Abstract

The fading channel model for generating a random time-varying signal based on the atmospheric turbulence spectrum for space-to-ground laser links is discussed. The temporal frequency characteristics of the downlink are theoretically derived based on the von Karman spectrum. The rms wind speed based on the Bufton wind model is used as the transverse wind velocity, which makes the simulation simple. The time-varying signal is generated as functions of the receiver aperture diameter and the rms wind speed. The simulated result of the time-varying signal is presented and compared with the gamma-gamma distribution based on the scintillation theory in a moderate-to-strong-turbulence regime.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. L. Fried, “Scintillation of a ground-to-space laser illuminator,” J. Opt. Soc. Am. 57(8), 980–983 (1967).
    [CrossRef]
  2. J. L. Bufton, “Scintillation statistics measured in an earth-space-earth retroreflector link,” Appl. Opt. 16(10), 2654–2660 (1977).
    [CrossRef] [PubMed]
  3. R. S. Lawrence and J. W. Strohbehn, “A survey of clear-air propagation effects relevant to optical communications,” Proc. IEEE 58(10), 1523–1545 (1970).
    [CrossRef]
  4. A. Ishimaru, “Temporal frequency spectra of multifrequency waves in turbulent atmosphere,” IEEE Trans. Antenn. Propag. 20(1), 10–19 (1972).
    [CrossRef]
  5. S. F. Clifford, “Temporal-frequency spectra for a spherical wave propagating through atmospheric turbulence,” J. Opt. Soc. Am. 61(10), 1285–1292 (1971).
    [CrossRef]
  6. D. P. Greenwood and D. L. Fried, “Power spectra requirements for wave-front-compensative systems,” J. Opt. Soc. Am. 66(3), 193–206 (1976).
    [CrossRef]
  7. D. P. Greenwood, “Bandwidth specification for adaptive optics systems,” J. Opt. Soc. Am. 67(3), 390–393 (1977).
    [CrossRef]
  8. E. Ryznar, “Dependency of optical scintillation frequency on wind speed,” Appl. Opt. 4(11), 1416–1418 (1965).
    [CrossRef]
  9. T. J. Gilmartin and R. R. Horning, “Spectral characteristics of intensity fluctuations on a laser beam propagating in a desert atmosphere,” IEEE J. Quantum Electron. 3(6), 254–256 (1967).
    [CrossRef]
  10. D. H. Höhn, “Effects of atmospheric turbulence on the transmission of a laser beam at 6328 A. II-frequency spectra,” Appl. Opt. 5(9), 1433–1436 (1966).
    [CrossRef] [PubMed]
  11. T. S. Chu, “On the wavelength dependence of the spectrum of laser beams traversing the atmosphere,” Appl. Opt. 6(1), 163–163 (1967).
    [CrossRef] [PubMed]
  12. G. A. Tyler, “Bandwidth considerations for tracking through turbulence,” J. Opt. Soc. Am. A 11(1), 358–367 (1994).
    [CrossRef]
  13. D. L. Fried, “Aperture averaging of scintillation,” J. Opt. Soc. Am. 57(2), 169–175 (1967).
    [CrossRef]
  14. P. J. Titterton, “Scintillation and transmitter-aperture averaging over vertical paths,” J. Opt. Soc. Am. 63(4), 439–444 (1973).
    [CrossRef]
  15. J. H. Churnside, “Aperture averaging of optical scintillations in the turbulent atmosphere,” Appl. Opt. 30(15), 1982–1994 (1991).
    [CrossRef] [PubMed]
  16. L. C. Andrews, R. L. Phillips, and C. Y. Hopen, “Aperture averaging of optical scintillations: power fluctuations and the temporal spectrum,” Waves Random Media 10(1), 53–70 (2000).
    [CrossRef]
  17. M. Toyoshima, Y. Takayama, H. Kunimori, T. Jono, and K. Arai, “Data analysis results from the KODEN experiments,” Proc. SPIE 6709, 1–8 (2007).
  18. M. Toyoshima, K. Takizawa, T. Kuri, W. Klaus, M. Toyoda, H. Kunimori, T. Jono, Y. Takayama, N. Kura, K. Ohinata, K. Arai, and K. Shiratama, “Ground-to-OICETS laser communication experiments,” Proc. SPIE 6304, 63040B (2006).
  19. M. Toyoshima, H. Takenaka, Y. Shoji, and Y. Takayama, “Frequency characteristics of atmospheric turbulence in space-to-ground laser links,” Proc. SPIE 7685, 76850G, 76850G-12 (2010).
    [CrossRef]
  20. R. J. Hill and R. G. Frehlich, “Probability distribution of irradiance for the onset of strong scintillation,” J. Opt. Soc. Am. A 14(7), 1530–1540 (1997).
    [CrossRef]
  21. L. C. Andrews, R. L. Phillips, C. Y. Hopen, and M. A. Al-Habash, “Theory of optical scintillation,” J. Opt. Soc. Am. A 16(6), 1417–1429 (1999).
    [CrossRef]
  22. L. C. Andrews, R. L. Phillips, and C. Y. Hopen, “Scintillation model for a satellite communication link at large zenith angles,” Opt. Eng. 39(12), 3272–3280 (2000).
    [CrossRef]
  23. A. Belmonte, “Feasibility study for the simulation of beam propagation: consideration of coherent lidar performance,” Appl. Opt. 39(30), 5426–5445 (2000).
    [CrossRef] [PubMed]
  24. L. C. Andrews and R. L. Phillips, eds., Laser Beam Propagation through Random Media, 2nd ed. (SPIE Press, 2005).
  25. M. Toyoshima, Y. Takayama, H. Kunimori, S. Yamakawa, and T. Jono, “Characteristics of laser beam propagation through the turbulent atmosphere in ground-to-low earth orbit satellite laser communications links,” IEICE Trans. Commun. J94-B(3), 409–418 (2011).

2011 (1)

M. Toyoshima, Y. Takayama, H. Kunimori, S. Yamakawa, and T. Jono, “Characteristics of laser beam propagation through the turbulent atmosphere in ground-to-low earth orbit satellite laser communications links,” IEICE Trans. Commun. J94-B(3), 409–418 (2011).

2010 (1)

M. Toyoshima, H. Takenaka, Y. Shoji, and Y. Takayama, “Frequency characteristics of atmospheric turbulence in space-to-ground laser links,” Proc. SPIE 7685, 76850G, 76850G-12 (2010).
[CrossRef]

2007 (1)

M. Toyoshima, Y. Takayama, H. Kunimori, T. Jono, and K. Arai, “Data analysis results from the KODEN experiments,” Proc. SPIE 6709, 1–8 (2007).

2006 (1)

M. Toyoshima, K. Takizawa, T. Kuri, W. Klaus, M. Toyoda, H. Kunimori, T. Jono, Y. Takayama, N. Kura, K. Ohinata, K. Arai, and K. Shiratama, “Ground-to-OICETS laser communication experiments,” Proc. SPIE 6304, 63040B (2006).

2000 (3)

L. C. Andrews, R. L. Phillips, and C. Y. Hopen, “Scintillation model for a satellite communication link at large zenith angles,” Opt. Eng. 39(12), 3272–3280 (2000).
[CrossRef]

L. C. Andrews, R. L. Phillips, and C. Y. Hopen, “Aperture averaging of optical scintillations: power fluctuations and the temporal spectrum,” Waves Random Media 10(1), 53–70 (2000).
[CrossRef]

A. Belmonte, “Feasibility study for the simulation of beam propagation: consideration of coherent lidar performance,” Appl. Opt. 39(30), 5426–5445 (2000).
[CrossRef] [PubMed]

1999 (1)

1997 (1)

1994 (1)

1991 (1)

1977 (2)

1976 (1)

1973 (1)

1972 (1)

A. Ishimaru, “Temporal frequency spectra of multifrequency waves in turbulent atmosphere,” IEEE Trans. Antenn. Propag. 20(1), 10–19 (1972).
[CrossRef]

1971 (1)

1970 (1)

R. S. Lawrence and J. W. Strohbehn, “A survey of clear-air propagation effects relevant to optical communications,” Proc. IEEE 58(10), 1523–1545 (1970).
[CrossRef]

1967 (4)

1966 (1)

1965 (1)

Al-Habash, M. A.

Andrews, L. C.

L. C. Andrews, R. L. Phillips, and C. Y. Hopen, “Scintillation model for a satellite communication link at large zenith angles,” Opt. Eng. 39(12), 3272–3280 (2000).
[CrossRef]

L. C. Andrews, R. L. Phillips, and C. Y. Hopen, “Aperture averaging of optical scintillations: power fluctuations and the temporal spectrum,” Waves Random Media 10(1), 53–70 (2000).
[CrossRef]

L. C. Andrews, R. L. Phillips, C. Y. Hopen, and M. A. Al-Habash, “Theory of optical scintillation,” J. Opt. Soc. Am. A 16(6), 1417–1429 (1999).
[CrossRef]

Arai, K.

M. Toyoshima, Y. Takayama, H. Kunimori, T. Jono, and K. Arai, “Data analysis results from the KODEN experiments,” Proc. SPIE 6709, 1–8 (2007).

M. Toyoshima, K. Takizawa, T. Kuri, W. Klaus, M. Toyoda, H. Kunimori, T. Jono, Y. Takayama, N. Kura, K. Ohinata, K. Arai, and K. Shiratama, “Ground-to-OICETS laser communication experiments,” Proc. SPIE 6304, 63040B (2006).

Belmonte, A.

Bufton, J. L.

Chu, T. S.

Churnside, J. H.

Clifford, S. F.

Frehlich, R. G.

Fried, D. L.

Gilmartin, T. J.

T. J. Gilmartin and R. R. Horning, “Spectral characteristics of intensity fluctuations on a laser beam propagating in a desert atmosphere,” IEEE J. Quantum Electron. 3(6), 254–256 (1967).
[CrossRef]

Greenwood, D. P.

Hill, R. J.

Höhn, D. H.

Hopen, C. Y.

L. C. Andrews, R. L. Phillips, and C. Y. Hopen, “Scintillation model for a satellite communication link at large zenith angles,” Opt. Eng. 39(12), 3272–3280 (2000).
[CrossRef]

L. C. Andrews, R. L. Phillips, and C. Y. Hopen, “Aperture averaging of optical scintillations: power fluctuations and the temporal spectrum,” Waves Random Media 10(1), 53–70 (2000).
[CrossRef]

L. C. Andrews, R. L. Phillips, C. Y. Hopen, and M. A. Al-Habash, “Theory of optical scintillation,” J. Opt. Soc. Am. A 16(6), 1417–1429 (1999).
[CrossRef]

Horning, R. R.

T. J. Gilmartin and R. R. Horning, “Spectral characteristics of intensity fluctuations on a laser beam propagating in a desert atmosphere,” IEEE J. Quantum Electron. 3(6), 254–256 (1967).
[CrossRef]

Ishimaru, A.

A. Ishimaru, “Temporal frequency spectra of multifrequency waves in turbulent atmosphere,” IEEE Trans. Antenn. Propag. 20(1), 10–19 (1972).
[CrossRef]

Jono, T.

M. Toyoshima, Y. Takayama, H. Kunimori, S. Yamakawa, and T. Jono, “Characteristics of laser beam propagation through the turbulent atmosphere in ground-to-low earth orbit satellite laser communications links,” IEICE Trans. Commun. J94-B(3), 409–418 (2011).

M. Toyoshima, Y. Takayama, H. Kunimori, T. Jono, and K. Arai, “Data analysis results from the KODEN experiments,” Proc. SPIE 6709, 1–8 (2007).

M. Toyoshima, K. Takizawa, T. Kuri, W. Klaus, M. Toyoda, H. Kunimori, T. Jono, Y. Takayama, N. Kura, K. Ohinata, K. Arai, and K. Shiratama, “Ground-to-OICETS laser communication experiments,” Proc. SPIE 6304, 63040B (2006).

Klaus, W.

M. Toyoshima, K. Takizawa, T. Kuri, W. Klaus, M. Toyoda, H. Kunimori, T. Jono, Y. Takayama, N. Kura, K. Ohinata, K. Arai, and K. Shiratama, “Ground-to-OICETS laser communication experiments,” Proc. SPIE 6304, 63040B (2006).

Kunimori, H.

M. Toyoshima, Y. Takayama, H. Kunimori, S. Yamakawa, and T. Jono, “Characteristics of laser beam propagation through the turbulent atmosphere in ground-to-low earth orbit satellite laser communications links,” IEICE Trans. Commun. J94-B(3), 409–418 (2011).

M. Toyoshima, Y. Takayama, H. Kunimori, T. Jono, and K. Arai, “Data analysis results from the KODEN experiments,” Proc. SPIE 6709, 1–8 (2007).

M. Toyoshima, K. Takizawa, T. Kuri, W. Klaus, M. Toyoda, H. Kunimori, T. Jono, Y. Takayama, N. Kura, K. Ohinata, K. Arai, and K. Shiratama, “Ground-to-OICETS laser communication experiments,” Proc. SPIE 6304, 63040B (2006).

Kura, N.

M. Toyoshima, K. Takizawa, T. Kuri, W. Klaus, M. Toyoda, H. Kunimori, T. Jono, Y. Takayama, N. Kura, K. Ohinata, K. Arai, and K. Shiratama, “Ground-to-OICETS laser communication experiments,” Proc. SPIE 6304, 63040B (2006).

Kuri, T.

M. Toyoshima, K. Takizawa, T. Kuri, W. Klaus, M. Toyoda, H. Kunimori, T. Jono, Y. Takayama, N. Kura, K. Ohinata, K. Arai, and K. Shiratama, “Ground-to-OICETS laser communication experiments,” Proc. SPIE 6304, 63040B (2006).

Lawrence, R. S.

R. S. Lawrence and J. W. Strohbehn, “A survey of clear-air propagation effects relevant to optical communications,” Proc. IEEE 58(10), 1523–1545 (1970).
[CrossRef]

Ohinata, K.

M. Toyoshima, K. Takizawa, T. Kuri, W. Klaus, M. Toyoda, H. Kunimori, T. Jono, Y. Takayama, N. Kura, K. Ohinata, K. Arai, and K. Shiratama, “Ground-to-OICETS laser communication experiments,” Proc. SPIE 6304, 63040B (2006).

Phillips, R. L.

L. C. Andrews, R. L. Phillips, and C. Y. Hopen, “Aperture averaging of optical scintillations: power fluctuations and the temporal spectrum,” Waves Random Media 10(1), 53–70 (2000).
[CrossRef]

L. C. Andrews, R. L. Phillips, and C. Y. Hopen, “Scintillation model for a satellite communication link at large zenith angles,” Opt. Eng. 39(12), 3272–3280 (2000).
[CrossRef]

L. C. Andrews, R. L. Phillips, C. Y. Hopen, and M. A. Al-Habash, “Theory of optical scintillation,” J. Opt. Soc. Am. A 16(6), 1417–1429 (1999).
[CrossRef]

Ryznar, E.

Shiratama, K.

M. Toyoshima, K. Takizawa, T. Kuri, W. Klaus, M. Toyoda, H. Kunimori, T. Jono, Y. Takayama, N. Kura, K. Ohinata, K. Arai, and K. Shiratama, “Ground-to-OICETS laser communication experiments,” Proc. SPIE 6304, 63040B (2006).

Shoji, Y.

M. Toyoshima, H. Takenaka, Y. Shoji, and Y. Takayama, “Frequency characteristics of atmospheric turbulence in space-to-ground laser links,” Proc. SPIE 7685, 76850G, 76850G-12 (2010).
[CrossRef]

Strohbehn, J. W.

R. S. Lawrence and J. W. Strohbehn, “A survey of clear-air propagation effects relevant to optical communications,” Proc. IEEE 58(10), 1523–1545 (1970).
[CrossRef]

Takayama, Y.

M. Toyoshima, Y. Takayama, H. Kunimori, S. Yamakawa, and T. Jono, “Characteristics of laser beam propagation through the turbulent atmosphere in ground-to-low earth orbit satellite laser communications links,” IEICE Trans. Commun. J94-B(3), 409–418 (2011).

M. Toyoshima, H. Takenaka, Y. Shoji, and Y. Takayama, “Frequency characteristics of atmospheric turbulence in space-to-ground laser links,” Proc. SPIE 7685, 76850G, 76850G-12 (2010).
[CrossRef]

M. Toyoshima, Y. Takayama, H. Kunimori, T. Jono, and K. Arai, “Data analysis results from the KODEN experiments,” Proc. SPIE 6709, 1–8 (2007).

M. Toyoshima, K. Takizawa, T. Kuri, W. Klaus, M. Toyoda, H. Kunimori, T. Jono, Y. Takayama, N. Kura, K. Ohinata, K. Arai, and K. Shiratama, “Ground-to-OICETS laser communication experiments,” Proc. SPIE 6304, 63040B (2006).

Takenaka, H.

M. Toyoshima, H. Takenaka, Y. Shoji, and Y. Takayama, “Frequency characteristics of atmospheric turbulence in space-to-ground laser links,” Proc. SPIE 7685, 76850G, 76850G-12 (2010).
[CrossRef]

Takizawa, K.

M. Toyoshima, K. Takizawa, T. Kuri, W. Klaus, M. Toyoda, H. Kunimori, T. Jono, Y. Takayama, N. Kura, K. Ohinata, K. Arai, and K. Shiratama, “Ground-to-OICETS laser communication experiments,” Proc. SPIE 6304, 63040B (2006).

Titterton, P. J.

Toyoda, M.

M. Toyoshima, K. Takizawa, T. Kuri, W. Klaus, M. Toyoda, H. Kunimori, T. Jono, Y. Takayama, N. Kura, K. Ohinata, K. Arai, and K. Shiratama, “Ground-to-OICETS laser communication experiments,” Proc. SPIE 6304, 63040B (2006).

Toyoshima, M.

M. Toyoshima, Y. Takayama, H. Kunimori, S. Yamakawa, and T. Jono, “Characteristics of laser beam propagation through the turbulent atmosphere in ground-to-low earth orbit satellite laser communications links,” IEICE Trans. Commun. J94-B(3), 409–418 (2011).

M. Toyoshima, H. Takenaka, Y. Shoji, and Y. Takayama, “Frequency characteristics of atmospheric turbulence in space-to-ground laser links,” Proc. SPIE 7685, 76850G, 76850G-12 (2010).
[CrossRef]

M. Toyoshima, Y. Takayama, H. Kunimori, T. Jono, and K. Arai, “Data analysis results from the KODEN experiments,” Proc. SPIE 6709, 1–8 (2007).

M. Toyoshima, K. Takizawa, T. Kuri, W. Klaus, M. Toyoda, H. Kunimori, T. Jono, Y. Takayama, N. Kura, K. Ohinata, K. Arai, and K. Shiratama, “Ground-to-OICETS laser communication experiments,” Proc. SPIE 6304, 63040B (2006).

Tyler, G. A.

Yamakawa, S.

M. Toyoshima, Y. Takayama, H. Kunimori, S. Yamakawa, and T. Jono, “Characteristics of laser beam propagation through the turbulent atmosphere in ground-to-low earth orbit satellite laser communications links,” IEICE Trans. Commun. J94-B(3), 409–418 (2011).

Appl. Opt. (6)

IEEE J. Quantum Electron. (1)

T. J. Gilmartin and R. R. Horning, “Spectral characteristics of intensity fluctuations on a laser beam propagating in a desert atmosphere,” IEEE J. Quantum Electron. 3(6), 254–256 (1967).
[CrossRef]

IEEE Trans. Antenn. Propag. (1)

A. Ishimaru, “Temporal frequency spectra of multifrequency waves in turbulent atmosphere,” IEEE Trans. Antenn. Propag. 20(1), 10–19 (1972).
[CrossRef]

IEICE Trans. Commun. (1)

M. Toyoshima, Y. Takayama, H. Kunimori, S. Yamakawa, and T. Jono, “Characteristics of laser beam propagation through the turbulent atmosphere in ground-to-low earth orbit satellite laser communications links,” IEICE Trans. Commun. J94-B(3), 409–418 (2011).

J. Opt. Soc. Am. (6)

J. Opt. Soc. Am. A (3)

Opt. Eng. (1)

L. C. Andrews, R. L. Phillips, and C. Y. Hopen, “Scintillation model for a satellite communication link at large zenith angles,” Opt. Eng. 39(12), 3272–3280 (2000).
[CrossRef]

Proc. IEEE (1)

R. S. Lawrence and J. W. Strohbehn, “A survey of clear-air propagation effects relevant to optical communications,” Proc. IEEE 58(10), 1523–1545 (1970).
[CrossRef]

Proc. SPIE (3)

M. Toyoshima, Y. Takayama, H. Kunimori, T. Jono, and K. Arai, “Data analysis results from the KODEN experiments,” Proc. SPIE 6709, 1–8 (2007).

M. Toyoshima, K. Takizawa, T. Kuri, W. Klaus, M. Toyoda, H. Kunimori, T. Jono, Y. Takayama, N. Kura, K. Ohinata, K. Arai, and K. Shiratama, “Ground-to-OICETS laser communication experiments,” Proc. SPIE 6304, 63040B (2006).

M. Toyoshima, H. Takenaka, Y. Shoji, and Y. Takayama, “Frequency characteristics of atmospheric turbulence in space-to-ground laser links,” Proc. SPIE 7685, 76850G, 76850G-12 (2010).
[CrossRef]

Waves Random Media (1)

L. C. Andrews, R. L. Phillips, and C. Y. Hopen, “Aperture averaging of optical scintillations: power fluctuations and the temporal spectrum,” Waves Random Media 10(1), 53–70 (2000).
[CrossRef]

Other (1)

L. C. Andrews and R. L. Phillips, eds., Laser Beam Propagation through Random Media, 2nd ed. (SPIE Press, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Configuration of the optical receiver at the optical ground station.

Fig. 2
Fig. 2

Rms wind speed as a function of the antenna slew rate at the optical ground station based on the Bufton wind model.

Fig. 3
Fig. 3

Normalized power spectra of fWe 2(f) as functions of the rms wind speed and the receiver aperture diameter. (a) Rms wind speed of v = 76 m/s and the receiver aperture diameters of 5 cm and 32 cm. (b) Rms wind speeds of 76 m/s and 117 m/s and the receiver aperture diameter of 32 cm.

Fig. 4
Fig. 4

Mean frequency of the power spectra fWe 2(f) for receiver aperture diameters of 5 cm and 32 cm as a function of the antenna slew rate.

Fig. 5
Fig. 5

Time-varying signals with different circular apertures and different rms wind speeds with the random phase pertubation in the PSDs. (a) Rms wind speed of 76 m/s and the receiver aperture diameters of 5 cm. (b) Rms wind speed of 76 m/s and the receiver aperture diameters of 32 cm. (c) Rms wind speed of 76 m/s and the receiver aperture diameter of 32 cm. (d) Rms wind speed of 117 m/s and the receiver aperture diameter of 32 cm.

Fig. 6
Fig. 6

Histograms of the time-varying signals with the receiver aperture diameter of 5 cm and simulated gamma-gamma distribution. (a) Elevation angle of 23°. (b) Elevation angle of 35°.

Tables (1)

Tables Icon

Table 1 Parameters for Calculating the Scintillation Index

Equations (24)

Equations on this page are rendered with MathJax. Learn more.

e ( t ) = e ( V t ) = τ r a ( r ) s ( r + V t ) d r .
e ( r ) = τ r a ( r ) s ( r ) ,
W e ( κ ) = τ r W a ( κ ) W s * ( κ ) ,
e ( r ) = 1 [ W e ( κ ) ] , = 1 2 π W e ( κ ) exp ( j 2 π k r ) d κ , = τ r 2 π W a ( κ ) W s * ( κ ) exp ( j 2 π k r ) d κ .
W e ( f ) = e ( t ) exp ( j ω t ) d t , = e ( V t ) exp ( j ω t ) d t .
W e ( f ) = [ τ r 2 π W a ( κ ) W s * ( κ ) exp ( j 2 π k V t ) d κ ] × exp ( j ω t ) d t , = τ r 2 π W a ( κ ) W s * ( κ ) d κ × exp [ j ( 2 π k V ω ) t ] d t , = τ r 2 π W a ( κ ) W s * ( κ ) d κ δ ( 2 π k V ω ) .
W a ( κ ) = W a ( κ , ϕ ) .
W e ( f ) = τ r 2 π 0 W a ( κ , ϕ ) W s * ( κ , ϕ ) κ d κ × 0 2 π 2 π δ ( V κ cos ϕ f ) d ϕ , = τ r 0 W a ( κ , ϕ ) W s * ( κ , ϕ ) κ d κ × 0 2 π δ ( V κ cos ϕ f ) d ϕ ,
f ( t ) δ ( t t 0 ) = f ( t 0 ) .
W e ( f ) = τ r f / V W a ( κ ) W s * ( κ ) κ d κ 1 V κ 2 ( f / V ) 2 , = τ r V 0 W a ( κ 2 + f 2 V 2 ) W s * ( κ 2 + f 2 V 2 ) d κ .
W s 2 ( κ ) = 0.033 C n 2 exp ( κ 2 / κ m 2 ) ( κ 2 + κ 0 2 ) 11 / 6 ,
{ a ( r ) = 1 | r | D / 2 a ( r ) = 0 | r | > D / 2 .
W a ( κ ) = π D 2 4 2 J 1 ( π D κ ) ( π D κ ) ,
W e 2 ( f ) = | τ r V 0 W a ( κ 2 + f 2 V 2 ) W s * ( κ 2 + f 2 V 2 ) d κ | 2 , = τ r 2 V 2 0 ( π D 2 4 ) 2 2 2 J 1 2 ( π D κ 2 + f 2 / V 2 ) ( π D κ 2 + f 2 / V 2 ) 2 × 0.033 C n 2 exp [ ( κ 2 + f 2 / V 2 ) / κ m 2 ] ( κ 2 + f 2 / V 2 + κ 0 2 ) 11 / 6 d κ , = 0.033 C n 2 τ r 2 D 2 4 V 2 0 J 1 2 ( π D κ 2 + f 2 / V 2 ) ( κ 2 + f 2 / V 2 ) × exp [ ( κ 2 + f 2 / V 2 ) / κ m 2 ] ( κ 2 + f 2 / V 2 + κ 0 2 ) 11 / 6 d κ .
P W ( f ) = f W e 2 ( f ) / 0 W e 2 ( x ) d x .
f ¯ W = 0 P W ( f ) d f .
W e ' ( f ) = W e ( f ) × exp [ j θ r a n d ( f ) ] ,
e ( t ) = | 1 [ W e ' ( f ) ] | .
p G ( I ) = 2 ( α β ) ( α + β ) / 2 Γ ( α ) Γ ( β ) I ( α + β ) / 2 1 × K α β ( 2 α β I ) ,   I >   0 ,
α = 1 σ x 2  and  β = 1 σ y 2 ,
σ 2 = 1 α + 1 β + 1 α β .
C n 2 ( h ) = M × 0.00594 ( v / 27 ) 2 ( 10 5 h ) 10 exp ( h / 1000 ) + 2.7 × 10 16 exp ( h / 1500 ) + A exp ( h / 100 ) ,
v = [ 1 15 × 10 3 5 × 10 3 20 × 10 3 V B 2 ( h ) d h ] 1 / 2 ,
V B ( h ) = ω g h + v g + 30 exp ( h 9400 4800 ) .

Metrics