Abstract

We propose to apply phase-shifting mask (PSM) to superlens lithography to improve its resolution. The PSM comprises of chromium slits alternatively filled by Ag and PMMA. The pi-phase shift is induced whereas their transmittance of electric intensity is almost equal for two neighboring slits. The destructive interference between two slits has greatly improved the spatial resolution and image fidelity. For representative configurations of superlens lithography, FDTD numerical simulations demonstrate that two slits with center-to-center distance d = 35 nm (~λ/10) can be resolved in PSM design, compared to 60 nm (~λ/6) without the PSM.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Born and E. Wolf, Principles of Optics (Cambridge University Press, 1999).
  2. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
    [CrossRef] [PubMed]
  3. H. Rather, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988), Chap. 2, pp.4–7.
  4. Z. Liu, N. Fang, T. J. Yen, and X. Zhang, “Rapid growth of evanescent wave by a siler superlens,” Appl. Phys. Lett. 83(25), 5184–5186 (2003).
    [CrossRef]
  5. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
    [CrossRef] [PubMed]
  6. P. Chaturvedi, W. Wu, V. J. Logeeswaran, Z. Yu, M. S. Islam, S. Y. Wang, R. S. Williams, and N. X. Fang, “A smooth optical superlens,” Appl. Phys. Lett. 96(4), 043102 (2010).
    [CrossRef]
  7. K. Lee, H. Park, J. Kim, G. Kang, and K. Kim, “Improved image quality of a Ag slab near-field superlens with intrinsic loss of absorption,” Opt. Express 16(3), 1711–1718 (2008).
    [CrossRef] [PubMed]
  8. S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, “Imaging the near field,” J. Mod. Opt. 50, 1419–1430 (2003).
  9. N. Fang and X. Zhang, “Imaging properties of a metamaterial superlens,” Appl. Phys. Lett. 82(2), 161–163 (2003).
    [CrossRef]
  10. D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, “Limitations on subdiffraction imaging with a negative refractive index slab,” Appl. Phys. Lett. 82(10), 1506–1508 (2003).
    [CrossRef]
  11. C. T. Wang, Y. H. Zhao, D. C. Gan, C. Du, and X. Luo, “Subwavelength imaging with anisotropic structure comprising alternately layered metal and dielectric films,” Opt. Express 16(6), 4217–4227 (2008).
    [CrossRef] [PubMed]
  12. M. D. Levenson, N. S. Viswanathan, and R. A. Simpson, “Improving resolution in photolithography with a phase-shifting mask,” IEEE Trans. Electron. Dev. 29(12), 1828–1836 (1982).
    [CrossRef]
  13. M. D. Levenson, D. S. Goodman, S. Lindsey, P. W. Bayer, and H. A. E. Santini, “The phase-shifting mask II: Imaging simulation and submicrometer resist explosures,” IEEE Trans. Electron. Dev. 31(6), 753–763 (1984).
    [CrossRef]
  14. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [CrossRef]
  15. M. D. Arnold and R. J. Blaikie, “Subwavelength optical imaging of evanescent fields using reflections from plasmonic slabs,” Opt. Express 15(18), 11542–11552 (2007).
    [CrossRef] [PubMed]
  16. H. F. Shi, C. T. Wang, C. Du, X. Luo, X. C. Dong, and H. Gao, “Beam manipulating by metallic nano-slits with variant widths,” Opt. Express 13(18), 6815–6820 (2005).
    [CrossRef] [PubMed]
  17. E. D. Palik, The Handbook of Optical Constants of Solids (Academic Press, 1985).
  18. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
    [CrossRef]
  19. Y. Liu and A. Zakhor, “Binary and phase-shifting mask design for optical lithography,” IEEE Trans. Semicond. Manuf. 5(2), 138–152 (1992).
    [CrossRef]
  20. Y. C. Pati and T. Kailath, “Phase-shifting masks for microlithography automated design and mask requirements,” J. Opt. Soc. Am. A 11(9), 2438–2452 (1994).
    [CrossRef]
  21. A. P. Hibbins, I. R. Hooper, M. J. Lockyear, and J. R. Sambles, “Microwave transmission of a compound metal grating,” Phys. Rev. Lett. 96(25), 257402 (2006).
    [CrossRef] [PubMed]
  22. M. J. Madou, Fundamentals of Microfabrication (CRC, 2002).

2010 (1)

P. Chaturvedi, W. Wu, V. J. Logeeswaran, Z. Yu, M. S. Islam, S. Y. Wang, R. S. Williams, and N. X. Fang, “A smooth optical superlens,” Appl. Phys. Lett. 96(4), 043102 (2010).
[CrossRef]

2008 (2)

2007 (1)

2006 (1)

A. P. Hibbins, I. R. Hooper, M. J. Lockyear, and J. R. Sambles, “Microwave transmission of a compound metal grating,” Phys. Rev. Lett. 96(25), 257402 (2006).
[CrossRef] [PubMed]

2005 (2)

H. F. Shi, C. T. Wang, C. Du, X. Luo, X. C. Dong, and H. Gao, “Beam manipulating by metallic nano-slits with variant widths,” Opt. Express 13(18), 6815–6820 (2005).
[CrossRef] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[CrossRef] [PubMed]

2003 (4)

Z. Liu, N. Fang, T. J. Yen, and X. Zhang, “Rapid growth of evanescent wave by a siler superlens,” Appl. Phys. Lett. 83(25), 5184–5186 (2003).
[CrossRef]

S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, “Imaging the near field,” J. Mod. Opt. 50, 1419–1430 (2003).

N. Fang and X. Zhang, “Imaging properties of a metamaterial superlens,” Appl. Phys. Lett. 82(2), 161–163 (2003).
[CrossRef]

D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, “Limitations on subdiffraction imaging with a negative refractive index slab,” Appl. Phys. Lett. 82(10), 1506–1508 (2003).
[CrossRef]

2000 (1)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

1998 (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

1994 (1)

1992 (1)

Y. Liu and A. Zakhor, “Binary and phase-shifting mask design for optical lithography,” IEEE Trans. Semicond. Manuf. 5(2), 138–152 (1992).
[CrossRef]

1984 (1)

M. D. Levenson, D. S. Goodman, S. Lindsey, P. W. Bayer, and H. A. E. Santini, “The phase-shifting mask II: Imaging simulation and submicrometer resist explosures,” IEEE Trans. Electron. Dev. 31(6), 753–763 (1984).
[CrossRef]

1982 (1)

M. D. Levenson, N. S. Viswanathan, and R. A. Simpson, “Improving resolution in photolithography with a phase-shifting mask,” IEEE Trans. Electron. Dev. 29(12), 1828–1836 (1982).
[CrossRef]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Arnold, M. D.

Bayer, P. W.

M. D. Levenson, D. S. Goodman, S. Lindsey, P. W. Bayer, and H. A. E. Santini, “The phase-shifting mask II: Imaging simulation and submicrometer resist explosures,” IEEE Trans. Electron. Dev. 31(6), 753–763 (1984).
[CrossRef]

Blaikie, R. J.

Chaturvedi, P.

P. Chaturvedi, W. Wu, V. J. Logeeswaran, Z. Yu, M. S. Islam, S. Y. Wang, R. S. Williams, and N. X. Fang, “A smooth optical superlens,” Appl. Phys. Lett. 96(4), 043102 (2010).
[CrossRef]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Dong, X. C.

Du, C.

Ebbesen, T. W.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Fang, N.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[CrossRef] [PubMed]

Z. Liu, N. Fang, T. J. Yen, and X. Zhang, “Rapid growth of evanescent wave by a siler superlens,” Appl. Phys. Lett. 83(25), 5184–5186 (2003).
[CrossRef]

N. Fang and X. Zhang, “Imaging properties of a metamaterial superlens,” Appl. Phys. Lett. 82(2), 161–163 (2003).
[CrossRef]

Fang, N. X.

P. Chaturvedi, W. Wu, V. J. Logeeswaran, Z. Yu, M. S. Islam, S. Y. Wang, R. S. Williams, and N. X. Fang, “A smooth optical superlens,” Appl. Phys. Lett. 96(4), 043102 (2010).
[CrossRef]

Gan, D. C.

Gao, H.

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Goodman, D. S.

M. D. Levenson, D. S. Goodman, S. Lindsey, P. W. Bayer, and H. A. E. Santini, “The phase-shifting mask II: Imaging simulation and submicrometer resist explosures,” IEEE Trans. Electron. Dev. 31(6), 753–763 (1984).
[CrossRef]

Hibbins, A. P.

A. P. Hibbins, I. R. Hooper, M. J. Lockyear, and J. R. Sambles, “Microwave transmission of a compound metal grating,” Phys. Rev. Lett. 96(25), 257402 (2006).
[CrossRef] [PubMed]

Hooper, I. R.

A. P. Hibbins, I. R. Hooper, M. J. Lockyear, and J. R. Sambles, “Microwave transmission of a compound metal grating,” Phys. Rev. Lett. 96(25), 257402 (2006).
[CrossRef] [PubMed]

Islam, M. S.

P. Chaturvedi, W. Wu, V. J. Logeeswaran, Z. Yu, M. S. Islam, S. Y. Wang, R. S. Williams, and N. X. Fang, “A smooth optical superlens,” Appl. Phys. Lett. 96(4), 043102 (2010).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Kailath, T.

Kang, G.

Kim, J.

Kim, K.

Lee, H.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[CrossRef] [PubMed]

Lee, K.

Levenson, M. D.

M. D. Levenson, D. S. Goodman, S. Lindsey, P. W. Bayer, and H. A. E. Santini, “The phase-shifting mask II: Imaging simulation and submicrometer resist explosures,” IEEE Trans. Electron. Dev. 31(6), 753–763 (1984).
[CrossRef]

M. D. Levenson, N. S. Viswanathan, and R. A. Simpson, “Improving resolution in photolithography with a phase-shifting mask,” IEEE Trans. Electron. Dev. 29(12), 1828–1836 (1982).
[CrossRef]

Lezec, H. J.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Lindsey, S.

M. D. Levenson, D. S. Goodman, S. Lindsey, P. W. Bayer, and H. A. E. Santini, “The phase-shifting mask II: Imaging simulation and submicrometer resist explosures,” IEEE Trans. Electron. Dev. 31(6), 753–763 (1984).
[CrossRef]

Liu, Y.

Y. Liu and A. Zakhor, “Binary and phase-shifting mask design for optical lithography,” IEEE Trans. Semicond. Manuf. 5(2), 138–152 (1992).
[CrossRef]

Liu, Z.

Z. Liu, N. Fang, T. J. Yen, and X. Zhang, “Rapid growth of evanescent wave by a siler superlens,” Appl. Phys. Lett. 83(25), 5184–5186 (2003).
[CrossRef]

Lockyear, M. J.

A. P. Hibbins, I. R. Hooper, M. J. Lockyear, and J. R. Sambles, “Microwave transmission of a compound metal grating,” Phys. Rev. Lett. 96(25), 257402 (2006).
[CrossRef] [PubMed]

Logeeswaran, V. J.

P. Chaturvedi, W. Wu, V. J. Logeeswaran, Z. Yu, M. S. Islam, S. Y. Wang, R. S. Williams, and N. X. Fang, “A smooth optical superlens,” Appl. Phys. Lett. 96(4), 043102 (2010).
[CrossRef]

Luo, X.

Park, H.

Pati, Y. C.

Pendry, J. B.

D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, “Limitations on subdiffraction imaging with a negative refractive index slab,” Appl. Phys. Lett. 82(10), 1506–1508 (2003).
[CrossRef]

S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, “Imaging the near field,” J. Mod. Opt. 50, 1419–1430 (2003).

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

Ramakrishna, S. A.

S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, “Imaging the near field,” J. Mod. Opt. 50, 1419–1430 (2003).

D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, “Limitations on subdiffraction imaging with a negative refractive index slab,” Appl. Phys. Lett. 82(10), 1506–1508 (2003).
[CrossRef]

Rosenbluth, M.

D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, “Limitations on subdiffraction imaging with a negative refractive index slab,” Appl. Phys. Lett. 82(10), 1506–1508 (2003).
[CrossRef]

Sambles, J. R.

A. P. Hibbins, I. R. Hooper, M. J. Lockyear, and J. R. Sambles, “Microwave transmission of a compound metal grating,” Phys. Rev. Lett. 96(25), 257402 (2006).
[CrossRef] [PubMed]

Santini, H. A. E.

M. D. Levenson, D. S. Goodman, S. Lindsey, P. W. Bayer, and H. A. E. Santini, “The phase-shifting mask II: Imaging simulation and submicrometer resist explosures,” IEEE Trans. Electron. Dev. 31(6), 753–763 (1984).
[CrossRef]

Schultz, S.

D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, “Limitations on subdiffraction imaging with a negative refractive index slab,” Appl. Phys. Lett. 82(10), 1506–1508 (2003).
[CrossRef]

Schurig, D.

D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, “Limitations on subdiffraction imaging with a negative refractive index slab,” Appl. Phys. Lett. 82(10), 1506–1508 (2003).
[CrossRef]

Shi, H. F.

Simpson, R. A.

M. D. Levenson, N. S. Viswanathan, and R. A. Simpson, “Improving resolution in photolithography with a phase-shifting mask,” IEEE Trans. Electron. Dev. 29(12), 1828–1836 (1982).
[CrossRef]

Smith, D. R.

D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, “Limitations on subdiffraction imaging with a negative refractive index slab,” Appl. Phys. Lett. 82(10), 1506–1508 (2003).
[CrossRef]

Stewart, W. J.

S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, “Imaging the near field,” J. Mod. Opt. 50, 1419–1430 (2003).

Sun, C.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[CrossRef] [PubMed]

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Viswanathan, N. S.

M. D. Levenson, N. S. Viswanathan, and R. A. Simpson, “Improving resolution in photolithography with a phase-shifting mask,” IEEE Trans. Electron. Dev. 29(12), 1828–1836 (1982).
[CrossRef]

Wang, C. T.

Wang, S. Y.

P. Chaturvedi, W. Wu, V. J. Logeeswaran, Z. Yu, M. S. Islam, S. Y. Wang, R. S. Williams, and N. X. Fang, “A smooth optical superlens,” Appl. Phys. Lett. 96(4), 043102 (2010).
[CrossRef]

Williams, R. S.

P. Chaturvedi, W. Wu, V. J. Logeeswaran, Z. Yu, M. S. Islam, S. Y. Wang, R. S. Williams, and N. X. Fang, “A smooth optical superlens,” Appl. Phys. Lett. 96(4), 043102 (2010).
[CrossRef]

Wiltshire, M. C. K.

S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, “Imaging the near field,” J. Mod. Opt. 50, 1419–1430 (2003).

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Wu, W.

P. Chaturvedi, W. Wu, V. J. Logeeswaran, Z. Yu, M. S. Islam, S. Y. Wang, R. S. Williams, and N. X. Fang, “A smooth optical superlens,” Appl. Phys. Lett. 96(4), 043102 (2010).
[CrossRef]

Yen, T. J.

Z. Liu, N. Fang, T. J. Yen, and X. Zhang, “Rapid growth of evanescent wave by a siler superlens,” Appl. Phys. Lett. 83(25), 5184–5186 (2003).
[CrossRef]

Yu, Z.

P. Chaturvedi, W. Wu, V. J. Logeeswaran, Z. Yu, M. S. Islam, S. Y. Wang, R. S. Williams, and N. X. Fang, “A smooth optical superlens,” Appl. Phys. Lett. 96(4), 043102 (2010).
[CrossRef]

Zakhor, A.

Y. Liu and A. Zakhor, “Binary and phase-shifting mask design for optical lithography,” IEEE Trans. Semicond. Manuf. 5(2), 138–152 (1992).
[CrossRef]

Zhang, X.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[CrossRef] [PubMed]

Z. Liu, N. Fang, T. J. Yen, and X. Zhang, “Rapid growth of evanescent wave by a siler superlens,” Appl. Phys. Lett. 83(25), 5184–5186 (2003).
[CrossRef]

N. Fang and X. Zhang, “Imaging properties of a metamaterial superlens,” Appl. Phys. Lett. 82(2), 161–163 (2003).
[CrossRef]

Zhao, Y. H.

Appl. Phys. Lett. (4)

Z. Liu, N. Fang, T. J. Yen, and X. Zhang, “Rapid growth of evanescent wave by a siler superlens,” Appl. Phys. Lett. 83(25), 5184–5186 (2003).
[CrossRef]

P. Chaturvedi, W. Wu, V. J. Logeeswaran, Z. Yu, M. S. Islam, S. Y. Wang, R. S. Williams, and N. X. Fang, “A smooth optical superlens,” Appl. Phys. Lett. 96(4), 043102 (2010).
[CrossRef]

N. Fang and X. Zhang, “Imaging properties of a metamaterial superlens,” Appl. Phys. Lett. 82(2), 161–163 (2003).
[CrossRef]

D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, “Limitations on subdiffraction imaging with a negative refractive index slab,” Appl. Phys. Lett. 82(10), 1506–1508 (2003).
[CrossRef]

IEEE Trans. Electron. Dev. (2)

M. D. Levenson, N. S. Viswanathan, and R. A. Simpson, “Improving resolution in photolithography with a phase-shifting mask,” IEEE Trans. Electron. Dev. 29(12), 1828–1836 (1982).
[CrossRef]

M. D. Levenson, D. S. Goodman, S. Lindsey, P. W. Bayer, and H. A. E. Santini, “The phase-shifting mask II: Imaging simulation and submicrometer resist explosures,” IEEE Trans. Electron. Dev. 31(6), 753–763 (1984).
[CrossRef]

IEEE Trans. Semicond. Manuf. (1)

Y. Liu and A. Zakhor, “Binary and phase-shifting mask design for optical lithography,” IEEE Trans. Semicond. Manuf. 5(2), 138–152 (1992).
[CrossRef]

J. Mod. Opt. (1)

S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, “Imaging the near field,” J. Mod. Opt. 50, 1419–1430 (2003).

J. Opt. Soc. Am. A (1)

Nature (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Opt. Express (4)

Phys. Rev. B (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Phys. Rev. Lett. (2)

A. P. Hibbins, I. R. Hooper, M. J. Lockyear, and J. R. Sambles, “Microwave transmission of a compound metal grating,” Phys. Rev. Lett. 96(25), 257402 (2006).
[CrossRef] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

Science (1)

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[CrossRef] [PubMed]

Other (4)

H. Rather, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988), Chap. 2, pp.4–7.

M. Born and E. Wolf, Principles of Optics (Cambridge University Press, 1999).

M. J. Madou, Fundamentals of Microfabrication (CRC, 2002).

E. D. Palik, The Handbook of Optical Constants of Solids (Academic Press, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Schematic of superlens with a silver cladding. (b) Imaging process for a transmission mask. (c) Imaging process for a phase-shifting mask.

Fig. 2
Fig. 2

(a) Normalized transmittance of electric intensity in a sole slit superlens structure, T corresponds to peak maximum of electric intensity on the image plane, normalized by the electric intensity in free space. (b) The phase shift in slit is defined as the phase difference between the object plane (upper opening chromium film) and image plane. The refractive index of aluminum nitride (AlN) is 2.19 + 0.011i [17] at working wavelength of 365 nm. The image plane is defined at 10 nm beneath silver/photoresist interface.

Fig. 3
Fig. 3

Normalized |E|2 distribution on image plane for center-to-center distance of (a) d = 40 nm, (b) d = 60 nm, (c) d = 80 nm. Fields distribution of (a) to (c) is normalized by the peak maximum. Two virtual sources which are abbreviated as v/s are fixed on the upper openings mask, with |H y| = 1 but reversed phase. The distributions of simulated electric intensity in (d) to (f), (g) to (i) and (j) to (l) are corresponding to same phase, PSM design based on slits filled materials and virtual sources illumination on the upper opening mask, respectively. The scale bar in (d) to (l) is 100 nm.

Fig. 4
Fig. 4

Four slits with center-to-center distance d = 50, 60, 70 nm from left to right. (a) to (c) are the normalized |E|2 distribution on image plane. The distributions of simulated electric field intensity in (d), (e) and (f) are corresponding to same phase, reversed phase and alternative virtual sources illumination, respectively. The scale bar in (d) to (f) is 100 nm.

Fig. 5
Fig. 5

Phase shift (P/S) and normalized transmittance of electric intensity versus center-to-center distance d ranging from 35 nm to 90 nm.

Fig. 6
Fig. 6

Dependence of image intensity contrast on center-to-center distance d at the image plane (10 nm beneath silver/photoresist interface). (b) Dependence of image intensity contrast on depth position inside photoresist with d = 60 nm. The top and bottom inset are the images of four slits with d = 50 nm and d = 30 nm, respectively.

Metrics