Abstract

We report a novel full-color display based on the generation of full-color by blue light approach, so called color-by-blue display. This newly proposed color-by-blue light-valve display combines a blue backlight excitation source, a blue light-valve shutter, and front-emitting phosphor pixels. Careful evaluation shows that the detailed display characteristics as well as excellent cycling durability under a low operation voltage of 3 V easily satisfy the requirements for the current display application. Also, we would like to emphasize that the proposed method shows a conversion efficiency of 20%, surpassing the value (≈5%) seen in the typical liquid crystal displays. Although the switching response reported here is slower than in a commercial display module due to the solution-phase electrochromic nature of the shutter used, a response time close to that of a liquid crystal display is highly feasible, as we suggest.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Kimura, T. Shinomiya, K. Yamamoto, K. Ichimura, Y. Nakagawa, Y. Ishii and M. Matsuura, “Multicolor display by double-layered supertwist-nematic LCD,” Proc. Society for Information Display 49–52 (1988).
  2. H. Kawamoto, “The history of liquid-crystal displays,” Proc. IEEE 90(4), 460–500 (2002).
    [CrossRef]
  3. N. Bardsley, “Survival of the fittest: the battle for the TV market,” http://ewh.ieee.org/r6/scv/ce/meetings/NB_for_IEEE_Silicon_Valley_CE.pdf , p. 38 (26 April 2005).
  4. R. G. Lindquist, “Wavelength selective cross-connect switch using a MEMS shutter array,” U.S. Pat. 6,535,311 B1 (2003).
  5. K. Wang, M. Sinclair, G. K. Starkweather, and K. F. Böhringer, “An electrostatic zigzag transmissive microoptical switch for MEMS displays,” J. Microelectromech. Syst. 16(1), 140–154 (2007).
    [CrossRef]
  6. A. L. Pyayt, G. K. Starkweather, and M. J. Sinclair, “A high-efficiency display based on a telescopic pixel design,” Nat. Photonics 2(8), 492–495 (2008).
    [CrossRef]
  7. X. Wu and A. M. Nakua, “Color electroluminescent display,” U.S. Pat. 0055316A1 (2006).
  8. P. E. Burrows, G. Gu, V. Bulovic, Z. Shen, S. R. Forrest, and M. E. Thompson, “Achieving full-color organic light-emitting devices for lightweight, flat-panel displays,” IEEE Trans. Electron. Dev. 44(8), 1188–1203 (1997).
    [CrossRef]
  9. K.-C. Cheng, F. R. Chen, and J. J. Kai, “V2O5 nanowires as a functional material for electrochromic device,” Sol. Energy Mater. Sol. Cells 90(7-8), 1156–1165 (2006).
    [CrossRef]
  10. H. Urano, S. Sunohara, H. Ohtomo, and N. Kobayashi, “Electrochemical and spectroscopic characteristics of dimethyl terephthalate,” J. Mater. Chem. 14(15), 2366–2368 (2004).
    [CrossRef]
  11. S. Y. Choi, M. Mamak, N. Coombs, N. Chopra, and G. A. Ozin, “Electrochromic performance of viologen-modified periodic mesoporous nanocrystalline anatase electrodes,” Nano Lett. 4(7), 1231–1235 (2004).
    [CrossRef]
  12. X. W. Sun and J. X. Wang, “Fast switching electrochromic display using a viologen-modified ZnO nanowire array electrode,” Nano Lett. 8(7), 1884–1889 (2008).
    [CrossRef] [PubMed]
  13. F. Fungo, S. A. Jenekhe, and A. J. Bard, “Plastic electrochromic devices: electrochemical characterization and device properties of a phenothiazine-phenylquinoline donor-acceptor polymer,” Chem. Mater. 15(6), 1264–1272 (2003).
    [CrossRef]
  14. J. Jonathan, J. Wierer, D. Aurelien, and M. M. Mischa, “III-nitride photonic-crystal light-emitting diodes with high extraction efficiency,” Nat. Photonics 3(3), 163–169 (2009).
    [CrossRef]
  15. R. Mueller-Mach, R. Mueller, G. O. Krames, M. R. Shchekin, O. B. Schmidt, P. J. Schmidt, H. Bechtel, C.-H. Chen, and O. Steigelmann, “All-nitride monochromatic amber-emitting phosphor-converted light-emitting diodes,” Phys. Status Solidi RRL 3(7-8), 215–217 (2009).
    [CrossRef]
  16. J. R. Oh, S.-H. Cho, Y. H. Lee, and Y. R. Do, “Enhanced forward efficiency of Y3Al5O12:Ce3+ phosphor from white light-emitting diodes using blue-pass yellow-reflection filter,” Opt. Express 17(9), 7450–7457 (2009).
    [CrossRef] [PubMed]
  17. S.-H. Cho, J. R. Oh, H. K. Park, H. K. Kim, Y.-H. Lee, J.-G. Lee, and Y. R. Do, “Highly efficient phosphor-converted white organic light-emitting diodes with moderate microcavity and light-recycling filters,” Opt. Express 18(2), 1099–1104 (2010).
    [CrossRef] [PubMed]
  18. J. R. Oh, S.-H. Cho, H. K. Park, J. H. Oh, Y.-H. Lee, and Y. R. Do, “Full down-conversion of amber-emitting phosphor-converted light-emitting diodes with powder phosphors and a long-wave pass filter,” Opt. Express 18(11), 11063–11072 (2010).
    [CrossRef] [PubMed]
  19. Y. R. Do, K. Y. Ko, S.-H. Na, and Y.-D. Huh, “Luminescence properties of potential Sr1−xCaxGa2S4:Eu green- and greenish-yellow-emitting phosphors for White LED,” J. Electrochem. Soc. 153(7), H142–H146 (2006).
    [CrossRef]
  20. N. Kobayashi, S. Miura, M. Nishimura, and H. Urano, “Organic electrochromism for a new color electronic paper,” Sol. Energy Mater. Sol. Cells 92(2), 136–139 (2008).
    [CrossRef]
  21. Y. D. Huh, J.-H. Shim, Y. Kim, and Y. R. Do, “Optical properties of three-band white light emitting diodes,” J. Electrochem. Soc. 150(2), H57–H60 (2003).
    [CrossRef]
  22. R.-J. Xie and N. Hirosaki, “Silicon-based oxynitride and nitride phosphors for white LEDs - A review,” Sci. Technol. Adv. Mater. 8(7-8), 588–600 (2007).
    [CrossRef]
  23. Y. R. Do and J. W. Bae, “Application of photoluminescence phosphors to a phosphor-liquid crystal display,” J. Appl. Phys. 88(8), 4660–4665 (2000).
    [CrossRef]

2010 (2)

2009 (3)

J. Jonathan, J. Wierer, D. Aurelien, and M. M. Mischa, “III-nitride photonic-crystal light-emitting diodes with high extraction efficiency,” Nat. Photonics 3(3), 163–169 (2009).
[CrossRef]

R. Mueller-Mach, R. Mueller, G. O. Krames, M. R. Shchekin, O. B. Schmidt, P. J. Schmidt, H. Bechtel, C.-H. Chen, and O. Steigelmann, “All-nitride monochromatic amber-emitting phosphor-converted light-emitting diodes,” Phys. Status Solidi RRL 3(7-8), 215–217 (2009).
[CrossRef]

J. R. Oh, S.-H. Cho, Y. H. Lee, and Y. R. Do, “Enhanced forward efficiency of Y3Al5O12:Ce3+ phosphor from white light-emitting diodes using blue-pass yellow-reflection filter,” Opt. Express 17(9), 7450–7457 (2009).
[CrossRef] [PubMed]

2008 (3)

N. Kobayashi, S. Miura, M. Nishimura, and H. Urano, “Organic electrochromism for a new color electronic paper,” Sol. Energy Mater. Sol. Cells 92(2), 136–139 (2008).
[CrossRef]

A. L. Pyayt, G. K. Starkweather, and M. J. Sinclair, “A high-efficiency display based on a telescopic pixel design,” Nat. Photonics 2(8), 492–495 (2008).
[CrossRef]

X. W. Sun and J. X. Wang, “Fast switching electrochromic display using a viologen-modified ZnO nanowire array electrode,” Nano Lett. 8(7), 1884–1889 (2008).
[CrossRef] [PubMed]

2007 (2)

K. Wang, M. Sinclair, G. K. Starkweather, and K. F. Böhringer, “An electrostatic zigzag transmissive microoptical switch for MEMS displays,” J. Microelectromech. Syst. 16(1), 140–154 (2007).
[CrossRef]

R.-J. Xie and N. Hirosaki, “Silicon-based oxynitride and nitride phosphors for white LEDs - A review,” Sci. Technol. Adv. Mater. 8(7-8), 588–600 (2007).
[CrossRef]

2006 (2)

Y. R. Do, K. Y. Ko, S.-H. Na, and Y.-D. Huh, “Luminescence properties of potential Sr1−xCaxGa2S4:Eu green- and greenish-yellow-emitting phosphors for White LED,” J. Electrochem. Soc. 153(7), H142–H146 (2006).
[CrossRef]

K.-C. Cheng, F. R. Chen, and J. J. Kai, “V2O5 nanowires as a functional material for electrochromic device,” Sol. Energy Mater. Sol. Cells 90(7-8), 1156–1165 (2006).
[CrossRef]

2004 (2)

H. Urano, S. Sunohara, H. Ohtomo, and N. Kobayashi, “Electrochemical and spectroscopic characteristics of dimethyl terephthalate,” J. Mater. Chem. 14(15), 2366–2368 (2004).
[CrossRef]

S. Y. Choi, M. Mamak, N. Coombs, N. Chopra, and G. A. Ozin, “Electrochromic performance of viologen-modified periodic mesoporous nanocrystalline anatase electrodes,” Nano Lett. 4(7), 1231–1235 (2004).
[CrossRef]

2003 (2)

F. Fungo, S. A. Jenekhe, and A. J. Bard, “Plastic electrochromic devices: electrochemical characterization and device properties of a phenothiazine-phenylquinoline donor-acceptor polymer,” Chem. Mater. 15(6), 1264–1272 (2003).
[CrossRef]

Y. D. Huh, J.-H. Shim, Y. Kim, and Y. R. Do, “Optical properties of three-band white light emitting diodes,” J. Electrochem. Soc. 150(2), H57–H60 (2003).
[CrossRef]

2002 (1)

H. Kawamoto, “The history of liquid-crystal displays,” Proc. IEEE 90(4), 460–500 (2002).
[CrossRef]

2000 (1)

Y. R. Do and J. W. Bae, “Application of photoluminescence phosphors to a phosphor-liquid crystal display,” J. Appl. Phys. 88(8), 4660–4665 (2000).
[CrossRef]

1997 (1)

P. E. Burrows, G. Gu, V. Bulovic, Z. Shen, S. R. Forrest, and M. E. Thompson, “Achieving full-color organic light-emitting devices for lightweight, flat-panel displays,” IEEE Trans. Electron. Dev. 44(8), 1188–1203 (1997).
[CrossRef]

Aurelien, D.

J. Jonathan, J. Wierer, D. Aurelien, and M. M. Mischa, “III-nitride photonic-crystal light-emitting diodes with high extraction efficiency,” Nat. Photonics 3(3), 163–169 (2009).
[CrossRef]

Bae, J. W.

Y. R. Do and J. W. Bae, “Application of photoluminescence phosphors to a phosphor-liquid crystal display,” J. Appl. Phys. 88(8), 4660–4665 (2000).
[CrossRef]

Bard, A. J.

F. Fungo, S. A. Jenekhe, and A. J. Bard, “Plastic electrochromic devices: electrochemical characterization and device properties of a phenothiazine-phenylquinoline donor-acceptor polymer,” Chem. Mater. 15(6), 1264–1272 (2003).
[CrossRef]

Bechtel, H.

R. Mueller-Mach, R. Mueller, G. O. Krames, M. R. Shchekin, O. B. Schmidt, P. J. Schmidt, H. Bechtel, C.-H. Chen, and O. Steigelmann, “All-nitride monochromatic amber-emitting phosphor-converted light-emitting diodes,” Phys. Status Solidi RRL 3(7-8), 215–217 (2009).
[CrossRef]

Böhringer, K. F.

K. Wang, M. Sinclair, G. K. Starkweather, and K. F. Böhringer, “An electrostatic zigzag transmissive microoptical switch for MEMS displays,” J. Microelectromech. Syst. 16(1), 140–154 (2007).
[CrossRef]

Bulovic, V.

P. E. Burrows, G. Gu, V. Bulovic, Z. Shen, S. R. Forrest, and M. E. Thompson, “Achieving full-color organic light-emitting devices for lightweight, flat-panel displays,” IEEE Trans. Electron. Dev. 44(8), 1188–1203 (1997).
[CrossRef]

Burrows, P. E.

P. E. Burrows, G. Gu, V. Bulovic, Z. Shen, S. R. Forrest, and M. E. Thompson, “Achieving full-color organic light-emitting devices for lightweight, flat-panel displays,” IEEE Trans. Electron. Dev. 44(8), 1188–1203 (1997).
[CrossRef]

Chen, C.-H.

R. Mueller-Mach, R. Mueller, G. O. Krames, M. R. Shchekin, O. B. Schmidt, P. J. Schmidt, H. Bechtel, C.-H. Chen, and O. Steigelmann, “All-nitride monochromatic amber-emitting phosphor-converted light-emitting diodes,” Phys. Status Solidi RRL 3(7-8), 215–217 (2009).
[CrossRef]

Chen, F. R.

K.-C. Cheng, F. R. Chen, and J. J. Kai, “V2O5 nanowires as a functional material for electrochromic device,” Sol. Energy Mater. Sol. Cells 90(7-8), 1156–1165 (2006).
[CrossRef]

Cheng, K.-C.

K.-C. Cheng, F. R. Chen, and J. J. Kai, “V2O5 nanowires as a functional material for electrochromic device,” Sol. Energy Mater. Sol. Cells 90(7-8), 1156–1165 (2006).
[CrossRef]

Cho, S.-H.

Choi, S. Y.

S. Y. Choi, M. Mamak, N. Coombs, N. Chopra, and G. A. Ozin, “Electrochromic performance of viologen-modified periodic mesoporous nanocrystalline anatase electrodes,” Nano Lett. 4(7), 1231–1235 (2004).
[CrossRef]

Chopra, N.

S. Y. Choi, M. Mamak, N. Coombs, N. Chopra, and G. A. Ozin, “Electrochromic performance of viologen-modified periodic mesoporous nanocrystalline anatase electrodes,” Nano Lett. 4(7), 1231–1235 (2004).
[CrossRef]

Coombs, N.

S. Y. Choi, M. Mamak, N. Coombs, N. Chopra, and G. A. Ozin, “Electrochromic performance of viologen-modified periodic mesoporous nanocrystalline anatase electrodes,” Nano Lett. 4(7), 1231–1235 (2004).
[CrossRef]

Do, Y. R.

Forrest, S. R.

P. E. Burrows, G. Gu, V. Bulovic, Z. Shen, S. R. Forrest, and M. E. Thompson, “Achieving full-color organic light-emitting devices for lightweight, flat-panel displays,” IEEE Trans. Electron. Dev. 44(8), 1188–1203 (1997).
[CrossRef]

Fungo, F.

F. Fungo, S. A. Jenekhe, and A. J. Bard, “Plastic electrochromic devices: electrochemical characterization and device properties of a phenothiazine-phenylquinoline donor-acceptor polymer,” Chem. Mater. 15(6), 1264–1272 (2003).
[CrossRef]

Gu, G.

P. E. Burrows, G. Gu, V. Bulovic, Z. Shen, S. R. Forrest, and M. E. Thompson, “Achieving full-color organic light-emitting devices for lightweight, flat-panel displays,” IEEE Trans. Electron. Dev. 44(8), 1188–1203 (1997).
[CrossRef]

Hirosaki, N.

R.-J. Xie and N. Hirosaki, “Silicon-based oxynitride and nitride phosphors for white LEDs - A review,” Sci. Technol. Adv. Mater. 8(7-8), 588–600 (2007).
[CrossRef]

Huh, Y. D.

Y. D. Huh, J.-H. Shim, Y. Kim, and Y. R. Do, “Optical properties of three-band white light emitting diodes,” J. Electrochem. Soc. 150(2), H57–H60 (2003).
[CrossRef]

Huh, Y.-D.

Y. R. Do, K. Y. Ko, S.-H. Na, and Y.-D. Huh, “Luminescence properties of potential Sr1−xCaxGa2S4:Eu green- and greenish-yellow-emitting phosphors for White LED,” J. Electrochem. Soc. 153(7), H142–H146 (2006).
[CrossRef]

Jenekhe, S. A.

F. Fungo, S. A. Jenekhe, and A. J. Bard, “Plastic electrochromic devices: electrochemical characterization and device properties of a phenothiazine-phenylquinoline donor-acceptor polymer,” Chem. Mater. 15(6), 1264–1272 (2003).
[CrossRef]

Jonathan, J.

J. Jonathan, J. Wierer, D. Aurelien, and M. M. Mischa, “III-nitride photonic-crystal light-emitting diodes with high extraction efficiency,” Nat. Photonics 3(3), 163–169 (2009).
[CrossRef]

Kai, J. J.

K.-C. Cheng, F. R. Chen, and J. J. Kai, “V2O5 nanowires as a functional material for electrochromic device,” Sol. Energy Mater. Sol. Cells 90(7-8), 1156–1165 (2006).
[CrossRef]

Kawamoto, H.

H. Kawamoto, “The history of liquid-crystal displays,” Proc. IEEE 90(4), 460–500 (2002).
[CrossRef]

Kim, H. K.

Kim, Y.

Y. D. Huh, J.-H. Shim, Y. Kim, and Y. R. Do, “Optical properties of three-band white light emitting diodes,” J. Electrochem. Soc. 150(2), H57–H60 (2003).
[CrossRef]

Ko, K. Y.

Y. R. Do, K. Y. Ko, S.-H. Na, and Y.-D. Huh, “Luminescence properties of potential Sr1−xCaxGa2S4:Eu green- and greenish-yellow-emitting phosphors for White LED,” J. Electrochem. Soc. 153(7), H142–H146 (2006).
[CrossRef]

Kobayashi, N.

N. Kobayashi, S. Miura, M. Nishimura, and H. Urano, “Organic electrochromism for a new color electronic paper,” Sol. Energy Mater. Sol. Cells 92(2), 136–139 (2008).
[CrossRef]

H. Urano, S. Sunohara, H. Ohtomo, and N. Kobayashi, “Electrochemical and spectroscopic characteristics of dimethyl terephthalate,” J. Mater. Chem. 14(15), 2366–2368 (2004).
[CrossRef]

Krames, G. O.

R. Mueller-Mach, R. Mueller, G. O. Krames, M. R. Shchekin, O. B. Schmidt, P. J. Schmidt, H. Bechtel, C.-H. Chen, and O. Steigelmann, “All-nitride monochromatic amber-emitting phosphor-converted light-emitting diodes,” Phys. Status Solidi RRL 3(7-8), 215–217 (2009).
[CrossRef]

Lee, J.-G.

Lee, Y. H.

Lee, Y.-H.

Mamak, M.

S. Y. Choi, M. Mamak, N. Coombs, N. Chopra, and G. A. Ozin, “Electrochromic performance of viologen-modified periodic mesoporous nanocrystalline anatase electrodes,” Nano Lett. 4(7), 1231–1235 (2004).
[CrossRef]

Mischa, M. M.

J. Jonathan, J. Wierer, D. Aurelien, and M. M. Mischa, “III-nitride photonic-crystal light-emitting diodes with high extraction efficiency,” Nat. Photonics 3(3), 163–169 (2009).
[CrossRef]

Miura, S.

N. Kobayashi, S. Miura, M. Nishimura, and H. Urano, “Organic electrochromism for a new color electronic paper,” Sol. Energy Mater. Sol. Cells 92(2), 136–139 (2008).
[CrossRef]

Mueller, R.

R. Mueller-Mach, R. Mueller, G. O. Krames, M. R. Shchekin, O. B. Schmidt, P. J. Schmidt, H. Bechtel, C.-H. Chen, and O. Steigelmann, “All-nitride monochromatic amber-emitting phosphor-converted light-emitting diodes,” Phys. Status Solidi RRL 3(7-8), 215–217 (2009).
[CrossRef]

Mueller-Mach, R.

R. Mueller-Mach, R. Mueller, G. O. Krames, M. R. Shchekin, O. B. Schmidt, P. J. Schmidt, H. Bechtel, C.-H. Chen, and O. Steigelmann, “All-nitride monochromatic amber-emitting phosphor-converted light-emitting diodes,” Phys. Status Solidi RRL 3(7-8), 215–217 (2009).
[CrossRef]

Na, S.-H.

Y. R. Do, K. Y. Ko, S.-H. Na, and Y.-D. Huh, “Luminescence properties of potential Sr1−xCaxGa2S4:Eu green- and greenish-yellow-emitting phosphors for White LED,” J. Electrochem. Soc. 153(7), H142–H146 (2006).
[CrossRef]

Nishimura, M.

N. Kobayashi, S. Miura, M. Nishimura, and H. Urano, “Organic electrochromism for a new color electronic paper,” Sol. Energy Mater. Sol. Cells 92(2), 136–139 (2008).
[CrossRef]

Oh, J. H.

Oh, J. R.

Ohtomo, H.

H. Urano, S. Sunohara, H. Ohtomo, and N. Kobayashi, “Electrochemical and spectroscopic characteristics of dimethyl terephthalate,” J. Mater. Chem. 14(15), 2366–2368 (2004).
[CrossRef]

Ozin, G. A.

S. Y. Choi, M. Mamak, N. Coombs, N. Chopra, and G. A. Ozin, “Electrochromic performance of viologen-modified periodic mesoporous nanocrystalline anatase electrodes,” Nano Lett. 4(7), 1231–1235 (2004).
[CrossRef]

Park, H. K.

Pyayt, A. L.

A. L. Pyayt, G. K. Starkweather, and M. J. Sinclair, “A high-efficiency display based on a telescopic pixel design,” Nat. Photonics 2(8), 492–495 (2008).
[CrossRef]

Schmidt, O. B.

R. Mueller-Mach, R. Mueller, G. O. Krames, M. R. Shchekin, O. B. Schmidt, P. J. Schmidt, H. Bechtel, C.-H. Chen, and O. Steigelmann, “All-nitride monochromatic amber-emitting phosphor-converted light-emitting diodes,” Phys. Status Solidi RRL 3(7-8), 215–217 (2009).
[CrossRef]

Schmidt, P. J.

R. Mueller-Mach, R. Mueller, G. O. Krames, M. R. Shchekin, O. B. Schmidt, P. J. Schmidt, H. Bechtel, C.-H. Chen, and O. Steigelmann, “All-nitride monochromatic amber-emitting phosphor-converted light-emitting diodes,” Phys. Status Solidi RRL 3(7-8), 215–217 (2009).
[CrossRef]

Shchekin, M. R.

R. Mueller-Mach, R. Mueller, G. O. Krames, M. R. Shchekin, O. B. Schmidt, P. J. Schmidt, H. Bechtel, C.-H. Chen, and O. Steigelmann, “All-nitride monochromatic amber-emitting phosphor-converted light-emitting diodes,” Phys. Status Solidi RRL 3(7-8), 215–217 (2009).
[CrossRef]

Shen, Z.

P. E. Burrows, G. Gu, V. Bulovic, Z. Shen, S. R. Forrest, and M. E. Thompson, “Achieving full-color organic light-emitting devices for lightweight, flat-panel displays,” IEEE Trans. Electron. Dev. 44(8), 1188–1203 (1997).
[CrossRef]

Shim, J.-H.

Y. D. Huh, J.-H. Shim, Y. Kim, and Y. R. Do, “Optical properties of three-band white light emitting diodes,” J. Electrochem. Soc. 150(2), H57–H60 (2003).
[CrossRef]

Sinclair, M.

K. Wang, M. Sinclair, G. K. Starkweather, and K. F. Böhringer, “An electrostatic zigzag transmissive microoptical switch for MEMS displays,” J. Microelectromech. Syst. 16(1), 140–154 (2007).
[CrossRef]

Sinclair, M. J.

A. L. Pyayt, G. K. Starkweather, and M. J. Sinclair, “A high-efficiency display based on a telescopic pixel design,” Nat. Photonics 2(8), 492–495 (2008).
[CrossRef]

Starkweather, G. K.

A. L. Pyayt, G. K. Starkweather, and M. J. Sinclair, “A high-efficiency display based on a telescopic pixel design,” Nat. Photonics 2(8), 492–495 (2008).
[CrossRef]

K. Wang, M. Sinclair, G. K. Starkweather, and K. F. Böhringer, “An electrostatic zigzag transmissive microoptical switch for MEMS displays,” J. Microelectromech. Syst. 16(1), 140–154 (2007).
[CrossRef]

Steigelmann, O.

R. Mueller-Mach, R. Mueller, G. O. Krames, M. R. Shchekin, O. B. Schmidt, P. J. Schmidt, H. Bechtel, C.-H. Chen, and O. Steigelmann, “All-nitride monochromatic amber-emitting phosphor-converted light-emitting diodes,” Phys. Status Solidi RRL 3(7-8), 215–217 (2009).
[CrossRef]

Sun, X. W.

X. W. Sun and J. X. Wang, “Fast switching electrochromic display using a viologen-modified ZnO nanowire array electrode,” Nano Lett. 8(7), 1884–1889 (2008).
[CrossRef] [PubMed]

Sunohara, S.

H. Urano, S. Sunohara, H. Ohtomo, and N. Kobayashi, “Electrochemical and spectroscopic characteristics of dimethyl terephthalate,” J. Mater. Chem. 14(15), 2366–2368 (2004).
[CrossRef]

Thompson, M. E.

P. E. Burrows, G. Gu, V. Bulovic, Z. Shen, S. R. Forrest, and M. E. Thompson, “Achieving full-color organic light-emitting devices for lightweight, flat-panel displays,” IEEE Trans. Electron. Dev. 44(8), 1188–1203 (1997).
[CrossRef]

Urano, H.

N. Kobayashi, S. Miura, M. Nishimura, and H. Urano, “Organic electrochromism for a new color electronic paper,” Sol. Energy Mater. Sol. Cells 92(2), 136–139 (2008).
[CrossRef]

H. Urano, S. Sunohara, H. Ohtomo, and N. Kobayashi, “Electrochemical and spectroscopic characteristics of dimethyl terephthalate,” J. Mater. Chem. 14(15), 2366–2368 (2004).
[CrossRef]

Wang, J. X.

X. W. Sun and J. X. Wang, “Fast switching electrochromic display using a viologen-modified ZnO nanowire array electrode,” Nano Lett. 8(7), 1884–1889 (2008).
[CrossRef] [PubMed]

Wang, K.

K. Wang, M. Sinclair, G. K. Starkweather, and K. F. Böhringer, “An electrostatic zigzag transmissive microoptical switch for MEMS displays,” J. Microelectromech. Syst. 16(1), 140–154 (2007).
[CrossRef]

Wierer, J.

J. Jonathan, J. Wierer, D. Aurelien, and M. M. Mischa, “III-nitride photonic-crystal light-emitting diodes with high extraction efficiency,” Nat. Photonics 3(3), 163–169 (2009).
[CrossRef]

Xie, R.-J.

R.-J. Xie and N. Hirosaki, “Silicon-based oxynitride and nitride phosphors for white LEDs - A review,” Sci. Technol. Adv. Mater. 8(7-8), 588–600 (2007).
[CrossRef]

Chem. Mater. (1)

F. Fungo, S. A. Jenekhe, and A. J. Bard, “Plastic electrochromic devices: electrochemical characterization and device properties of a phenothiazine-phenylquinoline donor-acceptor polymer,” Chem. Mater. 15(6), 1264–1272 (2003).
[CrossRef]

IEEE Trans. Electron. Dev. (1)

P. E. Burrows, G. Gu, V. Bulovic, Z. Shen, S. R. Forrest, and M. E. Thompson, “Achieving full-color organic light-emitting devices for lightweight, flat-panel displays,” IEEE Trans. Electron. Dev. 44(8), 1188–1203 (1997).
[CrossRef]

J. Appl. Phys. (1)

Y. R. Do and J. W. Bae, “Application of photoluminescence phosphors to a phosphor-liquid crystal display,” J. Appl. Phys. 88(8), 4660–4665 (2000).
[CrossRef]

J. Electrochem. Soc. (2)

Y. R. Do, K. Y. Ko, S.-H. Na, and Y.-D. Huh, “Luminescence properties of potential Sr1−xCaxGa2S4:Eu green- and greenish-yellow-emitting phosphors for White LED,” J. Electrochem. Soc. 153(7), H142–H146 (2006).
[CrossRef]

Y. D. Huh, J.-H. Shim, Y. Kim, and Y. R. Do, “Optical properties of three-band white light emitting diodes,” J. Electrochem. Soc. 150(2), H57–H60 (2003).
[CrossRef]

J. Mater. Chem. (1)

H. Urano, S. Sunohara, H. Ohtomo, and N. Kobayashi, “Electrochemical and spectroscopic characteristics of dimethyl terephthalate,” J. Mater. Chem. 14(15), 2366–2368 (2004).
[CrossRef]

J. Microelectromech. Syst. (1)

K. Wang, M. Sinclair, G. K. Starkweather, and K. F. Böhringer, “An electrostatic zigzag transmissive microoptical switch for MEMS displays,” J. Microelectromech. Syst. 16(1), 140–154 (2007).
[CrossRef]

Nano Lett. (2)

S. Y. Choi, M. Mamak, N. Coombs, N. Chopra, and G. A. Ozin, “Electrochromic performance of viologen-modified periodic mesoporous nanocrystalline anatase electrodes,” Nano Lett. 4(7), 1231–1235 (2004).
[CrossRef]

X. W. Sun and J. X. Wang, “Fast switching electrochromic display using a viologen-modified ZnO nanowire array electrode,” Nano Lett. 8(7), 1884–1889 (2008).
[CrossRef] [PubMed]

Nat. Photonics (2)

A. L. Pyayt, G. K. Starkweather, and M. J. Sinclair, “A high-efficiency display based on a telescopic pixel design,” Nat. Photonics 2(8), 492–495 (2008).
[CrossRef]

J. Jonathan, J. Wierer, D. Aurelien, and M. M. Mischa, “III-nitride photonic-crystal light-emitting diodes with high extraction efficiency,” Nat. Photonics 3(3), 163–169 (2009).
[CrossRef]

Opt. Express (3)

Phys. Status Solidi RRL (1)

R. Mueller-Mach, R. Mueller, G. O. Krames, M. R. Shchekin, O. B. Schmidt, P. J. Schmidt, H. Bechtel, C.-H. Chen, and O. Steigelmann, “All-nitride monochromatic amber-emitting phosphor-converted light-emitting diodes,” Phys. Status Solidi RRL 3(7-8), 215–217 (2009).
[CrossRef]

Proc. IEEE (1)

H. Kawamoto, “The history of liquid-crystal displays,” Proc. IEEE 90(4), 460–500 (2002).
[CrossRef]

Sci. Technol. Adv. Mater. (1)

R.-J. Xie and N. Hirosaki, “Silicon-based oxynitride and nitride phosphors for white LEDs - A review,” Sci. Technol. Adv. Mater. 8(7-8), 588–600 (2007).
[CrossRef]

Sol. Energy Mater. Sol. Cells (2)

K.-C. Cheng, F. R. Chen, and J. J. Kai, “V2O5 nanowires as a functional material for electrochromic device,” Sol. Energy Mater. Sol. Cells 90(7-8), 1156–1165 (2006).
[CrossRef]

N. Kobayashi, S. Miura, M. Nishimura, and H. Urano, “Organic electrochromism for a new color electronic paper,” Sol. Energy Mater. Sol. Cells 92(2), 136–139 (2008).
[CrossRef]

Other (4)

N. Bardsley, “Survival of the fittest: the battle for the TV market,” http://ewh.ieee.org/r6/scv/ce/meetings/NB_for_IEEE_Silicon_Valley_CE.pdf , p. 38 (26 April 2005).

R. G. Lindquist, “Wavelength selective cross-connect switch using a MEMS shutter array,” U.S. Pat. 6,535,311 B1 (2003).

X. Wu and A. M. Nakua, “Color electroluminescent display,” U.S. Pat. 0055316A1 (2006).

N. Kimura, T. Shinomiya, K. Yamamoto, K. Ichimura, Y. Nakagawa, Y. Ishii and M. Matsuura, “Multicolor display by double-layered supertwist-nematic LCD,” Proc. Society for Information Display 49–52 (1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic diagram of the proposed color-by-blue EC emissive display. (a) Basic concept of the color-by-blue emissive display with blue LED backlight, DEB-based blue light-valve shutter and RG phosphor layers. The roles of SWPF and LWPF layers in this proposed color-by-blue display are explained in (b) and (c), compared to the conventional approach. Also, the expected emission spectra (red) of the proposed method with SWPF in (b) and with LWPF in (c) are shown on top, as well as the emission spectra (black) from the conventional approach. As shown in (b), SWPF between the phosphor layer and the backlight enhances the emission light by reflecting the backward emission from the phosphor layer. In (c), LWPF on the front of the phosphor layer blocks the transmission of blue backlight and allows the re-absorption of the reflected blue light in the phosphor layer, preventing the problem of color mixing. The resulting color-by-blue EC emissive display is illustrated in (d) with RG phosphor layers, sandwiched between SWPF and LWPF, on the front-side of the DEB-based EC light-valve.

Fig. 2
Fig. 2

Effects of SWPF and LWPF in the color-by-blue EC emissive display. (a) Transmittance spectra of the SWPF (magenta) and LWPF (black), the normalized blue electroluminescence (EL) spectrum of InGaN LED (blue) and normalized photoluminescence (PL) spectra of SrGa2S4:Eu green (green) and CaAlSiN3:Eu red (red) phosphors. In (b) and (c), the spectral changes in green and red forward emissions due to the presence of SWPF and LWPF are shown and compared with those from SWPF-only and conventional cell structures.

Fig. 3
Fig. 3

Voltage-dependent optical characteristics of DEB-based EC cell. (a) Transmittance spectra of DEB-based EC light-valve under external voltage ranging from 0 to 3.5 V. With increase in the applied voltage, strong absorption spectra appeared at 457nm due to the electrochemical reduction of DEB molecules within the light-valve. (b-d), Photoluminescence (PL) spectra of blue (b), green (c), and red (d) pixels shown with 8-bit gray scale images at different applied voltage.

Fig. 4
Fig. 4

Phosphor-concentration dependencies in the green and red phosphor layers. (a-b), Relative conversion efficiencies of the conventional, SWPF-only, and SWPF/LWPF-assisted green (a) and red (b) pixels as a function of the phosphor concentration. The conversion efficiencies of RG phosphor layers in the SWPF-assisted and SWPF/LWPF-assisted cells are higher than that of the conventional phosphor layers at all phosphor concentrations. The photoluminescence (PL) spectra of (c) green and (d) red phosphor layers taken near the Commission International d’Eclairage (CIE) 1931 coordinates of (0.30, 0.65) for green and (0.63, 0.32) for red are also shown, indicating the enhanced intensity output with SWPF/LWPF structures. Here, in the SWPF/LWPF-assisted cell, the phosphor concentration of 50 wt% (green) and 60 wt% (red) were sufficient to achieve the almost identical color purity and color coordinate to those of the conventional and SWPF-only assisted cells with 80 wt%.

Fig. 5
Fig. 5

Detailed characterization of color-by-blue EC emissive display. (a) Luminance-voltage characteristics of the blue and green/red phosphor layer-coated EC cells with SWPF and LWPF. The inset shows the color coordinates of the SWPF/LWPF-assisted RGB pixels compared with the CIE color coordinates and color gamut from the National Television Standard Committee (NTSC). (b) Switching time, TON and TOFF of the DEB-based EC cell with an active area of 0.25 cm2 and a cell gap of 25 µm, as driven between ON and OFF states. The inset shows the continuous operation of the display module over 1000 cycles, suggesting the stable electrochromic performance of the EC cell. (c-d), Switching response as a function of cell structure parameters. The changes in TON and TOFF were measured for different cell gap thickness at a constant active area of 1.00 cm2 in (c) and different active areas at a constant cell gap of 25 µm in (d).

Fig. 6
Fig. 6

Balance between RGB cells required for the correlated color temperature of 12000 K. The electroluminescence (EL) spectra of InGaN (blue), SrGa2S4:Eu (green) and CaAlSiN3:Eu (red) phosphor-converted monochromatic LEDs at 12,000 K are shown in (a), which indicates the spectral area ratio of 1: 1.15: 1.04 is required for 12,000 K. The EL spectra of the fabricated RGB EC cells are shown in (b). Here the spectra area ratio is only 1: 0.52: 0.38, suggesting that the adjustment of blue transmission and green emission is needed to achieve the color temperature of 12,000 K.

Tables (1)

Tables Icon

Table 1 Display characteristics of the conventional, SWPF-only, and SWPF/LWPF-assisted blue and mono-color green/red cells.

Metrics