Abstract

We investigated the question of how the perception of three-dimensional information reconstructed numerically from digital holograms of real-world objects, and presented on conventional displays, depends on motion and stereoscopic presentation. Perceived depth in an adjustable random pattern stereogram was matched to the depth in hologram reconstructions. The objects in holograms were a microscopic biological cell and a macroscopic metal coil. For control, we used real physical objects in additional to hologram reconstructions of real objects. Stereoscopic presentation increased perceived depth substantially in comparison to non-stereoscopic presentation. When stereoscopic cues were weak or absent e.g. because of blur, motion increased perceived depth considerably. However, when stereoscopic cues were strong, the effect of motion was small. In conclusion, for the maximization of perceived three-dimensional information of holograms on conventional displays, it seems highly beneficial to use the combination of motion and stereoscopic presentation.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Frauel, T. J. Naughton, O. Matoba, E. Tajahuerce, and B. Javidi, “Three-dimensional imaging and processing using computational holographic imaging,” Proc. IEEE 94(3), 636–653 (2006).
    [CrossRef]
  2. P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30(5), 468–470 (2005).
    [CrossRef] [PubMed]
  3. T. Colomb, F. Montfort, J. Kühn, N. Aspert, E. Cuche, A. Marian, F. Charrière, S. Bourquin, P. Marquet, and C. Depeursinge, “Numerical parametric lens for shifting, magnification, and complete aberration compensation in digital holographic microscopy,” J. Opt. Soc. Am. A 23(12), 3177–3190 (2006).
    [CrossRef] [PubMed]
  4. I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22(16), 1268–1270 (1997).
    [CrossRef] [PubMed]
  5. I. J. Cox and C. J. R. Sheppard, “Digital image processing of confocal images,” Image Vis. Comput. 1(1), 52–56 (1983).
    [CrossRef]
  6. S. J. Watt, K. Akeley, M. O. Ernst, and M. S. Banks, “Focus cues affect perceived depth,” J. Vis. 5(10), 834–862 (2005).
    [CrossRef] [PubMed]
  7. D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence-accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vis. 8(3), 33, 1–30 (2008).
    [CrossRef] [PubMed]
  8. T. Lehtimäki and T.J. Naughton, “Stereoscopic viewing of digital holograms of real-world objects,” presented at Capture, Transmission and Display of 3D Video, article no. 39, Kos, Greece, 7–9 May 2007.
  9. I. P. Howard and B. J. Rogers, Seeing in Depth, vol. 2 (I Porteous, 2002).
  10. H. H. Bülthoff and H. A. Mallot, “Integration of depth modules: stereo and shading,” J. Opt. Soc. Am. A 5(10), 1749–1758 (1988).
    [CrossRef] [PubMed]
  11. M. Nawrot and R. Blake, “Neural integration of information specifying structure from stereopsis and motion,” Science 244(4905), 716–718 (1989).
    [CrossRef] [PubMed]
  12. J. S. Tittle and M. L. Braunstein, “Recovery of 3-D shape from binocular disparity and structure from motion,” Percept. Psychophys. 54(2), 157–169 (1993).
    [CrossRef] [PubMed]
  13. M. F. Bradshaw and B. J. Rogers, “The interaction of binocular disparity and motion parallax in the computation of depth,” Vision Res. 36(21), 3457–3468 (1996).
    [CrossRef] [PubMed]
  14. B. Julesz, “Binocular depth perception of computer generated patterns,” Bell Syst. Tech. J. 39(5), 1125–1162 (1960).
  15. C. Reichle, T. Müller, T. Schnelle, and G. Fuhr, “Electro-rotation in octopole micro cages,” J. Phys. D Appl. Phys. 32(16), 2128–2135 (1999).
    [CrossRef]
  16. H. Wallach and D. N. O’Connell, “The kinetic depth effect,” J. Exp. Psychol. 45(4), 205–217 (1953).
    [CrossRef] [PubMed]
  17. P. B. Iyer and A. W. Freeman, “Opponent motion interactions in the perception of structure from motion,” J. Vis. 9(2), 2, 1–11 (2009).
    [CrossRef] [PubMed]
  18. E. B. Johnston, “Systematic distortions of shape from stereopsis,” Vision Res. 31(7-8), 1351–1360 (1991).
    [CrossRef] [PubMed]
  19. R. C. Gonzalez and E. E. Woods, Digital Image Processing, 2nd ed. (Prentice-Hall, Inc., 2002).
  20. S. J. D. Prince, R. A. Eagle, and B. J. Rogers, “Contrast masking reveals spatial-frequency channels in stereopsis,” Perception 27(11), 1345–1355 (1998).
    [CrossRef] [PubMed]
  21. M. Kempkes, E. Darakis, T. Khanam, A. Rajendran, V. Kariwala, M. Mazzotti, T. J. Naughton, and A. K. Asundi, “Three dimensional digital holographic profiling of micro-fibers,” Opt. Express 17(4), 2938–2943 (2009).
    [CrossRef] [PubMed]
  22. F. Yaraş, H. Kang, and L. Onural, “Circular holographic video display system,” Opt. Express 19(10), 9147–9156 (2011).
    [CrossRef] [PubMed]
  23. A. E. Burgess, R. F. Wagner, R. J. Jennings, and H. B. Barlow, “Efficiency of human visual signal discrimination,” Science 214(4516), 93–94 (1981).
    [CrossRef] [PubMed]
  24. J. M. Artigas, A. Felipe, and M. J. Buades, “Contrast sensitivity of the visual system in speckle imagery,” J. Opt. Soc. Am. A 11(9), 2345–2349 (1994).
    [CrossRef] [PubMed]

2011 (1)

2009 (2)

2008 (1)

D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence-accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vis. 8(3), 33, 1–30 (2008).
[CrossRef] [PubMed]

2006 (2)

2005 (2)

1999 (1)

C. Reichle, T. Müller, T. Schnelle, and G. Fuhr, “Electro-rotation in octopole micro cages,” J. Phys. D Appl. Phys. 32(16), 2128–2135 (1999).
[CrossRef]

1998 (1)

S. J. D. Prince, R. A. Eagle, and B. J. Rogers, “Contrast masking reveals spatial-frequency channels in stereopsis,” Perception 27(11), 1345–1355 (1998).
[CrossRef] [PubMed]

1997 (1)

1996 (1)

M. F. Bradshaw and B. J. Rogers, “The interaction of binocular disparity and motion parallax in the computation of depth,” Vision Res. 36(21), 3457–3468 (1996).
[CrossRef] [PubMed]

1994 (1)

1993 (1)

J. S. Tittle and M. L. Braunstein, “Recovery of 3-D shape from binocular disparity and structure from motion,” Percept. Psychophys. 54(2), 157–169 (1993).
[CrossRef] [PubMed]

1991 (1)

E. B. Johnston, “Systematic distortions of shape from stereopsis,” Vision Res. 31(7-8), 1351–1360 (1991).
[CrossRef] [PubMed]

1989 (1)

M. Nawrot and R. Blake, “Neural integration of information specifying structure from stereopsis and motion,” Science 244(4905), 716–718 (1989).
[CrossRef] [PubMed]

1988 (1)

1983 (1)

I. J. Cox and C. J. R. Sheppard, “Digital image processing of confocal images,” Image Vis. Comput. 1(1), 52–56 (1983).
[CrossRef]

1981 (1)

A. E. Burgess, R. F. Wagner, R. J. Jennings, and H. B. Barlow, “Efficiency of human visual signal discrimination,” Science 214(4516), 93–94 (1981).
[CrossRef] [PubMed]

1960 (1)

B. Julesz, “Binocular depth perception of computer generated patterns,” Bell Syst. Tech. J. 39(5), 1125–1162 (1960).

1953 (1)

H. Wallach and D. N. O’Connell, “The kinetic depth effect,” J. Exp. Psychol. 45(4), 205–217 (1953).
[CrossRef] [PubMed]

Akeley, K.

D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence-accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vis. 8(3), 33, 1–30 (2008).
[CrossRef] [PubMed]

S. J. Watt, K. Akeley, M. O. Ernst, and M. S. Banks, “Focus cues affect perceived depth,” J. Vis. 5(10), 834–862 (2005).
[CrossRef] [PubMed]

Artigas, J. M.

Aspert, N.

Asundi, A. K.

Banks, M. S.

D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence-accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vis. 8(3), 33, 1–30 (2008).
[CrossRef] [PubMed]

S. J. Watt, K. Akeley, M. O. Ernst, and M. S. Banks, “Focus cues affect perceived depth,” J. Vis. 5(10), 834–862 (2005).
[CrossRef] [PubMed]

Barlow, H. B.

A. E. Burgess, R. F. Wagner, R. J. Jennings, and H. B. Barlow, “Efficiency of human visual signal discrimination,” Science 214(4516), 93–94 (1981).
[CrossRef] [PubMed]

Blake, R.

M. Nawrot and R. Blake, “Neural integration of information specifying structure from stereopsis and motion,” Science 244(4905), 716–718 (1989).
[CrossRef] [PubMed]

Bourquin, S.

Bradshaw, M. F.

M. F. Bradshaw and B. J. Rogers, “The interaction of binocular disparity and motion parallax in the computation of depth,” Vision Res. 36(21), 3457–3468 (1996).
[CrossRef] [PubMed]

Braunstein, M. L.

J. S. Tittle and M. L. Braunstein, “Recovery of 3-D shape from binocular disparity and structure from motion,” Percept. Psychophys. 54(2), 157–169 (1993).
[CrossRef] [PubMed]

Buades, M. J.

Bülthoff, H. H.

Burgess, A. E.

A. E. Burgess, R. F. Wagner, R. J. Jennings, and H. B. Barlow, “Efficiency of human visual signal discrimination,” Science 214(4516), 93–94 (1981).
[CrossRef] [PubMed]

Charrière, F.

Colomb, T.

Cox, I. J.

I. J. Cox and C. J. R. Sheppard, “Digital image processing of confocal images,” Image Vis. Comput. 1(1), 52–56 (1983).
[CrossRef]

Cuche, E.

Darakis, E.

Depeursinge, C.

Eagle, R. A.

S. J. D. Prince, R. A. Eagle, and B. J. Rogers, “Contrast masking reveals spatial-frequency channels in stereopsis,” Perception 27(11), 1345–1355 (1998).
[CrossRef] [PubMed]

Emery, Y.

Ernst, M. O.

S. J. Watt, K. Akeley, M. O. Ernst, and M. S. Banks, “Focus cues affect perceived depth,” J. Vis. 5(10), 834–862 (2005).
[CrossRef] [PubMed]

Felipe, A.

Frauel, Y.

Y. Frauel, T. J. Naughton, O. Matoba, E. Tajahuerce, and B. Javidi, “Three-dimensional imaging and processing using computational holographic imaging,” Proc. IEEE 94(3), 636–653 (2006).
[CrossRef]

Freeman, A. W.

P. B. Iyer and A. W. Freeman, “Opponent motion interactions in the perception of structure from motion,” J. Vis. 9(2), 2, 1–11 (2009).
[CrossRef] [PubMed]

Fuhr, G.

C. Reichle, T. Müller, T. Schnelle, and G. Fuhr, “Electro-rotation in octopole micro cages,” J. Phys. D Appl. Phys. 32(16), 2128–2135 (1999).
[CrossRef]

Girshick, A. R.

D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence-accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vis. 8(3), 33, 1–30 (2008).
[CrossRef] [PubMed]

Hoffman, D. M.

D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence-accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vis. 8(3), 33, 1–30 (2008).
[CrossRef] [PubMed]

Iyer, P. B.

P. B. Iyer and A. W. Freeman, “Opponent motion interactions in the perception of structure from motion,” J. Vis. 9(2), 2, 1–11 (2009).
[CrossRef] [PubMed]

Javidi, B.

Y. Frauel, T. J. Naughton, O. Matoba, E. Tajahuerce, and B. Javidi, “Three-dimensional imaging and processing using computational holographic imaging,” Proc. IEEE 94(3), 636–653 (2006).
[CrossRef]

Jennings, R. J.

A. E. Burgess, R. F. Wagner, R. J. Jennings, and H. B. Barlow, “Efficiency of human visual signal discrimination,” Science 214(4516), 93–94 (1981).
[CrossRef] [PubMed]

Johnston, E. B.

E. B. Johnston, “Systematic distortions of shape from stereopsis,” Vision Res. 31(7-8), 1351–1360 (1991).
[CrossRef] [PubMed]

Julesz, B.

B. Julesz, “Binocular depth perception of computer generated patterns,” Bell Syst. Tech. J. 39(5), 1125–1162 (1960).

Kang, H.

Kariwala, V.

Kempkes, M.

Khanam, T.

Kühn, J.

Magistretti, P. J.

Mallot, H. A.

Marian, A.

Marquet, P.

Matoba, O.

Y. Frauel, T. J. Naughton, O. Matoba, E. Tajahuerce, and B. Javidi, “Three-dimensional imaging and processing using computational holographic imaging,” Proc. IEEE 94(3), 636–653 (2006).
[CrossRef]

Mazzotti, M.

Montfort, F.

Müller, T.

C. Reichle, T. Müller, T. Schnelle, and G. Fuhr, “Electro-rotation in octopole micro cages,” J. Phys. D Appl. Phys. 32(16), 2128–2135 (1999).
[CrossRef]

Naughton, T. J.

M. Kempkes, E. Darakis, T. Khanam, A. Rajendran, V. Kariwala, M. Mazzotti, T. J. Naughton, and A. K. Asundi, “Three dimensional digital holographic profiling of micro-fibers,” Opt. Express 17(4), 2938–2943 (2009).
[CrossRef] [PubMed]

Y. Frauel, T. J. Naughton, O. Matoba, E. Tajahuerce, and B. Javidi, “Three-dimensional imaging and processing using computational holographic imaging,” Proc. IEEE 94(3), 636–653 (2006).
[CrossRef]

Nawrot, M.

M. Nawrot and R. Blake, “Neural integration of information specifying structure from stereopsis and motion,” Science 244(4905), 716–718 (1989).
[CrossRef] [PubMed]

O’Connell, D. N.

H. Wallach and D. N. O’Connell, “The kinetic depth effect,” J. Exp. Psychol. 45(4), 205–217 (1953).
[CrossRef] [PubMed]

Onural, L.

Prince, S. J. D.

S. J. D. Prince, R. A. Eagle, and B. J. Rogers, “Contrast masking reveals spatial-frequency channels in stereopsis,” Perception 27(11), 1345–1355 (1998).
[CrossRef] [PubMed]

Rajendran, A.

Rappaz, B.

Reichle, C.

C. Reichle, T. Müller, T. Schnelle, and G. Fuhr, “Electro-rotation in octopole micro cages,” J. Phys. D Appl. Phys. 32(16), 2128–2135 (1999).
[CrossRef]

Rogers, B. J.

S. J. D. Prince, R. A. Eagle, and B. J. Rogers, “Contrast masking reveals spatial-frequency channels in stereopsis,” Perception 27(11), 1345–1355 (1998).
[CrossRef] [PubMed]

M. F. Bradshaw and B. J. Rogers, “The interaction of binocular disparity and motion parallax in the computation of depth,” Vision Res. 36(21), 3457–3468 (1996).
[CrossRef] [PubMed]

Schnelle, T.

C. Reichle, T. Müller, T. Schnelle, and G. Fuhr, “Electro-rotation in octopole micro cages,” J. Phys. D Appl. Phys. 32(16), 2128–2135 (1999).
[CrossRef]

Sheppard, C. J. R.

I. J. Cox and C. J. R. Sheppard, “Digital image processing of confocal images,” Image Vis. Comput. 1(1), 52–56 (1983).
[CrossRef]

Tajahuerce, E.

Y. Frauel, T. J. Naughton, O. Matoba, E. Tajahuerce, and B. Javidi, “Three-dimensional imaging and processing using computational holographic imaging,” Proc. IEEE 94(3), 636–653 (2006).
[CrossRef]

Tittle, J. S.

J. S. Tittle and M. L. Braunstein, “Recovery of 3-D shape from binocular disparity and structure from motion,” Percept. Psychophys. 54(2), 157–169 (1993).
[CrossRef] [PubMed]

Wagner, R. F.

A. E. Burgess, R. F. Wagner, R. J. Jennings, and H. B. Barlow, “Efficiency of human visual signal discrimination,” Science 214(4516), 93–94 (1981).
[CrossRef] [PubMed]

Wallach, H.

H. Wallach and D. N. O’Connell, “The kinetic depth effect,” J. Exp. Psychol. 45(4), 205–217 (1953).
[CrossRef] [PubMed]

Watt, S. J.

S. J. Watt, K. Akeley, M. O. Ernst, and M. S. Banks, “Focus cues affect perceived depth,” J. Vis. 5(10), 834–862 (2005).
[CrossRef] [PubMed]

Yamaguchi, I.

Yaras, F.

Zhang, T.

Bell Syst. Tech. J. (1)

B. Julesz, “Binocular depth perception of computer generated patterns,” Bell Syst. Tech. J. 39(5), 1125–1162 (1960).

Image Vis. Comput. (1)

I. J. Cox and C. J. R. Sheppard, “Digital image processing of confocal images,” Image Vis. Comput. 1(1), 52–56 (1983).
[CrossRef]

J. Exp. Psychol. (1)

H. Wallach and D. N. O’Connell, “The kinetic depth effect,” J. Exp. Psychol. 45(4), 205–217 (1953).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (3)

J. Phys. D Appl. Phys. (1)

C. Reichle, T. Müller, T. Schnelle, and G. Fuhr, “Electro-rotation in octopole micro cages,” J. Phys. D Appl. Phys. 32(16), 2128–2135 (1999).
[CrossRef]

J. Vis. (3)

P. B. Iyer and A. W. Freeman, “Opponent motion interactions in the perception of structure from motion,” J. Vis. 9(2), 2, 1–11 (2009).
[CrossRef] [PubMed]

S. J. Watt, K. Akeley, M. O. Ernst, and M. S. Banks, “Focus cues affect perceived depth,” J. Vis. 5(10), 834–862 (2005).
[CrossRef] [PubMed]

D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence-accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vis. 8(3), 33, 1–30 (2008).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (2)

Percept. Psychophys. (1)

J. S. Tittle and M. L. Braunstein, “Recovery of 3-D shape from binocular disparity and structure from motion,” Percept. Psychophys. 54(2), 157–169 (1993).
[CrossRef] [PubMed]

Perception (1)

S. J. D. Prince, R. A. Eagle, and B. J. Rogers, “Contrast masking reveals spatial-frequency channels in stereopsis,” Perception 27(11), 1345–1355 (1998).
[CrossRef] [PubMed]

Proc. IEEE (1)

Y. Frauel, T. J. Naughton, O. Matoba, E. Tajahuerce, and B. Javidi, “Three-dimensional imaging and processing using computational holographic imaging,” Proc. IEEE 94(3), 636–653 (2006).
[CrossRef]

Science (2)

A. E. Burgess, R. F. Wagner, R. J. Jennings, and H. B. Barlow, “Efficiency of human visual signal discrimination,” Science 214(4516), 93–94 (1981).
[CrossRef] [PubMed]

M. Nawrot and R. Blake, “Neural integration of information specifying structure from stereopsis and motion,” Science 244(4905), 716–718 (1989).
[CrossRef] [PubMed]

Vision Res. (2)

M. F. Bradshaw and B. J. Rogers, “The interaction of binocular disparity and motion parallax in the computation of depth,” Vision Res. 36(21), 3457–3468 (1996).
[CrossRef] [PubMed]

E. B. Johnston, “Systematic distortions of shape from stereopsis,” Vision Res. 31(7-8), 1351–1360 (1991).
[CrossRef] [PubMed]

Other (3)

R. C. Gonzalez and E. E. Woods, Digital Image Processing, 2nd ed. (Prentice-Hall, Inc., 2002).

T. Lehtimäki and T.J. Naughton, “Stereoscopic viewing of digital holograms of real-world objects,” presented at Capture, Transmission and Display of 3D Video, article no. 39, Kos, Greece, 7–9 May 2007.

I. P. Howard and B. J. Rogers, Seeing in Depth, vol. 2 (I Porteous, 2002).

Supplementary Material (2)

» Media 1: MOV (3755 KB)     
» Media 2: MOV (1360 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

The stereoscopic depth estimation tool. When presented on a stereoscopic display the observer could see two rectangular areas in the upper and lower parts of the random pattern. The perceptual depth of these areas could be adjusted by using the graphical sliders below. On the right, there is a stereo pair with two rectangles at different depths. If one can cross one's eyes so that the patterns overlap in perception, one can emulate a stereo display and see the two rectangles, one of them appearing behind and the other in front of the noise image surface.

Fig. 2
Fig. 2

Geometry of depth and horizontal disparity when the object appears to be behind (A) and in front of (B) the screen. P is a point in an object at depth Δd. D is the viewing distance, i.e., the distance between the observer and the display surface, η is the horizontal disparity on display surface, and α is the inter-eye distance.

Fig. 3
Fig. 3

(A) The physical objects, a matchbox and a book on and behind the display surface plane, respectively, (B) one intensity reconstruction from the hologram sequence of the real-world coil object (Media 1, can be seen in anaglyph stereo with red-green filter glasses), and (C) one phase-contrast reconstruction from the hologram sequence of the biological cell (Media 2, also in anaglyph stereo).

Fig. 4
Fig. 4

Matched stereoscopic depths (cm) for different object in different conditions. The two dark grey areas at the right ends of the bars show the ± 1 standard error.

Fig. 5
Fig. 5

The Fourier amplitude spectra of the cell and coil objects presented as averaged across orientations.

Fig. 6
Fig. 6

A series of low-pass filtered coil images. The cut-off frequencies from top left to bottom right are 1, 2, 4, 8, 16, and 32 cycles/image.

Fig. 7
Fig. 7

Perceived depth as a function of the cut-off spatial frequency (cycles/image) of the low-pass filter used to filter the coil object. The object was presented stereoscopically. The error bars show the ± 1 standard error.

Fig. 8
Fig. 8

Examples of the coil object filtered to spatial frequencies 2, 4, 8, 16, 32, and 64 cycles/image.

Fig. 9
Fig. 9

Perceived depth as a function of the centre spatial frequency (cycles/image) of the 1.5 octave band-pass filter used for filtering the coil object. The error bars show the ± 1 standard error.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

η / Δ d = α / ( Δ d + D ) ,
Δ d = η D / ( α η ) .
B ( f r ) = 1 / [ 1 + ( f r / f c ) q ] ,
G log ( f r ) = exp { ln 2 ( f r / f o ) / [ ( b / 2 ) 2 ln ( 2 ) ] } ,

Metrics