Abstract

An all-sky imaging polarimeter was deployed in summer 2008 to the Mauna Loa Observatory in Hawaii to study clear-sky atmospheric skylight polarization. The imager operates in five wavebands in the visible and near infrared spectrum and has a fisheye lens for all-sky viewing. This paper describes the deployment and presents comparisons of the degree of skylight polarization observed to similar data observed by Coulson with a principal-plane scanning polarimeter in the late 1970s. In general, the results compared favorably to those of Coulson. In addition, we present quantitative results correlating a variation of the maximum degree of polarization over a range of 70-85% to fluctuation in underlying surface reflectance and upwelling radiance data from the GOES satellite.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. J. Pust and J. A. Shaw, “Dual-field imaging polarimeter using liquid crystal variable retarders,” Appl. Opt. 45(22), 5470–5478 (2006).
    [CrossRef] [PubMed]
  2. N. J. Pust and J. A. Shaw, “Digital all-sky polarization imaging of partly cloudy skies,” Appl. Opt. 47(34), H190–H198 (2008).
    [CrossRef] [PubMed]
  3. J. S. Tyo, D. L. Goldstein, D. B. Chenault, and J. A. Shaw, “Review of passive imaging polarimetry for remote sensing applications,” Appl. Opt. 45(22), 5453–5469 (2006).
    [CrossRef] [PubMed]
  4. Z. Li, P. Goloub, O. Dubovik, L. Blarel, W. Zhang, T. Podvin, A. Sinyuk, M. Sorokin, H. Chen, B. Holben, D. Tanré, M. Canini, and J.-P. Buis, “Improvements for ground-based remote sensing of atmospheric aerosol properties by additional polarimetric measurements,” J. Quant. Spectrosc. Radiat. Transf. 110(17), 1954–1961 (2009).
    [CrossRef]
  5. M. I. Mishchenko and L. D. Travis, “Satellite retrieval of aerosol properties over the ocean using polarization as well as intensity of reflected sunlight,” J. Geophys. Res. 102(D14), 16989–17013 (1997).
    [CrossRef]
  6. M. I. Mischenko, B. Cairns, J. E. Hansen, L. D. Travis, R. Burg, Y. J. Kaufman, J. V. Martins, and E. P. Shettle, “Monitoring of aerosol forcing of climate from space: analysis of measurment requirements,” J. Quant. Spectrosc. Radiat. Transf. 88(1-3), 149–161 (2004).
    [CrossRef]
  7. K. L. Coulson, R. L. Walraven, G. I. Weigt, and L. B. Soohoo, “Photon-counting polarizing radiometer,” Appl. Opt. 13(3), 497–498 (1974).
    [CrossRef] [PubMed]
  8. K. L. Coulson, Polarization and Intensity of Light in the Atmosphere (A. Deepak, 1988).
  9. J. A. North and M. J. Duggin, “Stokes vector imaging of the polarized sky-dome,” Appl. Opt. 36(3), 723–730 (1997).
    [CrossRef] [PubMed]
  10. G. Horváth, A. Barta, J. Gál, B. Suhai, and O. Haiman, “Ground-based full-sky imaging polarimetry of rapidly changing skies and its use for polarimetric cloud detection,” Appl. Opt. 41(3), 543–559 (2002).
    [CrossRef] [PubMed]
  11. K. J. Voss and Y. Liu, “Polarized radiance distribution measurements of skylight. I. System description and characterization,” Appl. Opt. 36(24), 6083–6094 (1997).
    [CrossRef] [PubMed]
  12. Y. Liu and K. Voss, “Polarized radiance distribution measurement of skylight. II. Experiment and data,” Appl. Opt. 36(33), 8753–8764 (1997).
    [CrossRef] [PubMed]
  13. G. E. Shaw, “Sky brightness and polarization during the 1973 African eclipse,” Appl. Opt. 14(2), 388–394 (1975).
    [CrossRef] [PubMed]
  14. J. A. Shaw, N. J. Pust, B. Staal, J. Johnson, and A. R. Dahlberg, “Continuous outdoor operation of an all-sky polarization imager,” in Polarization Measurement, Analysis, and Remote Sensing IX, 76720A (2010), pp. 1–7 .
  15. J. Lenoble, M. Herman, J. L. Deuzé, B. Lafrance, R. Santer, and D. Tanré, “A successive order of scattering code for solving the vector equation of transfer in the earth's atmosphere with aerosols,” J. Quant. Spectrosc. Radiat. Transf. 107(3), 479–507 (2007).
    [CrossRef]
  16. J. E. Hansen and L. D. Travis, “Light scattering in planetary atmospheres,” Space Sci. Rev. 16(4), 527–610 (1974).
    [CrossRef]
  17. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  18. M. Weinreb and D. Han, “Calibration of the Visible Channels of the GOES Imagers and Sounders,” http://www.oso.noaa.gov/goes/goes-calibration/goes-vis-ch-calibration.htm .
  19. “NOAA Comprehensive Large Array-Data Stewardship System,” http://www.nsof.class.noaa.gov/saa/products/welcome .
  20. S. Q. Kidder, K. E. Eis, and T. H. Vonder Haar, “New GOES imager system products suitable for use on field-deployable systems,” in Proceedings of Battlespace Atmospheric and Cloud Impacts on Military Operations Conference (1998), pp. 452–459
  21. S. Q. Kidder and T. H. Vonder Haar, Satellite Meteorology: an Introduction (Academic, 1995).
  22. M. P. Weinreb, M. Jamieson, N. Fulton, Y. Chen, J. X. Johnson, J. Bremer, C. Smith, and J. Baucom, “Operational calibration of Geostationary Operational Environmental Satellite-8 and-9 imagers and sounders,” Appl. Opt. 36(27), 6895–6904 (1997).
    [CrossRef] [PubMed]

2009 (1)

Z. Li, P. Goloub, O. Dubovik, L. Blarel, W. Zhang, T. Podvin, A. Sinyuk, M. Sorokin, H. Chen, B. Holben, D. Tanré, M. Canini, and J.-P. Buis, “Improvements for ground-based remote sensing of atmospheric aerosol properties by additional polarimetric measurements,” J. Quant. Spectrosc. Radiat. Transf. 110(17), 1954–1961 (2009).
[CrossRef]

2008 (1)

2007 (1)

J. Lenoble, M. Herman, J. L. Deuzé, B. Lafrance, R. Santer, and D. Tanré, “A successive order of scattering code for solving the vector equation of transfer in the earth's atmosphere with aerosols,” J. Quant. Spectrosc. Radiat. Transf. 107(3), 479–507 (2007).
[CrossRef]

2006 (2)

2004 (1)

M. I. Mischenko, B. Cairns, J. E. Hansen, L. D. Travis, R. Burg, Y. J. Kaufman, J. V. Martins, and E. P. Shettle, “Monitoring of aerosol forcing of climate from space: analysis of measurment requirements,” J. Quant. Spectrosc. Radiat. Transf. 88(1-3), 149–161 (2004).
[CrossRef]

2002 (1)

1997 (5)

1975 (1)

1974 (2)

J. E. Hansen and L. D. Travis, “Light scattering in planetary atmospheres,” Space Sci. Rev. 16(4), 527–610 (1974).
[CrossRef]

K. L. Coulson, R. L. Walraven, G. I. Weigt, and L. B. Soohoo, “Photon-counting polarizing radiometer,” Appl. Opt. 13(3), 497–498 (1974).
[CrossRef] [PubMed]

Barta, A.

Baucom, J.

Blarel, L.

Z. Li, P. Goloub, O. Dubovik, L. Blarel, W. Zhang, T. Podvin, A. Sinyuk, M. Sorokin, H. Chen, B. Holben, D. Tanré, M. Canini, and J.-P. Buis, “Improvements for ground-based remote sensing of atmospheric aerosol properties by additional polarimetric measurements,” J. Quant. Spectrosc. Radiat. Transf. 110(17), 1954–1961 (2009).
[CrossRef]

Bremer, J.

Buis, J.-P.

Z. Li, P. Goloub, O. Dubovik, L. Blarel, W. Zhang, T. Podvin, A. Sinyuk, M. Sorokin, H. Chen, B. Holben, D. Tanré, M. Canini, and J.-P. Buis, “Improvements for ground-based remote sensing of atmospheric aerosol properties by additional polarimetric measurements,” J. Quant. Spectrosc. Radiat. Transf. 110(17), 1954–1961 (2009).
[CrossRef]

Burg, R.

M. I. Mischenko, B. Cairns, J. E. Hansen, L. D. Travis, R. Burg, Y. J. Kaufman, J. V. Martins, and E. P. Shettle, “Monitoring of aerosol forcing of climate from space: analysis of measurment requirements,” J. Quant. Spectrosc. Radiat. Transf. 88(1-3), 149–161 (2004).
[CrossRef]

Cairns, B.

M. I. Mischenko, B. Cairns, J. E. Hansen, L. D. Travis, R. Burg, Y. J. Kaufman, J. V. Martins, and E. P. Shettle, “Monitoring of aerosol forcing of climate from space: analysis of measurment requirements,” J. Quant. Spectrosc. Radiat. Transf. 88(1-3), 149–161 (2004).
[CrossRef]

Canini, M.

Z. Li, P. Goloub, O. Dubovik, L. Blarel, W. Zhang, T. Podvin, A. Sinyuk, M. Sorokin, H. Chen, B. Holben, D. Tanré, M. Canini, and J.-P. Buis, “Improvements for ground-based remote sensing of atmospheric aerosol properties by additional polarimetric measurements,” J. Quant. Spectrosc. Radiat. Transf. 110(17), 1954–1961 (2009).
[CrossRef]

Chen, H.

Z. Li, P. Goloub, O. Dubovik, L. Blarel, W. Zhang, T. Podvin, A. Sinyuk, M. Sorokin, H. Chen, B. Holben, D. Tanré, M. Canini, and J.-P. Buis, “Improvements for ground-based remote sensing of atmospheric aerosol properties by additional polarimetric measurements,” J. Quant. Spectrosc. Radiat. Transf. 110(17), 1954–1961 (2009).
[CrossRef]

Chen, Y.

Chenault, D. B.

Coulson, K. L.

Deuzé, J. L.

J. Lenoble, M. Herman, J. L. Deuzé, B. Lafrance, R. Santer, and D. Tanré, “A successive order of scattering code for solving the vector equation of transfer in the earth's atmosphere with aerosols,” J. Quant. Spectrosc. Radiat. Transf. 107(3), 479–507 (2007).
[CrossRef]

Dubovik, O.

Z. Li, P. Goloub, O. Dubovik, L. Blarel, W. Zhang, T. Podvin, A. Sinyuk, M. Sorokin, H. Chen, B. Holben, D. Tanré, M. Canini, and J.-P. Buis, “Improvements for ground-based remote sensing of atmospheric aerosol properties by additional polarimetric measurements,” J. Quant. Spectrosc. Radiat. Transf. 110(17), 1954–1961 (2009).
[CrossRef]

Duggin, M. J.

Fulton, N.

Gál, J.

Goldstein, D. L.

Goloub, P.

Z. Li, P. Goloub, O. Dubovik, L. Blarel, W. Zhang, T. Podvin, A. Sinyuk, M. Sorokin, H. Chen, B. Holben, D. Tanré, M. Canini, and J.-P. Buis, “Improvements for ground-based remote sensing of atmospheric aerosol properties by additional polarimetric measurements,” J. Quant. Spectrosc. Radiat. Transf. 110(17), 1954–1961 (2009).
[CrossRef]

Haiman, O.

Hansen, J. E.

M. I. Mischenko, B. Cairns, J. E. Hansen, L. D. Travis, R. Burg, Y. J. Kaufman, J. V. Martins, and E. P. Shettle, “Monitoring of aerosol forcing of climate from space: analysis of measurment requirements,” J. Quant. Spectrosc. Radiat. Transf. 88(1-3), 149–161 (2004).
[CrossRef]

J. E. Hansen and L. D. Travis, “Light scattering in planetary atmospheres,” Space Sci. Rev. 16(4), 527–610 (1974).
[CrossRef]

Herman, M.

J. Lenoble, M. Herman, J. L. Deuzé, B. Lafrance, R. Santer, and D. Tanré, “A successive order of scattering code for solving the vector equation of transfer in the earth's atmosphere with aerosols,” J. Quant. Spectrosc. Radiat. Transf. 107(3), 479–507 (2007).
[CrossRef]

Holben, B.

Z. Li, P. Goloub, O. Dubovik, L. Blarel, W. Zhang, T. Podvin, A. Sinyuk, M. Sorokin, H. Chen, B. Holben, D. Tanré, M. Canini, and J.-P. Buis, “Improvements for ground-based remote sensing of atmospheric aerosol properties by additional polarimetric measurements,” J. Quant. Spectrosc. Radiat. Transf. 110(17), 1954–1961 (2009).
[CrossRef]

Horváth, G.

Jamieson, M.

Johnson, J. X.

Kaufman, Y. J.

M. I. Mischenko, B. Cairns, J. E. Hansen, L. D. Travis, R. Burg, Y. J. Kaufman, J. V. Martins, and E. P. Shettle, “Monitoring of aerosol forcing of climate from space: analysis of measurment requirements,” J. Quant. Spectrosc. Radiat. Transf. 88(1-3), 149–161 (2004).
[CrossRef]

Lafrance, B.

J. Lenoble, M. Herman, J. L. Deuzé, B. Lafrance, R. Santer, and D. Tanré, “A successive order of scattering code for solving the vector equation of transfer in the earth's atmosphere with aerosols,” J. Quant. Spectrosc. Radiat. Transf. 107(3), 479–507 (2007).
[CrossRef]

Lenoble, J.

J. Lenoble, M. Herman, J. L. Deuzé, B. Lafrance, R. Santer, and D. Tanré, “A successive order of scattering code for solving the vector equation of transfer in the earth's atmosphere with aerosols,” J. Quant. Spectrosc. Radiat. Transf. 107(3), 479–507 (2007).
[CrossRef]

Li, Z.

Z. Li, P. Goloub, O. Dubovik, L. Blarel, W. Zhang, T. Podvin, A. Sinyuk, M. Sorokin, H. Chen, B. Holben, D. Tanré, M. Canini, and J.-P. Buis, “Improvements for ground-based remote sensing of atmospheric aerosol properties by additional polarimetric measurements,” J. Quant. Spectrosc. Radiat. Transf. 110(17), 1954–1961 (2009).
[CrossRef]

Liu, Y.

Martins, J. V.

M. I. Mischenko, B. Cairns, J. E. Hansen, L. D. Travis, R. Burg, Y. J. Kaufman, J. V. Martins, and E. P. Shettle, “Monitoring of aerosol forcing of climate from space: analysis of measurment requirements,” J. Quant. Spectrosc. Radiat. Transf. 88(1-3), 149–161 (2004).
[CrossRef]

Mischenko, M. I.

M. I. Mischenko, B. Cairns, J. E. Hansen, L. D. Travis, R. Burg, Y. J. Kaufman, J. V. Martins, and E. P. Shettle, “Monitoring of aerosol forcing of climate from space: analysis of measurment requirements,” J. Quant. Spectrosc. Radiat. Transf. 88(1-3), 149–161 (2004).
[CrossRef]

Mishchenko, M. I.

M. I. Mishchenko and L. D. Travis, “Satellite retrieval of aerosol properties over the ocean using polarization as well as intensity of reflected sunlight,” J. Geophys. Res. 102(D14), 16989–17013 (1997).
[CrossRef]

North, J. A.

Podvin, T.

Z. Li, P. Goloub, O. Dubovik, L. Blarel, W. Zhang, T. Podvin, A. Sinyuk, M. Sorokin, H. Chen, B. Holben, D. Tanré, M. Canini, and J.-P. Buis, “Improvements for ground-based remote sensing of atmospheric aerosol properties by additional polarimetric measurements,” J. Quant. Spectrosc. Radiat. Transf. 110(17), 1954–1961 (2009).
[CrossRef]

Pust, N. J.

Santer, R.

J. Lenoble, M. Herman, J. L. Deuzé, B. Lafrance, R. Santer, and D. Tanré, “A successive order of scattering code for solving the vector equation of transfer in the earth's atmosphere with aerosols,” J. Quant. Spectrosc. Radiat. Transf. 107(3), 479–507 (2007).
[CrossRef]

Shaw, G. E.

Shaw, J. A.

Shettle, E. P.

M. I. Mischenko, B. Cairns, J. E. Hansen, L. D. Travis, R. Burg, Y. J. Kaufman, J. V. Martins, and E. P. Shettle, “Monitoring of aerosol forcing of climate from space: analysis of measurment requirements,” J. Quant. Spectrosc. Radiat. Transf. 88(1-3), 149–161 (2004).
[CrossRef]

Sinyuk, A.

Z. Li, P. Goloub, O. Dubovik, L. Blarel, W. Zhang, T. Podvin, A. Sinyuk, M. Sorokin, H. Chen, B. Holben, D. Tanré, M. Canini, and J.-P. Buis, “Improvements for ground-based remote sensing of atmospheric aerosol properties by additional polarimetric measurements,” J. Quant. Spectrosc. Radiat. Transf. 110(17), 1954–1961 (2009).
[CrossRef]

Smith, C.

Soohoo, L. B.

Sorokin, M.

Z. Li, P. Goloub, O. Dubovik, L. Blarel, W. Zhang, T. Podvin, A. Sinyuk, M. Sorokin, H. Chen, B. Holben, D. Tanré, M. Canini, and J.-P. Buis, “Improvements for ground-based remote sensing of atmospheric aerosol properties by additional polarimetric measurements,” J. Quant. Spectrosc. Radiat. Transf. 110(17), 1954–1961 (2009).
[CrossRef]

Suhai, B.

Tanré, D.

Z. Li, P. Goloub, O. Dubovik, L. Blarel, W. Zhang, T. Podvin, A. Sinyuk, M. Sorokin, H. Chen, B. Holben, D. Tanré, M. Canini, and J.-P. Buis, “Improvements for ground-based remote sensing of atmospheric aerosol properties by additional polarimetric measurements,” J. Quant. Spectrosc. Radiat. Transf. 110(17), 1954–1961 (2009).
[CrossRef]

J. Lenoble, M. Herman, J. L. Deuzé, B. Lafrance, R. Santer, and D. Tanré, “A successive order of scattering code for solving the vector equation of transfer in the earth's atmosphere with aerosols,” J. Quant. Spectrosc. Radiat. Transf. 107(3), 479–507 (2007).
[CrossRef]

Travis, L. D.

M. I. Mischenko, B. Cairns, J. E. Hansen, L. D. Travis, R. Burg, Y. J. Kaufman, J. V. Martins, and E. P. Shettle, “Monitoring of aerosol forcing of climate from space: analysis of measurment requirements,” J. Quant. Spectrosc. Radiat. Transf. 88(1-3), 149–161 (2004).
[CrossRef]

M. I. Mishchenko and L. D. Travis, “Satellite retrieval of aerosol properties over the ocean using polarization as well as intensity of reflected sunlight,” J. Geophys. Res. 102(D14), 16989–17013 (1997).
[CrossRef]

J. E. Hansen and L. D. Travis, “Light scattering in planetary atmospheres,” Space Sci. Rev. 16(4), 527–610 (1974).
[CrossRef]

Tyo, J. S.

Voss, K.

Voss, K. J.

Walraven, R. L.

Weigt, G. I.

Weinreb, M. P.

Zhang, W.

Z. Li, P. Goloub, O. Dubovik, L. Blarel, W. Zhang, T. Podvin, A. Sinyuk, M. Sorokin, H. Chen, B. Holben, D. Tanré, M. Canini, and J.-P. Buis, “Improvements for ground-based remote sensing of atmospheric aerosol properties by additional polarimetric measurements,” J. Quant. Spectrosc. Radiat. Transf. 110(17), 1954–1961 (2009).
[CrossRef]

Appl. Opt. (10)

K. L. Coulson, R. L. Walraven, G. I. Weigt, and L. B. Soohoo, “Photon-counting polarizing radiometer,” Appl. Opt. 13(3), 497–498 (1974).
[CrossRef] [PubMed]

G. E. Shaw, “Sky brightness and polarization during the 1973 African eclipse,” Appl. Opt. 14(2), 388–394 (1975).
[CrossRef] [PubMed]

J. A. North and M. J. Duggin, “Stokes vector imaging of the polarized sky-dome,” Appl. Opt. 36(3), 723–730 (1997).
[CrossRef] [PubMed]

K. J. Voss and Y. Liu, “Polarized radiance distribution measurements of skylight. I. System description and characterization,” Appl. Opt. 36(24), 6083–6094 (1997).
[CrossRef] [PubMed]

M. P. Weinreb, M. Jamieson, N. Fulton, Y. Chen, J. X. Johnson, J. Bremer, C. Smith, and J. Baucom, “Operational calibration of Geostationary Operational Environmental Satellite-8 and-9 imagers and sounders,” Appl. Opt. 36(27), 6895–6904 (1997).
[CrossRef] [PubMed]

Y. Liu and K. Voss, “Polarized radiance distribution measurement of skylight. II. Experiment and data,” Appl. Opt. 36(33), 8753–8764 (1997).
[CrossRef] [PubMed]

G. Horváth, A. Barta, J. Gál, B. Suhai, and O. Haiman, “Ground-based full-sky imaging polarimetry of rapidly changing skies and its use for polarimetric cloud detection,” Appl. Opt. 41(3), 543–559 (2002).
[CrossRef] [PubMed]

J. S. Tyo, D. L. Goldstein, D. B. Chenault, and J. A. Shaw, “Review of passive imaging polarimetry for remote sensing applications,” Appl. Opt. 45(22), 5453–5469 (2006).
[CrossRef] [PubMed]

N. J. Pust and J. A. Shaw, “Dual-field imaging polarimeter using liquid crystal variable retarders,” Appl. Opt. 45(22), 5470–5478 (2006).
[CrossRef] [PubMed]

N. J. Pust and J. A. Shaw, “Digital all-sky polarization imaging of partly cloudy skies,” Appl. Opt. 47(34), H190–H198 (2008).
[CrossRef] [PubMed]

J. Geophys. Res. (1)

M. I. Mishchenko and L. D. Travis, “Satellite retrieval of aerosol properties over the ocean using polarization as well as intensity of reflected sunlight,” J. Geophys. Res. 102(D14), 16989–17013 (1997).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transf. (3)

M. I. Mischenko, B. Cairns, J. E. Hansen, L. D. Travis, R. Burg, Y. J. Kaufman, J. V. Martins, and E. P. Shettle, “Monitoring of aerosol forcing of climate from space: analysis of measurment requirements,” J. Quant. Spectrosc. Radiat. Transf. 88(1-3), 149–161 (2004).
[CrossRef]

J. Lenoble, M. Herman, J. L. Deuzé, B. Lafrance, R. Santer, and D. Tanré, “A successive order of scattering code for solving the vector equation of transfer in the earth's atmosphere with aerosols,” J. Quant. Spectrosc. Radiat. Transf. 107(3), 479–507 (2007).
[CrossRef]

Z. Li, P. Goloub, O. Dubovik, L. Blarel, W. Zhang, T. Podvin, A. Sinyuk, M. Sorokin, H. Chen, B. Holben, D. Tanré, M. Canini, and J.-P. Buis, “Improvements for ground-based remote sensing of atmospheric aerosol properties by additional polarimetric measurements,” J. Quant. Spectrosc. Radiat. Transf. 110(17), 1954–1961 (2009).
[CrossRef]

Space Sci. Rev. (1)

J. E. Hansen and L. D. Travis, “Light scattering in planetary atmospheres,” Space Sci. Rev. 16(4), 527–610 (1974).
[CrossRef]

Other (7)

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

M. Weinreb and D. Han, “Calibration of the Visible Channels of the GOES Imagers and Sounders,” http://www.oso.noaa.gov/goes/goes-calibration/goes-vis-ch-calibration.htm .

“NOAA Comprehensive Large Array-Data Stewardship System,” http://www.nsof.class.noaa.gov/saa/products/welcome .

S. Q. Kidder, K. E. Eis, and T. H. Vonder Haar, “New GOES imager system products suitable for use on field-deployable systems,” in Proceedings of Battlespace Atmospheric and Cloud Impacts on Military Operations Conference (1998), pp. 452–459

S. Q. Kidder and T. H. Vonder Haar, Satellite Meteorology: an Introduction (Academic, 1995).

K. L. Coulson, Polarization and Intensity of Light in the Atmosphere (A. Deepak, 1988).

J. A. Shaw, N. J. Pust, B. Staal, J. Johnson, and A. R. Dahlberg, “Continuous outdoor operation of an all-sky polarization imager,” in Polarization Measurement, Analysis, and Remote Sensing IX, 76720A (2010), pp. 1–7 .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Instrument layout for the Montana State University all-sky imaging polarimeter

Fig. 2
Fig. 2

Solar principal plane geometry defining the scattering angle α

Fig. 3
Fig. 3

Unpolarized light from upwelling cloud radiance reduces the skylight degree of polarization.

Fig. 4
Fig. 4

(a) DoLP image at 700 nm of a clear early morning (23 May 2008) just after sunrise, at around 0620 Hawaiian Standard Time (HST, UTC −10) with the sun to the east. (b) The scattering angle (with respect to the sun) mapped to the fisheye lens image plane.

Fig. 5
Fig. 5

Morning data of Coulson (- -) for 800 and 365 nm wavelengths compared to 2008 imager data (-) at 700 and 450 nm.

Fig. 6
Fig. 6

Comparisons between Coulson (- -) and 2008 MSU imager data (-) for very clear, mostly clear, and dust storm conditions.

Fig. 7
Fig. 7

A comparison of 700 nm DoLP images to GOES albedo imagery taken at 1000 HST (UTC −10). Instrument deployment location is denoted by ‘x.’ The small disc in the top images is the sun occulter. The all-sky polarization images have been flipped to match the down-looking perspective of the satellite images.

Fig. 8
Fig. 8

Maximum DoLP profiles for two days at 700 nm.

Fig. 9
Fig. 9

a) Single and multivariate regression of GOES measured upwelling radiance to 450 nm DoLP. b) Multivariate regression with added isotropic albedo term shown in 3-D. c) DoLP residual histogram for given fit at all wavelengths.

Fig. 10
Fig. 10

Six randomly selected fit results at 700 nm shown compared to two days of data.

Fig. 11
Fig. 11

Scatterplots of predicted vs. observed DoLP using the multivariate regression of upwelling radiance and isotropic albedo with the average coefficients shown in Table 1.

Fig. 12
Fig. 12

Comparison of observed DoLP vs. upwelling radiance and theoretical predictions from a SOS plane-parallel Mie scattering code.

Tables (1)

Tables Icon

Table 1 Average Fit Coefficients with Standard Deviations

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

D o L P = s 1 2 + s 2 2 s 0
DoLP pp = 1 cos 2 ( α ) 1 + cos 2 ( α ) + 2 δ ( 1 δ )
E = E 0 cos ( θ z ) ( d m d ) 2 ,
L = ρ i s o E 0 cos ( θ z ) ( d m d ) 2 π ,
ρ iso = π L E 0 cos ( θ z ) ( d m d ) 2 .
ρ ¯ iso = 1 N M n N m M π L n , m E 0 ( d d m ) 2 sec ( θ z ) ,
DoLP est = b 0 + b 1 ρ ¯ iso + b 2 e b 3 L
L = ρ ¯ iso E 0 π cos ( θ z ) ( d m d ) 2 .

Metrics