Abstract

We report the generation of high-purity correlated photon-pairs and polarization entanglement in a 1.5 μm telecommunication wavelength-band using cascaded χ(2)(2) processes, second-harmonic generation (SHG) and the following spontaneous parametric down conversion (SPDC), in a periodically poled LiNbO3 (PPLN) ridge-waveguide device. By using a PPLN module with 600%/W of the SHG efficiency, we have achieved a coincidence-to-accidental ratio (CAR) higher than 4000 at 7.45×10−5 of the mean number of the photon-pair per pulse. We also demonstrated that the maximum reach of the CAR was truly dark-count-limited by the single-photon detectors used here. This indicates that the fake (noise) photons were negligibly small in this system, even though the photon-pairs, the Raman noise photons, and the pump photons were in the same wavelength band. Polarization entangled photon pairs were also generated by constructing a Sagnac-loop-type interferometer which included the PPLN module and an optical phase-difference compensator to observe maximum entanglement. We achieved two-photon interference visibilities of 99.6% in the H/V basis and 98.7% in the diagonal basis. The peak coincidence count rate was approximately 50 counts per second at 10−3 of the mean number of the photon-pair per pulse.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67(6), 661–663 (1991).
    [CrossRef] [PubMed]
  2. J. I. Cirac, A. K. Ekert, S. F. Huelga, and C. Macchiavello, “Distributed quantum computation over noisy channels,” Phys. Rev. A 59(6), 4249–4254 (1999).
    [CrossRef]
  3. A. Martin, A. Issautier, H. Herrmann, W. Sohler, D. B. Ostrowsky, O. Alibart, and S. Tanzilli, “A polarization entangled photon-pair source based on a type-II PPLN waveguide emitting at a telecom wavelength,” N. J. Phys. 12(10), 103005 (2010).
    [CrossRef]
  4. A. Yoshizawa, R. Kaji, and H. Tsuchida, “Generation of polarization-entangled photon pairs at 1550 nm using two PPLN waveguides,” Electron. Lett. 39(7), 621–622 (2003).
    [CrossRef]
  5. S. Tanzilli, W. Tittel, H. De Riedmatten, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, “PPLN waveguide for quantum communication,” Eur. Phys. J. D 18(2), 155–160 (2002).
    [CrossRef]
  6. H. C. Lim, A. Yoshizawa, H. Tsuchida, and K. Kikuchi, “Stable source of high quality telecom-band polarization-entangled photon-pairs based on a single, pulse-pumped, short PPLN waveguide,” Opt. Express 16(17), 12460–12468 (2008).
    [CrossRef] [PubMed]
  7. M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communication,” IEEE Photon. Technol. Lett. 14(7), 983–985 (2002).
    [CrossRef]
  8. H. Takesue and K. Inoue, “Generation of polarization-entangled photon pairs and violation of Bell’s inequality using spontaneous four-wave mixing in a fiber loop,” Phys. Rev. A 70(3), 031802–031805 (2004).
    [CrossRef]
  9. J. Chen, K. F. Lee, X. Li, P. L. Voss, and P. Kumar, “Schemes for fiber-based entanglement generation in telecom band,” N. J. Phys. 9(8), 289 (2007).
    [CrossRef]
  10. H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S. Itabashi, “Generation of polarization entangled photon pairs using silicon wire waveguide,” Opt. Express 16(8), 5721–5727 (2008).
    [CrossRef] [PubMed]
  11. M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-μm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photon. Technol. Lett. 11(6), 653–655 (1999).
    [CrossRef]
  12. B. Chen, C. Q. Xu, B. Zhou, and X. H. Tang, “Analysis of cascaded second-order nonlinear interaction based on quasi-phase-matched optical waveguides,” IEEE J. Quantum Electron. 8(3), 675–680 (2002).
    [CrossRef]
  13. K. Hirosawa, Y. Ito, H. Ushio, H. Nakagome, and F. Kannari, “Generation of squeezed vacuum pulses using cascaded second-order optical nonlinearity of periodically poled lithium niobate in a Sagnac interferometer,” Phys. Rev. A 80(4), 043832–043836 (2009).
    [CrossRef]
  14. M. Hunault, H. Takesue, O. Tadanaga, Y. Nishida, and M. Asobe, “Generation of time-bin entangled photon pairs by cascaded second-order nonlinearity in a single periodically poled LiNbO(3) waveguide,” Opt. Lett. 35(8), 1239–1241 (2010).
    [CrossRef] [PubMed]
  15. Y.-K. Jiang and A. Tomita, “The generation of polarization-entangled photon pairs using periodically poled lithium niobate waveguides in a fibre loop,” J. Phys. At. Mol. Opt. Phys. 40(2), 437–443 (2007).
    [CrossRef]
  16. N. Namekata, S. Sasamori, and S. Inoue, “800 MHz single-photon detection at 1550-nm using an InGaAs/InP avalanche photodiode operated with a sine wave gating,” Opt. Express 14(21), 10043–10049 (2006).
    [CrossRef] [PubMed]
  17. N. Namekata, S. Adachi, and S. Inoue, “Ultra-low-noise sinusoidally gated avalanche photodiode for high-speed single-photon detection at telecommunication wavelengths,” IEEE Photon. Technol. Lett. 22(8), 529–531 (2010).
    [CrossRef]
  18. T. Kishimoto and K. Nakamura, “Periodically poled MgO-doped stoichiometric LiNbO3 wavelength convertor with ridge-type annealed proton-exchanged waveguide,” IEEE Photon. Technol. Lett. 23(3), 161–163 (2011).
    [CrossRef]
  19. H. Takesue and K. Inoue, “1.5-µm band quantum-correlated photon pair generation in dispersion-shifted fiber: suppression of noise photons by cooling fiber,” Opt. Express 13(20), 7832–7839 (2005).
    [CrossRef] [PubMed]
  20. Q. Zhang, X. Xie, H. Takesue, S. W. Nam, C. Langrock, M. M. Fejer, and Y. Yamamoto, “Correlated photon-pair generation in reverse-proton-exchange PPLN waveguides with integrated mode demultiplexer at 10 GHz clock,” Opt. Express 15(16), 10288–10293 (2007).
    [CrossRef] [PubMed]
  21. S. D. Dyer, M. J. Stevens, B. Baek, and S. W. Nam, “High-efficiency, ultra low-noise all-fiber photon-pair source,” Opt. Express 16(13), 9966–9977 (2008).
    [CrossRef] [PubMed]
  22. K. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S. Itabashi, “Generation of high-purity entangled photon pairs using silicon wire waveguide,” Opt. Express 16(25), 20368–20373 (2008).
    [CrossRef] [PubMed]
  23. S. Arahira, H. Murai, and Y. Ogawa, ““Modified NOLM for stable and improved 2R operation at ultra-high bit rates,” IEICE Trans. Commun,” E 89-B, 3296–3305 (2006).
  24. K. R. Parameswaran, R. K. Route, J. R. Kurz, R. V. Roussev, M. M. Fejer, and M. Fujimura, “Highly efficient second-harmonic generation in buried waveguides formed by annealed and reverse proton exchange in periodically poled lithium niobate,” Opt. Lett. 27(3), 179–181 (2002).
    [CrossRef] [PubMed]
  25. S. Kurimura, Y. Kato, M. Maruyama, Y. Usui, and H. Nakajima, “Quasi-phase-matched adhered ridge waveguide in LiNbO3,” Appl. Phys. Lett. 89(19), 191123 (2006).
    [CrossRef]
  26. T. Umeki, O. Tadanaga, and M. Asobe, “High efficient wavelength converter using direct-bonded PPZnLN Ridge waveguide,” IEEE J. Quantum Electron. 46(8), 1206–1213 (2010).
    [CrossRef]

2011 (1)

T. Kishimoto and K. Nakamura, “Periodically poled MgO-doped stoichiometric LiNbO3 wavelength convertor with ridge-type annealed proton-exchanged waveguide,” IEEE Photon. Technol. Lett. 23(3), 161–163 (2011).
[CrossRef]

2010 (4)

M. Hunault, H. Takesue, O. Tadanaga, Y. Nishida, and M. Asobe, “Generation of time-bin entangled photon pairs by cascaded second-order nonlinearity in a single periodically poled LiNbO(3) waveguide,” Opt. Lett. 35(8), 1239–1241 (2010).
[CrossRef] [PubMed]

A. Martin, A. Issautier, H. Herrmann, W. Sohler, D. B. Ostrowsky, O. Alibart, and S. Tanzilli, “A polarization entangled photon-pair source based on a type-II PPLN waveguide emitting at a telecom wavelength,” N. J. Phys. 12(10), 103005 (2010).
[CrossRef]

N. Namekata, S. Adachi, and S. Inoue, “Ultra-low-noise sinusoidally gated avalanche photodiode for high-speed single-photon detection at telecommunication wavelengths,” IEEE Photon. Technol. Lett. 22(8), 529–531 (2010).
[CrossRef]

T. Umeki, O. Tadanaga, and M. Asobe, “High efficient wavelength converter using direct-bonded PPZnLN Ridge waveguide,” IEEE J. Quantum Electron. 46(8), 1206–1213 (2010).
[CrossRef]

2009 (1)

K. Hirosawa, Y. Ito, H. Ushio, H. Nakagome, and F. Kannari, “Generation of squeezed vacuum pulses using cascaded second-order optical nonlinearity of periodically poled lithium niobate in a Sagnac interferometer,” Phys. Rev. A 80(4), 043832–043836 (2009).
[CrossRef]

2008 (4)

2007 (3)

Q. Zhang, X. Xie, H. Takesue, S. W. Nam, C. Langrock, M. M. Fejer, and Y. Yamamoto, “Correlated photon-pair generation in reverse-proton-exchange PPLN waveguides with integrated mode demultiplexer at 10 GHz clock,” Opt. Express 15(16), 10288–10293 (2007).
[CrossRef] [PubMed]

J. Chen, K. F. Lee, X. Li, P. L. Voss, and P. Kumar, “Schemes for fiber-based entanglement generation in telecom band,” N. J. Phys. 9(8), 289 (2007).
[CrossRef]

Y.-K. Jiang and A. Tomita, “The generation of polarization-entangled photon pairs using periodically poled lithium niobate waveguides in a fibre loop,” J. Phys. At. Mol. Opt. Phys. 40(2), 437–443 (2007).
[CrossRef]

2006 (3)

N. Namekata, S. Sasamori, and S. Inoue, “800 MHz single-photon detection at 1550-nm using an InGaAs/InP avalanche photodiode operated with a sine wave gating,” Opt. Express 14(21), 10043–10049 (2006).
[CrossRef] [PubMed]

S. Kurimura, Y. Kato, M. Maruyama, Y. Usui, and H. Nakajima, “Quasi-phase-matched adhered ridge waveguide in LiNbO3,” Appl. Phys. Lett. 89(19), 191123 (2006).
[CrossRef]

S. Arahira, H. Murai, and Y. Ogawa, ““Modified NOLM for stable and improved 2R operation at ultra-high bit rates,” IEICE Trans. Commun,” E 89-B, 3296–3305 (2006).

2005 (1)

2004 (1)

H. Takesue and K. Inoue, “Generation of polarization-entangled photon pairs and violation of Bell’s inequality using spontaneous four-wave mixing in a fiber loop,” Phys. Rev. A 70(3), 031802–031805 (2004).
[CrossRef]

2003 (1)

A. Yoshizawa, R. Kaji, and H. Tsuchida, “Generation of polarization-entangled photon pairs at 1550 nm using two PPLN waveguides,” Electron. Lett. 39(7), 621–622 (2003).
[CrossRef]

2002 (4)

S. Tanzilli, W. Tittel, H. De Riedmatten, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, “PPLN waveguide for quantum communication,” Eur. Phys. J. D 18(2), 155–160 (2002).
[CrossRef]

M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communication,” IEEE Photon. Technol. Lett. 14(7), 983–985 (2002).
[CrossRef]

B. Chen, C. Q. Xu, B. Zhou, and X. H. Tang, “Analysis of cascaded second-order nonlinear interaction based on quasi-phase-matched optical waveguides,” IEEE J. Quantum Electron. 8(3), 675–680 (2002).
[CrossRef]

K. R. Parameswaran, R. K. Route, J. R. Kurz, R. V. Roussev, M. M. Fejer, and M. Fujimura, “Highly efficient second-harmonic generation in buried waveguides formed by annealed and reverse proton exchange in periodically poled lithium niobate,” Opt. Lett. 27(3), 179–181 (2002).
[CrossRef] [PubMed]

1999 (2)

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-μm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photon. Technol. Lett. 11(6), 653–655 (1999).
[CrossRef]

J. I. Cirac, A. K. Ekert, S. F. Huelga, and C. Macchiavello, “Distributed quantum computation over noisy channels,” Phys. Rev. A 59(6), 4249–4254 (1999).
[CrossRef]

1991 (1)

A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67(6), 661–663 (1991).
[CrossRef] [PubMed]

Adachi, S.

N. Namekata, S. Adachi, and S. Inoue, “Ultra-low-noise sinusoidally gated avalanche photodiode for high-speed single-photon detection at telecommunication wavelengths,” IEEE Photon. Technol. Lett. 22(8), 529–531 (2010).
[CrossRef]

Alibart, O.

A. Martin, A. Issautier, H. Herrmann, W. Sohler, D. B. Ostrowsky, O. Alibart, and S. Tanzilli, “A polarization entangled photon-pair source based on a type-II PPLN waveguide emitting at a telecom wavelength,” N. J. Phys. 12(10), 103005 (2010).
[CrossRef]

Arahira, S.

S. Arahira, H. Murai, and Y. Ogawa, ““Modified NOLM for stable and improved 2R operation at ultra-high bit rates,” IEICE Trans. Commun,” E 89-B, 3296–3305 (2006).

Asobe, M.

Baek, B.

Baldi, P.

S. Tanzilli, W. Tittel, H. De Riedmatten, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, “PPLN waveguide for quantum communication,” Eur. Phys. J. D 18(2), 155–160 (2002).
[CrossRef]

Brener, I.

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-μm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photon. Technol. Lett. 11(6), 653–655 (1999).
[CrossRef]

Chaban, E. E.

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-μm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photon. Technol. Lett. 11(6), 653–655 (1999).
[CrossRef]

Chen, B.

B. Chen, C. Q. Xu, B. Zhou, and X. H. Tang, “Analysis of cascaded second-order nonlinear interaction based on quasi-phase-matched optical waveguides,” IEEE J. Quantum Electron. 8(3), 675–680 (2002).
[CrossRef]

Chen, J.

J. Chen, K. F. Lee, X. Li, P. L. Voss, and P. Kumar, “Schemes for fiber-based entanglement generation in telecom band,” N. J. Phys. 9(8), 289 (2007).
[CrossRef]

Chou, M. H.

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-μm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photon. Technol. Lett. 11(6), 653–655 (1999).
[CrossRef]

Christman, S. B.

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-μm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photon. Technol. Lett. 11(6), 653–655 (1999).
[CrossRef]

Cirac, J. I.

J. I. Cirac, A. K. Ekert, S. F. Huelga, and C. Macchiavello, “Distributed quantum computation over noisy channels,” Phys. Rev. A 59(6), 4249–4254 (1999).
[CrossRef]

De Micheli, M.

S. Tanzilli, W. Tittel, H. De Riedmatten, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, “PPLN waveguide for quantum communication,” Eur. Phys. J. D 18(2), 155–160 (2002).
[CrossRef]

De Riedmatten, H.

S. Tanzilli, W. Tittel, H. De Riedmatten, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, “PPLN waveguide for quantum communication,” Eur. Phys. J. D 18(2), 155–160 (2002).
[CrossRef]

Dyer, S. D.

Ekert, A. K.

J. I. Cirac, A. K. Ekert, S. F. Huelga, and C. Macchiavello, “Distributed quantum computation over noisy channels,” Phys. Rev. A 59(6), 4249–4254 (1999).
[CrossRef]

A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67(6), 661–663 (1991).
[CrossRef] [PubMed]

Fejer, M. M.

Fiorentino, M.

M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communication,” IEEE Photon. Technol. Lett. 14(7), 983–985 (2002).
[CrossRef]

Fujimura, M.

Fukuda, H.

Gisin, N.

S. Tanzilli, W. Tittel, H. De Riedmatten, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, “PPLN waveguide for quantum communication,” Eur. Phys. J. D 18(2), 155–160 (2002).
[CrossRef]

Harada, K.

Herrmann, H.

A. Martin, A. Issautier, H. Herrmann, W. Sohler, D. B. Ostrowsky, O. Alibart, and S. Tanzilli, “A polarization entangled photon-pair source based on a type-II PPLN waveguide emitting at a telecom wavelength,” N. J. Phys. 12(10), 103005 (2010).
[CrossRef]

Hirosawa, K.

K. Hirosawa, Y. Ito, H. Ushio, H. Nakagome, and F. Kannari, “Generation of squeezed vacuum pulses using cascaded second-order optical nonlinearity of periodically poled lithium niobate in a Sagnac interferometer,” Phys. Rev. A 80(4), 043832–043836 (2009).
[CrossRef]

Huelga, S. F.

J. I. Cirac, A. K. Ekert, S. F. Huelga, and C. Macchiavello, “Distributed quantum computation over noisy channels,” Phys. Rev. A 59(6), 4249–4254 (1999).
[CrossRef]

Hunault, M.

Inoue, K.

H. Takesue and K. Inoue, “1.5-µm band quantum-correlated photon pair generation in dispersion-shifted fiber: suppression of noise photons by cooling fiber,” Opt. Express 13(20), 7832–7839 (2005).
[CrossRef] [PubMed]

H. Takesue and K. Inoue, “Generation of polarization-entangled photon pairs and violation of Bell’s inequality using spontaneous four-wave mixing in a fiber loop,” Phys. Rev. A 70(3), 031802–031805 (2004).
[CrossRef]

Inoue, S.

N. Namekata, S. Adachi, and S. Inoue, “Ultra-low-noise sinusoidally gated avalanche photodiode for high-speed single-photon detection at telecommunication wavelengths,” IEEE Photon. Technol. Lett. 22(8), 529–531 (2010).
[CrossRef]

N. Namekata, S. Sasamori, and S. Inoue, “800 MHz single-photon detection at 1550-nm using an InGaAs/InP avalanche photodiode operated with a sine wave gating,” Opt. Express 14(21), 10043–10049 (2006).
[CrossRef] [PubMed]

Issautier, A.

A. Martin, A. Issautier, H. Herrmann, W. Sohler, D. B. Ostrowsky, O. Alibart, and S. Tanzilli, “A polarization entangled photon-pair source based on a type-II PPLN waveguide emitting at a telecom wavelength,” N. J. Phys. 12(10), 103005 (2010).
[CrossRef]

Itabashi, S.

Ito, Y.

K. Hirosawa, Y. Ito, H. Ushio, H. Nakagome, and F. Kannari, “Generation of squeezed vacuum pulses using cascaded second-order optical nonlinearity of periodically poled lithium niobate in a Sagnac interferometer,” Phys. Rev. A 80(4), 043832–043836 (2009).
[CrossRef]

Jiang, Y.-K.

Y.-K. Jiang and A. Tomita, “The generation of polarization-entangled photon pairs using periodically poled lithium niobate waveguides in a fibre loop,” J. Phys. At. Mol. Opt. Phys. 40(2), 437–443 (2007).
[CrossRef]

Kaji, R.

A. Yoshizawa, R. Kaji, and H. Tsuchida, “Generation of polarization-entangled photon pairs at 1550 nm using two PPLN waveguides,” Electron. Lett. 39(7), 621–622 (2003).
[CrossRef]

Kannari, F.

K. Hirosawa, Y. Ito, H. Ushio, H. Nakagome, and F. Kannari, “Generation of squeezed vacuum pulses using cascaded second-order optical nonlinearity of periodically poled lithium niobate in a Sagnac interferometer,” Phys. Rev. A 80(4), 043832–043836 (2009).
[CrossRef]

Kato, Y.

S. Kurimura, Y. Kato, M. Maruyama, Y. Usui, and H. Nakajima, “Quasi-phase-matched adhered ridge waveguide in LiNbO3,” Appl. Phys. Lett. 89(19), 191123 (2006).
[CrossRef]

Kikuchi, K.

Kishimoto, T.

T. Kishimoto and K. Nakamura, “Periodically poled MgO-doped stoichiometric LiNbO3 wavelength convertor with ridge-type annealed proton-exchanged waveguide,” IEEE Photon. Technol. Lett. 23(3), 161–163 (2011).
[CrossRef]

Kumar, P.

J. Chen, K. F. Lee, X. Li, P. L. Voss, and P. Kumar, “Schemes for fiber-based entanglement generation in telecom band,” N. J. Phys. 9(8), 289 (2007).
[CrossRef]

M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communication,” IEEE Photon. Technol. Lett. 14(7), 983–985 (2002).
[CrossRef]

Kurimura, S.

S. Kurimura, Y. Kato, M. Maruyama, Y. Usui, and H. Nakajima, “Quasi-phase-matched adhered ridge waveguide in LiNbO3,” Appl. Phys. Lett. 89(19), 191123 (2006).
[CrossRef]

Kurz, J. R.

Langrock, C.

Lee, K. F.

J. Chen, K. F. Lee, X. Li, P. L. Voss, and P. Kumar, “Schemes for fiber-based entanglement generation in telecom band,” N. J. Phys. 9(8), 289 (2007).
[CrossRef]

Li, X.

J. Chen, K. F. Lee, X. Li, P. L. Voss, and P. Kumar, “Schemes for fiber-based entanglement generation in telecom band,” N. J. Phys. 9(8), 289 (2007).
[CrossRef]

Lim, H. C.

Macchiavello, C.

J. I. Cirac, A. K. Ekert, S. F. Huelga, and C. Macchiavello, “Distributed quantum computation over noisy channels,” Phys. Rev. A 59(6), 4249–4254 (1999).
[CrossRef]

Martin, A.

A. Martin, A. Issautier, H. Herrmann, W. Sohler, D. B. Ostrowsky, O. Alibart, and S. Tanzilli, “A polarization entangled photon-pair source based on a type-II PPLN waveguide emitting at a telecom wavelength,” N. J. Phys. 12(10), 103005 (2010).
[CrossRef]

Maruyama, M.

S. Kurimura, Y. Kato, M. Maruyama, Y. Usui, and H. Nakajima, “Quasi-phase-matched adhered ridge waveguide in LiNbO3,” Appl. Phys. Lett. 89(19), 191123 (2006).
[CrossRef]

Murai, H.

S. Arahira, H. Murai, and Y. Ogawa, ““Modified NOLM for stable and improved 2R operation at ultra-high bit rates,” IEICE Trans. Commun,” E 89-B, 3296–3305 (2006).

Nakagome, H.

K. Hirosawa, Y. Ito, H. Ushio, H. Nakagome, and F. Kannari, “Generation of squeezed vacuum pulses using cascaded second-order optical nonlinearity of periodically poled lithium niobate in a Sagnac interferometer,” Phys. Rev. A 80(4), 043832–043836 (2009).
[CrossRef]

Nakajima, H.

S. Kurimura, Y. Kato, M. Maruyama, Y. Usui, and H. Nakajima, “Quasi-phase-matched adhered ridge waveguide in LiNbO3,” Appl. Phys. Lett. 89(19), 191123 (2006).
[CrossRef]

Nakamura, K.

T. Kishimoto and K. Nakamura, “Periodically poled MgO-doped stoichiometric LiNbO3 wavelength convertor with ridge-type annealed proton-exchanged waveguide,” IEEE Photon. Technol. Lett. 23(3), 161–163 (2011).
[CrossRef]

Nam, S. W.

Namekata, N.

N. Namekata, S. Adachi, and S. Inoue, “Ultra-low-noise sinusoidally gated avalanche photodiode for high-speed single-photon detection at telecommunication wavelengths,” IEEE Photon. Technol. Lett. 22(8), 529–531 (2010).
[CrossRef]

N. Namekata, S. Sasamori, and S. Inoue, “800 MHz single-photon detection at 1550-nm using an InGaAs/InP avalanche photodiode operated with a sine wave gating,” Opt. Express 14(21), 10043–10049 (2006).
[CrossRef] [PubMed]

Nishida, Y.

Ogawa, Y.

S. Arahira, H. Murai, and Y. Ogawa, ““Modified NOLM for stable and improved 2R operation at ultra-high bit rates,” IEICE Trans. Commun,” E 89-B, 3296–3305 (2006).

Ostrowsky, D. B.

A. Martin, A. Issautier, H. Herrmann, W. Sohler, D. B. Ostrowsky, O. Alibart, and S. Tanzilli, “A polarization entangled photon-pair source based on a type-II PPLN waveguide emitting at a telecom wavelength,” N. J. Phys. 12(10), 103005 (2010).
[CrossRef]

S. Tanzilli, W. Tittel, H. De Riedmatten, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, “PPLN waveguide for quantum communication,” Eur. Phys. J. D 18(2), 155–160 (2002).
[CrossRef]

Parameswaran, K. R.

Roussev, R. V.

Route, R. K.

Sasamori, S.

Sharping, J. E.

M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communication,” IEEE Photon. Technol. Lett. 14(7), 983–985 (2002).
[CrossRef]

Sohler, W.

A. Martin, A. Issautier, H. Herrmann, W. Sohler, D. B. Ostrowsky, O. Alibart, and S. Tanzilli, “A polarization entangled photon-pair source based on a type-II PPLN waveguide emitting at a telecom wavelength,” N. J. Phys. 12(10), 103005 (2010).
[CrossRef]

Stevens, M. J.

Tadanaga, O.

Takesue, H.

Tang, X. H.

B. Chen, C. Q. Xu, B. Zhou, and X. H. Tang, “Analysis of cascaded second-order nonlinear interaction based on quasi-phase-matched optical waveguides,” IEEE J. Quantum Electron. 8(3), 675–680 (2002).
[CrossRef]

Tanzilli, S.

A. Martin, A. Issautier, H. Herrmann, W. Sohler, D. B. Ostrowsky, O. Alibart, and S. Tanzilli, “A polarization entangled photon-pair source based on a type-II PPLN waveguide emitting at a telecom wavelength,” N. J. Phys. 12(10), 103005 (2010).
[CrossRef]

S. Tanzilli, W. Tittel, H. De Riedmatten, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, “PPLN waveguide for quantum communication,” Eur. Phys. J. D 18(2), 155–160 (2002).
[CrossRef]

Tittel, W.

S. Tanzilli, W. Tittel, H. De Riedmatten, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, “PPLN waveguide for quantum communication,” Eur. Phys. J. D 18(2), 155–160 (2002).
[CrossRef]

Tokura, Y.

Tomita, A.

Y.-K. Jiang and A. Tomita, “The generation of polarization-entangled photon pairs using periodically poled lithium niobate waveguides in a fibre loop,” J. Phys. At. Mol. Opt. Phys. 40(2), 437–443 (2007).
[CrossRef]

Tsuchida, H.

Tsuchizawa, T.

Umeki, T.

T. Umeki, O. Tadanaga, and M. Asobe, “High efficient wavelength converter using direct-bonded PPZnLN Ridge waveguide,” IEEE J. Quantum Electron. 46(8), 1206–1213 (2010).
[CrossRef]

Ushio, H.

K. Hirosawa, Y. Ito, H. Ushio, H. Nakagome, and F. Kannari, “Generation of squeezed vacuum pulses using cascaded second-order optical nonlinearity of periodically poled lithium niobate in a Sagnac interferometer,” Phys. Rev. A 80(4), 043832–043836 (2009).
[CrossRef]

Usui, Y.

S. Kurimura, Y. Kato, M. Maruyama, Y. Usui, and H. Nakajima, “Quasi-phase-matched adhered ridge waveguide in LiNbO3,” Appl. Phys. Lett. 89(19), 191123 (2006).
[CrossRef]

Voss, P. L.

J. Chen, K. F. Lee, X. Li, P. L. Voss, and P. Kumar, “Schemes for fiber-based entanglement generation in telecom band,” N. J. Phys. 9(8), 289 (2007).
[CrossRef]

M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communication,” IEEE Photon. Technol. Lett. 14(7), 983–985 (2002).
[CrossRef]

Watanabe, T.

Xie, X.

Xu, C. Q.

B. Chen, C. Q. Xu, B. Zhou, and X. H. Tang, “Analysis of cascaded second-order nonlinear interaction based on quasi-phase-matched optical waveguides,” IEEE J. Quantum Electron. 8(3), 675–680 (2002).
[CrossRef]

Yamada, K.

Yamamoto, Y.

Yoshizawa, A.

Zbinden, H.

S. Tanzilli, W. Tittel, H. De Riedmatten, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, “PPLN waveguide for quantum communication,” Eur. Phys. J. D 18(2), 155–160 (2002).
[CrossRef]

Zhang, Q.

Zhou, B.

B. Chen, C. Q. Xu, B. Zhou, and X. H. Tang, “Analysis of cascaded second-order nonlinear interaction based on quasi-phase-matched optical waveguides,” IEEE J. Quantum Electron. 8(3), 675–680 (2002).
[CrossRef]

Appl. Phys. Lett. (1)

S. Kurimura, Y. Kato, M. Maruyama, Y. Usui, and H. Nakajima, “Quasi-phase-matched adhered ridge waveguide in LiNbO3,” Appl. Phys. Lett. 89(19), 191123 (2006).
[CrossRef]

E (1)

S. Arahira, H. Murai, and Y. Ogawa, ““Modified NOLM for stable and improved 2R operation at ultra-high bit rates,” IEICE Trans. Commun,” E 89-B, 3296–3305 (2006).

Electron. Lett. (1)

A. Yoshizawa, R. Kaji, and H. Tsuchida, “Generation of polarization-entangled photon pairs at 1550 nm using two PPLN waveguides,” Electron. Lett. 39(7), 621–622 (2003).
[CrossRef]

Eur. Phys. J. D (1)

S. Tanzilli, W. Tittel, H. De Riedmatten, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, “PPLN waveguide for quantum communication,” Eur. Phys. J. D 18(2), 155–160 (2002).
[CrossRef]

IEEE J. Quantum Electron. (2)

B. Chen, C. Q. Xu, B. Zhou, and X. H. Tang, “Analysis of cascaded second-order nonlinear interaction based on quasi-phase-matched optical waveguides,” IEEE J. Quantum Electron. 8(3), 675–680 (2002).
[CrossRef]

T. Umeki, O. Tadanaga, and M. Asobe, “High efficient wavelength converter using direct-bonded PPZnLN Ridge waveguide,” IEEE J. Quantum Electron. 46(8), 1206–1213 (2010).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-μm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photon. Technol. Lett. 11(6), 653–655 (1999).
[CrossRef]

N. Namekata, S. Adachi, and S. Inoue, “Ultra-low-noise sinusoidally gated avalanche photodiode for high-speed single-photon detection at telecommunication wavelengths,” IEEE Photon. Technol. Lett. 22(8), 529–531 (2010).
[CrossRef]

T. Kishimoto and K. Nakamura, “Periodically poled MgO-doped stoichiometric LiNbO3 wavelength convertor with ridge-type annealed proton-exchanged waveguide,” IEEE Photon. Technol. Lett. 23(3), 161–163 (2011).
[CrossRef]

M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communication,” IEEE Photon. Technol. Lett. 14(7), 983–985 (2002).
[CrossRef]

J. Phys. At. Mol. Opt. Phys. (1)

Y.-K. Jiang and A. Tomita, “The generation of polarization-entangled photon pairs using periodically poled lithium niobate waveguides in a fibre loop,” J. Phys. At. Mol. Opt. Phys. 40(2), 437–443 (2007).
[CrossRef]

N. J. Phys. (2)

J. Chen, K. F. Lee, X. Li, P. L. Voss, and P. Kumar, “Schemes for fiber-based entanglement generation in telecom band,” N. J. Phys. 9(8), 289 (2007).
[CrossRef]

A. Martin, A. Issautier, H. Herrmann, W. Sohler, D. B. Ostrowsky, O. Alibart, and S. Tanzilli, “A polarization entangled photon-pair source based on a type-II PPLN waveguide emitting at a telecom wavelength,” N. J. Phys. 12(10), 103005 (2010).
[CrossRef]

Opt. Express (7)

H. Takesue and K. Inoue, “1.5-µm band quantum-correlated photon pair generation in dispersion-shifted fiber: suppression of noise photons by cooling fiber,” Opt. Express 13(20), 7832–7839 (2005).
[CrossRef] [PubMed]

Q. Zhang, X. Xie, H. Takesue, S. W. Nam, C. Langrock, M. M. Fejer, and Y. Yamamoto, “Correlated photon-pair generation in reverse-proton-exchange PPLN waveguides with integrated mode demultiplexer at 10 GHz clock,” Opt. Express 15(16), 10288–10293 (2007).
[CrossRef] [PubMed]

S. D. Dyer, M. J. Stevens, B. Baek, and S. W. Nam, “High-efficiency, ultra low-noise all-fiber photon-pair source,” Opt. Express 16(13), 9966–9977 (2008).
[CrossRef] [PubMed]

K. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S. Itabashi, “Generation of high-purity entangled photon pairs using silicon wire waveguide,” Opt. Express 16(25), 20368–20373 (2008).
[CrossRef] [PubMed]

H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S. Itabashi, “Generation of polarization entangled photon pairs using silicon wire waveguide,” Opt. Express 16(8), 5721–5727 (2008).
[CrossRef] [PubMed]

H. C. Lim, A. Yoshizawa, H. Tsuchida, and K. Kikuchi, “Stable source of high quality telecom-band polarization-entangled photon-pairs based on a single, pulse-pumped, short PPLN waveguide,” Opt. Express 16(17), 12460–12468 (2008).
[CrossRef] [PubMed]

N. Namekata, S. Sasamori, and S. Inoue, “800 MHz single-photon detection at 1550-nm using an InGaAs/InP avalanche photodiode operated with a sine wave gating,” Opt. Express 14(21), 10043–10049 (2006).
[CrossRef] [PubMed]

Opt. Lett. (2)

Phys. Rev. A (3)

J. I. Cirac, A. K. Ekert, S. F. Huelga, and C. Macchiavello, “Distributed quantum computation over noisy channels,” Phys. Rev. A 59(6), 4249–4254 (1999).
[CrossRef]

H. Takesue and K. Inoue, “Generation of polarization-entangled photon pairs and violation of Bell’s inequality using spontaneous four-wave mixing in a fiber loop,” Phys. Rev. A 70(3), 031802–031805 (2004).
[CrossRef]

K. Hirosawa, Y. Ito, H. Ushio, H. Nakagome, and F. Kannari, “Generation of squeezed vacuum pulses using cascaded second-order optical nonlinearity of periodically poled lithium niobate in a Sagnac interferometer,” Phys. Rev. A 80(4), 043832–043836 (2009).
[CrossRef]

Phys. Rev. Lett. (1)

A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67(6), 661–663 (1991).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a) Cascaded SHG/SPDC process used in this work and (b) standard SPDC process.

Fig. 2
Fig. 2

(a) Comparison of the SPDC spectra between the standard SPDC process (black curve) and the c-SHG/SPDC process (red curve) in the PPLN device. (b) Comparison of tolerance to phase mismatching. Black circles: standard SPDC. Red circles: s-SHG/SPDC.

Fig. 3
Fig. 3

Experimental setup of photon-pair generation. PM-EDFA: polarization-maintaining erbium-doped fiber amplifier. OBF: optical bandpass filter. LPF: optical low-pass filter. WDM: WDM filter. D1, D2: SG-APDs. Thick blue lines indicate PM pigtail fibers.

Fig. 4
Fig. 4

Total transmittance characteristics of the optical filters after the PPLN module. Black curve: transmittance for the signal photons (1538.8 nm). Red curve: transmittance for the idler photons (1558.66 nm). Blue arrow indicates the wavelength of the pump photons (1548.66 nm).

Fig. 5
Fig. 5

(a) Dependence of the single count rates of the signal photons (black circles) and the idler photons (red squares) on the averaged power of the pump pulse. (b) Dependence of the coincidence count rate (black circles) on the averaged power of the pump pulse. Accidental count rates at the unmatched time slot were also shown as red squares.

Fig. 6
Fig. 6

(a) Dependence of the CAR on the mean number of photon-pair per pulse. Black closed circles: experimental results. Red, blue, and green curves: theoretical curves only considering the dark counts of the APDs. (b) Time-correlation histogram at the mean number of the photon-pair was 7.45×10−5.

Fig. 7
Fig. 7

Experimental setup of polarization entanglement. PBSC: polarization beam splitter/combiner. OPBC: optical phase bias compensator. Blue lines indicate PM pigtail fibers.

Fig. 8
Fig. 8

Setup of optical phase bias compensator (OPBC)used in this study.

Fig. 9
Fig. 9

Two-photon interference fringes. Polarizer angle of the signal polarizer (θs) were 0° (black) and 45° (red), respectively. Closed circles are experimental data. The solid curves in the figure are fitting curves assuming cos2si).

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

2 ω p = ω S H G = ω s + ω i
SHG:   2 k p = k S H G + K
SPDC:   k S H G + K = k s + k i
C A R = R m R u m = 1 + α s α i μ c c s c i
c s = ( μ c + μ s n ) α s + d s
c i = ( μ c + μ i n ) α i + d i
R m = α s α i μ c + c s c i
R u m = c s c i
C A R max = 1 + 1 ( d s α s + d i α i ) 2

Metrics