SPIE 2689, 127–141 (1996).
[CrossRef]

Li, X. P.

Longley, K.

M. Dubois, X. Shi, C. Erben, B. Lawrence, E. Boden, and K. Longley, “Microholograms recorded in a thermoplastic medium for three-dimensional data storage,” Jpn. J. Appl. Phys. 45(2B), 1239–1245 (2006).
[CrossRef]

Marder, S. R.

J. W. Perry, B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, and S. R. Marder, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

McCord-Maughon, D.

J. W. Perry, B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, and S. R. Marder, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

McDonald, M. E.

McLeod, R. R.

Minns, R. A.

D. A. Waldman, R. T. Ingwall, P. K. Dhal, M. G. Horner, E. S. Kolb, H.-Y. S. Li, R. A. Minns, and H. G. Schild, “Cationic ring-opening photopolymerization methods for volume hologram recording,” Proc. SPIE 2689, 127–141 (1996).
[CrossRef]

Mueller, C.

S. Orlic, E. Dietz, T. Feid, S. Frohmann, and C. Mueller, “Optical investigation of photopolymer systems for microholographic storage,” J. Opt. A, Pure Appl. Opt. 11(2), 024014 (2009).
[CrossRef]

Orlic, S.

S. Orlic, E. Dietz, T. Feid, S. Frohmann, and C. Mueller, “Optical investigation of photopolymer systems for microholographic storage,” J. Opt. A, Pure Appl. Opt. 11(2), 024014 (2009).
[CrossRef]

S. Orlic, S. Ulm, and H. J. Eichler, “3D bit-oriented optical storage in photopolymers,” J. Opt. A, Pure Appl. Opt. 3(1), 72–81 (2001).
[CrossRef]

H. J. Eichler, P. Kuemmel, S. Orlic, and A. Wappelt, “High density disk storage by multiplexed microholograms,” IEEE J. Sel. Top. Quantum Electron. 4(5), 840–848 (1998).
[CrossRef]

Parthenopoulos, D. A.

Perry, J. W.

J. W. Perry, B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, and S. R. Marder, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

Qin, J.

J. W. Perry, B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, and S. R. Marder, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

Raguin, D. H.

D. A. Waldman, C. J. Butler, and D. H. Raguin, “CROP holographic storage media for optical data storage at greater than 100 bits/?m2,” Proc. SPIE 5216, 10–25 (2003).
[CrossRef]

Rentzepis, P. M.

Robertson, T. L.

Röckel, H.

J. W. Perry, B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, and S. R. Marder, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

Rumi, M.

J. W. Perry, B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, and S. R. Marder, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

Saito, K.

K. Saito and S. Kobayashi, “Analysis of micro-reflector 3D optical disc recording,” Proc. SPIE 6282, 628213 (2007).
[CrossRef]

Schild, H. G.

D. A. Waldman, R. T. Ingwall, P. K. Dhal, M. G. Horner, E. S. Kolb, H.-Y. S. Li, R. A. Minns, and H. G. Schild, “Cationic ring-opening photopolymerization methods for volume hologram recording,” Proc. SPIE 2689, 127–141 (1996).
[CrossRef]

Shi, X.

M. Dubois, X. Shi, C. Erben, B. Lawrence, E. Boden, and K. Longley, “Microholograms recorded in a thermoplastic medium for three-dimensional data storage,” Jpn. J. Appl. Phys. 45(2B), 1239–1245 (2006).
[CrossRef]

Slagle, T.

Smallridge, A.

D. Day, M. Gu, and A. Smallridge, “Rewritable 3D bit optical data storage in a PMMA-based photorefractive polymer,” Adv. Mater. (Deerfield Beach Fla.) 13(12-13), 1005–1007 (2001).
[CrossRef]

Sochava, S. L.

Ulm, S.

S. Orlic, S. Ulm, and H. J. Eichler, “3D bit-oriented optical storage in photopolymers,” J. Opt. A, Pure Appl. Opt. 3(1), 72–81 (2001).
[CrossRef]

Waldman, D. A.

D. A. Waldman, C. J. Butler, and D. H. Raguin, “CROP holographic storage media for optical data storage at greater than 100 bits/?m2,” Proc. SPIE 5216, 10–25 (2003).
[CrossRef]

D. A. Waldman, R. T. Ingwall, P. K. Dhal, M. G. Horner, E. S. Kolb, H.-Y. S. Li, R. A. Minns, and H. G. Schild, “Cationic ring-opening photopolymerization methods for volume hologram recording,” Proc. SPIE 2689, 127–141 (1996).
[CrossRef]

Wang, M. M.

Wappelt, A.

H. J. Eichler, P. Kuemmel, S. Orlic, and A. Wappelt, “High density disk storage by multiplexed microholograms,” IEEE J. Sel. Top. Quantum Electron. 4(5), 840–848 (1998).
[CrossRef]

Willner, A. E.

S. Homan and A. E. Willner, “High-capacity optical storage using multiple wavelengths, multiple layers and volume holograms,” Electron. Lett. 31(8), 621–623 (1995).
[CrossRef]

Wilson, T.

Wu, S. H.

Wu, X.-L.

J. W. Perry, B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, and S. R. Marder, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

Zijlstra, P.

P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[CrossRef] [PubMed]

Adv. Mater. (Deerfield Beach Fla.) (1)

D. Day, M. Gu, and A. Smallridge, “Rewritable 3D bit optical data storage in a PMMA-based photorefractive polymer,” Adv. Mater. (Deerfield Beach Fla.) 13(12-13), 1005–1007 (2001).
[CrossRef]

Appl. Opt. (4)

Bell Syst. Tech. J. (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).

Chem. Rev. (1)

S. Kawata and Y. Kawata, “Three-dimensional optical data storage using photochromic materials,” Chem. Rev. 100(5), 1777–1788 (2000).
[CrossRef] [PubMed]

Electron. Lett. (1)

S. Homan and A. E. Willner, “High-capacity optical storage using multiple wavelengths, multiple layers and volume holograms,” Electron. Lett. 31(8), 621–623 (1995).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

H. J. Eichler, P. Kuemmel, S. Orlic, and A. Wappelt, “High density disk storage by multiplexed microholograms,” IEEE J. Sel. Top. Quantum Electron. 4(5), 840–848 (1998).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (2)

S. Orlic, S. Ulm, and H. J. Eichler, “3D bit-oriented optical storage in photopolymers,” J. Opt. A, Pure Appl. Opt. 3(1), 72–81 (2001).
[CrossRef]

S. Orlic, E. Dietz, T. Feid, S. Frohmann, and C. Mueller, “Optical investigation of photopolymer systems for microholographic storage,” J. Opt. A, Pure Appl. Opt. 11(2), 024014 (2009).
[CrossRef]

Jpn. J. Appl. Phys. (1)

M. Dubois, X. Shi, C. Erben, B. Lawrence, E. Boden, and K. Longley, “Microholograms recorded in a thermoplastic medium for three-dimensional data storage,” Jpn. J. Appl. Phys. 45(2B), 1239–1245 (2006).
[CrossRef]

Nature (2)

J. W. Perry, B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, and S. R. Marder, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[CrossRef] [PubMed]

Opt. Lett. (2)

Proc. SPIE (3)

K. Saito and S. Kobayashi, “Analysis of micro-reflector 3D optical disc recording,” Proc. SPIE 6282, 628213 (2007).
[CrossRef]

D. A. Waldman, R. T. Ingwall, P. K. Dhal, M. G. Horner, E. S. Kolb, H.-Y. S. Li, R. A. Minns, and H. G. Schild, “Cationic ring-opening photopolymerization methods for volume hologram recording,” Proc. SPIE 2689, 127–141 (1996).
[CrossRef]

D. A. Waldman, C. J. Butler, and D. H. Raguin, “CROP holographic storage media for optical data storage at greater than 100 bits/?m2,” Proc. SPIE 5216, 10–25 (2003).
[CrossRef]

Science (1)

J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265(5173), 749–752 (1994).
[CrossRef] [PubMed]

Other (7)

M. Mansuripur, The Physical Principles of Magneto-optical Recording (Cambridge Univ. Press, 1995), Chap. 1.

G. Odian, Principles of Polymerisation, 4th ed. (John Wiles & Sons Inc., 2004).

R. T. Ingwall and D. A. Waldman, in Holographic Data Storage, H. J. Coufal, D. Psaltis, G. T. Sincerbox, eds. (Springer-Verlag, 2000), Chap. Photopolymer systems.

D. A. Waldman, E. S. Kolb, C. Wang, “DHD™ CROP holographic storage media for advanced optical data storage,” Optical Data Storage (ODS), OSA Technical Digest Series WDPD 4–7 (2007).

L. Dhar, M. G. Schnoes, H. E. Katz, A. Hale, and M. L. Schilling, in Holographic Data Storage, H. J. Coufal, D. Psaltis, G. T. Sincerbox, eds. (Springer-Verlag, 2000), Chap. Photopolymers for digital holographic storage.

B. Kippelen, in Holographic Data Storage, H. J. Coufal, D. Psaltis, G. T. Sincerbox, eds. (Springer-Verlag, 2000), Chap. Overview of photorefractive polymers for holographic data storage.

H. J. Coufal, D. Psaltis, and G. T. Sincerbox, eds., Holographic Data Storage (Springer-Verlag, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics