Abstract

Currently, the polyethlene terephthalate (PET) film challenges to substitute Tri-acetyl cellulouse (TAC) film which is a protection film in a polarizer layer, because of low cost of PET film. On the contrary, the PET film shows an optical problem such that color shift or interference optical pattern in oblique direction can occur because the film is made with the lamination process, which induces high phase retardation. In this paper, we propose a color shift free low cost polarizer by polymerization of random oriented reactive mesogen (RM) on the PET film. We calculate the viewing angle performance of the polarizer with the conventional PET film, with the TAC film and with the proposed PET film. As a result, we confirm that the proposed optical configuration can satisfy the optical performance equivalent to that of conventional TAC film uses in addition to the cost-down.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Shimomura, H. Mada, and S. Kobayashi, “Angular Dependence of Voltage Controlled Color Formaion with a Twisted Nematic Liquid Crystal Cell,” Jpn. J. Appl. Phys. 15(9), 1815–1816 (1976).
    [CrossRef]
  2. S.-T. Wu, U. Efron, and L. D. Hess, “Optical rotator power of 90° twisted nematic liquid crystals,” Appl. Phys. Lett. 44(9), 842–844 (1984).
    [CrossRef]
  3. M. Oh-e and K. Kondo, “Electro-optical characteristics and switching behavior of the in-plane switching mode,” Appl. Phys. Lett. 67(26), 3895–3897 (1995).
    [CrossRef]
  4. H.-K. Hong and C.-R. Seo, “Dependency of Liquid Crystal of In-Plane Switching Mode on Rubbing Angle,” Jpn. J. Appl. Phys. 43(11A), 7639–7642 (2004).
    [CrossRef]
  5. B. S. Jung, I. S. Baik, I. S. Song, G.-D. Lee, and S. H. Lee, “Study on colour characteristics depending on orientation of liquid crystal in the in-plane switching mode,” Liq. Cryst. 33(9), 1077–1082 (2006).
    [CrossRef]
  6. S. H. Lee, S. L. Lee, and H. Y. Kim, “Electro-optic characteristics and switching principle of a nematic liquid crystal cell controlled by fringe-field switching,” Appl. Phys. Lett. 73(20), 2881–2883 (1998).
    [CrossRef]
  7. S. H. Jung, H. Y. Kim, M.-H. Lee, J. M. Rhee, and S. H. Lee, “Cell gap-dependent transmission characteristics of a fringe-electric field-driven homogeneously aligned liquid crystal cell, for a liquid crystal with negative dielectric anisotropy,” Liq. Cryst. 32(2), 267–275 (2005).
    [CrossRef]
  8. M. S. Kim, Y. H. Jung, S. M. Seen, H. Y. Kim, S. Y. Kim, Y. J. Lim, and S. H. Lee, “A Novel Fringe Field Switching Mode with 3-partition Pixel Slit,” Jpn. J. Appl. Phys. 44(5A), 3121–3125 (2005).
    [CrossRef]
  9. K. Hanaoka, Y. Nakanishi, Y. Inoue, S. Tanuma, Y. Koike, and K. Okamoto, “ A New MVA-LCD by Polymer Sustained Alignment Technology” Proc. of Soc. Info. Display Symp. Digest 35, 1200–2003 (2004).
  10. S. G. Kim, S. M. Kim, Y. S. Kim, H. K. Lee, S. H. Lee, G.-D. Lee, J.-J. Lyu, and K. H. Kim, “Stabilization of the liquid crystal director in the patterned vertical alignment mode through formation of pretilte angle by reactive mesogen,” Appl. Phys. Lett. 90(26), 261910 (2007).
    [CrossRef]
  11. S. G. Kim, S. M. Kim, Y. S. Kim, H. K. Lee, S. H. Lee, J.-J. Lyu, K. H. Kim, R. Lu, and S.-T. Wu, “Trapping of defect point to improve response time via controlled azimuthal anchoring in a vertically aligned liquid crystal cell with polymer wall,” J. Phys. D Appl. Phys. 41(5), 055401 (2008).
    [CrossRef]
  12. S. M. Kim, I. Y. Cho, W. I. Kim, K.-U. Jeong, S. H. Lee, G.-D. Lee, J. Son, J.-J. Lyu, and K. H. Kim, “Surface-Modification on Vertical Alignment Layer Using UV-Curable Reactive Mesogens,” Jpn. J. Appl. Phys. 48(3), 032405 (2009).
    [CrossRef]
  13. S. Suwa, T. Isozaki, Y. Inoue, M. Nakamura, M. Miyakawa, and T. Urabe, “Novel Field-induced Pre-tilt Alignment Technique Using a Photo-reactive Alignment Layer for VA LCD” Proc. of Soc. Info. Display Symp. Digest 41, 595–598 (2010).
  14. K. Miyachi and K. Kobayashi, Y. Yamada, and S. Mizushima, “The World’s First Photo Alignment LCD Technology Applied to Generation Ten Factory,” Proc. of Soc. Info. Display Symp. Digest 41, 579–582 (2010).
  15. Y. Hisakado, H. Kikuchi, T. Nagamura, and T. Kajiyama, “Large Electro-optic Kerr Effect in Polymer-Stabilized Liquid-Crystalline Blue Phases,” Adv. Mater. (Deerfield Beach Fla.) 17(1), 96–98 (2005).
    [CrossRef]
  16. S.-W. Choi, S.-I. Yamamoto, Y. Haseba, H. Higuchi, and H. Kikuchi, “Optically isotropic-nanostructured liquid crystal composite with high Kerr constant,” Appl. Phys. Lett. 92(4), 043119 (2008).
    [CrossRef]
  17. M. Kim, M. S. Kim, B. G. Kang, M.-K. Kim, S. Yoon, S. H. Lee, Z. Ge, L. Rao, S. Gauza, and S.-T. Wu, “Wall-shaped electrodes for reducing the operation voltage of polymer-stabilized blue phase liquid crystal displays,” J. Phys. D Appl. Phys. 42(23), 235502 (2009).
    [CrossRef]
  18. T. Ishinabe, T. Miyashita, and T. Uchida, “Novel Wide Viewing Angle Polarizer with High Achromaticity” Proc. of Soc. Info. Display Symp. Digest 31, 1094–1097 (2000).
  19. S. Yano, T. Ishinabe, T. Miyashita, T. Uchida, and Y. Fujimura, “ Wide Viewing Angle Polarizer using Biaxial Film” Proc. of the 7th International Display Workshop (Society for Information Display, Kobe, Japan), 419–422 (2000).
  20. W. L. Hai, “Poloarizer for LCD Application” Proc. of the 12th International Display Workshop/ Asia Display (Society for Information Display, Takamatsu, Japan), 1313–1316 (2005).

2009

S. M. Kim, I. Y. Cho, W. I. Kim, K.-U. Jeong, S. H. Lee, G.-D. Lee, J. Son, J.-J. Lyu, and K. H. Kim, “Surface-Modification on Vertical Alignment Layer Using UV-Curable Reactive Mesogens,” Jpn. J. Appl. Phys. 48(3), 032405 (2009).
[CrossRef]

M. Kim, M. S. Kim, B. G. Kang, M.-K. Kim, S. Yoon, S. H. Lee, Z. Ge, L. Rao, S. Gauza, and S.-T. Wu, “Wall-shaped electrodes for reducing the operation voltage of polymer-stabilized blue phase liquid crystal displays,” J. Phys. D Appl. Phys. 42(23), 235502 (2009).
[CrossRef]

2008

S.-W. Choi, S.-I. Yamamoto, Y. Haseba, H. Higuchi, and H. Kikuchi, “Optically isotropic-nanostructured liquid crystal composite with high Kerr constant,” Appl. Phys. Lett. 92(4), 043119 (2008).
[CrossRef]

S. G. Kim, S. M. Kim, Y. S. Kim, H. K. Lee, S. H. Lee, J.-J. Lyu, K. H. Kim, R. Lu, and S.-T. Wu, “Trapping of defect point to improve response time via controlled azimuthal anchoring in a vertically aligned liquid crystal cell with polymer wall,” J. Phys. D Appl. Phys. 41(5), 055401 (2008).
[CrossRef]

2007

S. G. Kim, S. M. Kim, Y. S. Kim, H. K. Lee, S. H. Lee, G.-D. Lee, J.-J. Lyu, and K. H. Kim, “Stabilization of the liquid crystal director in the patterned vertical alignment mode through formation of pretilte angle by reactive mesogen,” Appl. Phys. Lett. 90(26), 261910 (2007).
[CrossRef]

2006

B. S. Jung, I. S. Baik, I. S. Song, G.-D. Lee, and S. H. Lee, “Study on colour characteristics depending on orientation of liquid crystal in the in-plane switching mode,” Liq. Cryst. 33(9), 1077–1082 (2006).
[CrossRef]

2005

S. H. Jung, H. Y. Kim, M.-H. Lee, J. M. Rhee, and S. H. Lee, “Cell gap-dependent transmission characteristics of a fringe-electric field-driven homogeneously aligned liquid crystal cell, for a liquid crystal with negative dielectric anisotropy,” Liq. Cryst. 32(2), 267–275 (2005).
[CrossRef]

M. S. Kim, Y. H. Jung, S. M. Seen, H. Y. Kim, S. Y. Kim, Y. J. Lim, and S. H. Lee, “A Novel Fringe Field Switching Mode with 3-partition Pixel Slit,” Jpn. J. Appl. Phys. 44(5A), 3121–3125 (2005).
[CrossRef]

Y. Hisakado, H. Kikuchi, T. Nagamura, and T. Kajiyama, “Large Electro-optic Kerr Effect in Polymer-Stabilized Liquid-Crystalline Blue Phases,” Adv. Mater. (Deerfield Beach Fla.) 17(1), 96–98 (2005).
[CrossRef]

2004

H.-K. Hong and C.-R. Seo, “Dependency of Liquid Crystal of In-Plane Switching Mode on Rubbing Angle,” Jpn. J. Appl. Phys. 43(11A), 7639–7642 (2004).
[CrossRef]

1998

S. H. Lee, S. L. Lee, and H. Y. Kim, “Electro-optic characteristics and switching principle of a nematic liquid crystal cell controlled by fringe-field switching,” Appl. Phys. Lett. 73(20), 2881–2883 (1998).
[CrossRef]

1995

M. Oh-e and K. Kondo, “Electro-optical characteristics and switching behavior of the in-plane switching mode,” Appl. Phys. Lett. 67(26), 3895–3897 (1995).
[CrossRef]

1984

S.-T. Wu, U. Efron, and L. D. Hess, “Optical rotator power of 90° twisted nematic liquid crystals,” Appl. Phys. Lett. 44(9), 842–844 (1984).
[CrossRef]

1976

T. Shimomura, H. Mada, and S. Kobayashi, “Angular Dependence of Voltage Controlled Color Formaion with a Twisted Nematic Liquid Crystal Cell,” Jpn. J. Appl. Phys. 15(9), 1815–1816 (1976).
[CrossRef]

Baik, I. S.

B. S. Jung, I. S. Baik, I. S. Song, G.-D. Lee, and S. H. Lee, “Study on colour characteristics depending on orientation of liquid crystal in the in-plane switching mode,” Liq. Cryst. 33(9), 1077–1082 (2006).
[CrossRef]

Cho, I. Y.

S. M. Kim, I. Y. Cho, W. I. Kim, K.-U. Jeong, S. H. Lee, G.-D. Lee, J. Son, J.-J. Lyu, and K. H. Kim, “Surface-Modification on Vertical Alignment Layer Using UV-Curable Reactive Mesogens,” Jpn. J. Appl. Phys. 48(3), 032405 (2009).
[CrossRef]

Choi, S.-W.

S.-W. Choi, S.-I. Yamamoto, Y. Haseba, H. Higuchi, and H. Kikuchi, “Optically isotropic-nanostructured liquid crystal composite with high Kerr constant,” Appl. Phys. Lett. 92(4), 043119 (2008).
[CrossRef]

Efron, U.

S.-T. Wu, U. Efron, and L. D. Hess, “Optical rotator power of 90° twisted nematic liquid crystals,” Appl. Phys. Lett. 44(9), 842–844 (1984).
[CrossRef]

Gauza, S.

M. Kim, M. S. Kim, B. G. Kang, M.-K. Kim, S. Yoon, S. H. Lee, Z. Ge, L. Rao, S. Gauza, and S.-T. Wu, “Wall-shaped electrodes for reducing the operation voltage of polymer-stabilized blue phase liquid crystal displays,” J. Phys. D Appl. Phys. 42(23), 235502 (2009).
[CrossRef]

Ge, Z.

M. Kim, M. S. Kim, B. G. Kang, M.-K. Kim, S. Yoon, S. H. Lee, Z. Ge, L. Rao, S. Gauza, and S.-T. Wu, “Wall-shaped electrodes for reducing the operation voltage of polymer-stabilized blue phase liquid crystal displays,” J. Phys. D Appl. Phys. 42(23), 235502 (2009).
[CrossRef]

Haseba, Y.

S.-W. Choi, S.-I. Yamamoto, Y. Haseba, H. Higuchi, and H. Kikuchi, “Optically isotropic-nanostructured liquid crystal composite with high Kerr constant,” Appl. Phys. Lett. 92(4), 043119 (2008).
[CrossRef]

Hess, L. D.

S.-T. Wu, U. Efron, and L. D. Hess, “Optical rotator power of 90° twisted nematic liquid crystals,” Appl. Phys. Lett. 44(9), 842–844 (1984).
[CrossRef]

Higuchi, H.

S.-W. Choi, S.-I. Yamamoto, Y. Haseba, H. Higuchi, and H. Kikuchi, “Optically isotropic-nanostructured liquid crystal composite with high Kerr constant,” Appl. Phys. Lett. 92(4), 043119 (2008).
[CrossRef]

Hisakado, Y.

Y. Hisakado, H. Kikuchi, T. Nagamura, and T. Kajiyama, “Large Electro-optic Kerr Effect in Polymer-Stabilized Liquid-Crystalline Blue Phases,” Adv. Mater. (Deerfield Beach Fla.) 17(1), 96–98 (2005).
[CrossRef]

Hong, H.-K.

H.-K. Hong and C.-R. Seo, “Dependency of Liquid Crystal of In-Plane Switching Mode on Rubbing Angle,” Jpn. J. Appl. Phys. 43(11A), 7639–7642 (2004).
[CrossRef]

Jeong, K.-U.

S. M. Kim, I. Y. Cho, W. I. Kim, K.-U. Jeong, S. H. Lee, G.-D. Lee, J. Son, J.-J. Lyu, and K. H. Kim, “Surface-Modification on Vertical Alignment Layer Using UV-Curable Reactive Mesogens,” Jpn. J. Appl. Phys. 48(3), 032405 (2009).
[CrossRef]

Jung, B. S.

B. S. Jung, I. S. Baik, I. S. Song, G.-D. Lee, and S. H. Lee, “Study on colour characteristics depending on orientation of liquid crystal in the in-plane switching mode,” Liq. Cryst. 33(9), 1077–1082 (2006).
[CrossRef]

Jung, S. H.

S. H. Jung, H. Y. Kim, M.-H. Lee, J. M. Rhee, and S. H. Lee, “Cell gap-dependent transmission characteristics of a fringe-electric field-driven homogeneously aligned liquid crystal cell, for a liquid crystal with negative dielectric anisotropy,” Liq. Cryst. 32(2), 267–275 (2005).
[CrossRef]

Jung, Y. H.

M. S. Kim, Y. H. Jung, S. M. Seen, H. Y. Kim, S. Y. Kim, Y. J. Lim, and S. H. Lee, “A Novel Fringe Field Switching Mode with 3-partition Pixel Slit,” Jpn. J. Appl. Phys. 44(5A), 3121–3125 (2005).
[CrossRef]

Kajiyama, T.

Y. Hisakado, H. Kikuchi, T. Nagamura, and T. Kajiyama, “Large Electro-optic Kerr Effect in Polymer-Stabilized Liquid-Crystalline Blue Phases,” Adv. Mater. (Deerfield Beach Fla.) 17(1), 96–98 (2005).
[CrossRef]

Kang, B. G.

M. Kim, M. S. Kim, B. G. Kang, M.-K. Kim, S. Yoon, S. H. Lee, Z. Ge, L. Rao, S. Gauza, and S.-T. Wu, “Wall-shaped electrodes for reducing the operation voltage of polymer-stabilized blue phase liquid crystal displays,” J. Phys. D Appl. Phys. 42(23), 235502 (2009).
[CrossRef]

Kikuchi, H.

S.-W. Choi, S.-I. Yamamoto, Y. Haseba, H. Higuchi, and H. Kikuchi, “Optically isotropic-nanostructured liquid crystal composite with high Kerr constant,” Appl. Phys. Lett. 92(4), 043119 (2008).
[CrossRef]

Y. Hisakado, H. Kikuchi, T. Nagamura, and T. Kajiyama, “Large Electro-optic Kerr Effect in Polymer-Stabilized Liquid-Crystalline Blue Phases,” Adv. Mater. (Deerfield Beach Fla.) 17(1), 96–98 (2005).
[CrossRef]

Kim, H. Y.

S. H. Jung, H. Y. Kim, M.-H. Lee, J. M. Rhee, and S. H. Lee, “Cell gap-dependent transmission characteristics of a fringe-electric field-driven homogeneously aligned liquid crystal cell, for a liquid crystal with negative dielectric anisotropy,” Liq. Cryst. 32(2), 267–275 (2005).
[CrossRef]

M. S. Kim, Y. H. Jung, S. M. Seen, H. Y. Kim, S. Y. Kim, Y. J. Lim, and S. H. Lee, “A Novel Fringe Field Switching Mode with 3-partition Pixel Slit,” Jpn. J. Appl. Phys. 44(5A), 3121–3125 (2005).
[CrossRef]

S. H. Lee, S. L. Lee, and H. Y. Kim, “Electro-optic characteristics and switching principle of a nematic liquid crystal cell controlled by fringe-field switching,” Appl. Phys. Lett. 73(20), 2881–2883 (1998).
[CrossRef]

Kim, K. H.

S. M. Kim, I. Y. Cho, W. I. Kim, K.-U. Jeong, S. H. Lee, G.-D. Lee, J. Son, J.-J. Lyu, and K. H. Kim, “Surface-Modification on Vertical Alignment Layer Using UV-Curable Reactive Mesogens,” Jpn. J. Appl. Phys. 48(3), 032405 (2009).
[CrossRef]

S. G. Kim, S. M. Kim, Y. S. Kim, H. K. Lee, S. H. Lee, J.-J. Lyu, K. H. Kim, R. Lu, and S.-T. Wu, “Trapping of defect point to improve response time via controlled azimuthal anchoring in a vertically aligned liquid crystal cell with polymer wall,” J. Phys. D Appl. Phys. 41(5), 055401 (2008).
[CrossRef]

S. G. Kim, S. M. Kim, Y. S. Kim, H. K. Lee, S. H. Lee, G.-D. Lee, J.-J. Lyu, and K. H. Kim, “Stabilization of the liquid crystal director in the patterned vertical alignment mode through formation of pretilte angle by reactive mesogen,” Appl. Phys. Lett. 90(26), 261910 (2007).
[CrossRef]

Kim, M.

M. Kim, M. S. Kim, B. G. Kang, M.-K. Kim, S. Yoon, S. H. Lee, Z. Ge, L. Rao, S. Gauza, and S.-T. Wu, “Wall-shaped electrodes for reducing the operation voltage of polymer-stabilized blue phase liquid crystal displays,” J. Phys. D Appl. Phys. 42(23), 235502 (2009).
[CrossRef]

Kim, M. S.

M. Kim, M. S. Kim, B. G. Kang, M.-K. Kim, S. Yoon, S. H. Lee, Z. Ge, L. Rao, S. Gauza, and S.-T. Wu, “Wall-shaped electrodes for reducing the operation voltage of polymer-stabilized blue phase liquid crystal displays,” J. Phys. D Appl. Phys. 42(23), 235502 (2009).
[CrossRef]

M. S. Kim, Y. H. Jung, S. M. Seen, H. Y. Kim, S. Y. Kim, Y. J. Lim, and S. H. Lee, “A Novel Fringe Field Switching Mode with 3-partition Pixel Slit,” Jpn. J. Appl. Phys. 44(5A), 3121–3125 (2005).
[CrossRef]

Kim, M.-K.

M. Kim, M. S. Kim, B. G. Kang, M.-K. Kim, S. Yoon, S. H. Lee, Z. Ge, L. Rao, S. Gauza, and S.-T. Wu, “Wall-shaped electrodes for reducing the operation voltage of polymer-stabilized blue phase liquid crystal displays,” J. Phys. D Appl. Phys. 42(23), 235502 (2009).
[CrossRef]

Kim, S. G.

S. G. Kim, S. M. Kim, Y. S. Kim, H. K. Lee, S. H. Lee, J.-J. Lyu, K. H. Kim, R. Lu, and S.-T. Wu, “Trapping of defect point to improve response time via controlled azimuthal anchoring in a vertically aligned liquid crystal cell with polymer wall,” J. Phys. D Appl. Phys. 41(5), 055401 (2008).
[CrossRef]

S. G. Kim, S. M. Kim, Y. S. Kim, H. K. Lee, S. H. Lee, G.-D. Lee, J.-J. Lyu, and K. H. Kim, “Stabilization of the liquid crystal director in the patterned vertical alignment mode through formation of pretilte angle by reactive mesogen,” Appl. Phys. Lett. 90(26), 261910 (2007).
[CrossRef]

Kim, S. M.

S. M. Kim, I. Y. Cho, W. I. Kim, K.-U. Jeong, S. H. Lee, G.-D. Lee, J. Son, J.-J. Lyu, and K. H. Kim, “Surface-Modification on Vertical Alignment Layer Using UV-Curable Reactive Mesogens,” Jpn. J. Appl. Phys. 48(3), 032405 (2009).
[CrossRef]

S. G. Kim, S. M. Kim, Y. S. Kim, H. K. Lee, S. H. Lee, J.-J. Lyu, K. H. Kim, R. Lu, and S.-T. Wu, “Trapping of defect point to improve response time via controlled azimuthal anchoring in a vertically aligned liquid crystal cell with polymer wall,” J. Phys. D Appl. Phys. 41(5), 055401 (2008).
[CrossRef]

S. G. Kim, S. M. Kim, Y. S. Kim, H. K. Lee, S. H. Lee, G.-D. Lee, J.-J. Lyu, and K. H. Kim, “Stabilization of the liquid crystal director in the patterned vertical alignment mode through formation of pretilte angle by reactive mesogen,” Appl. Phys. Lett. 90(26), 261910 (2007).
[CrossRef]

Kim, S. Y.

M. S. Kim, Y. H. Jung, S. M. Seen, H. Y. Kim, S. Y. Kim, Y. J. Lim, and S. H. Lee, “A Novel Fringe Field Switching Mode with 3-partition Pixel Slit,” Jpn. J. Appl. Phys. 44(5A), 3121–3125 (2005).
[CrossRef]

Kim, W. I.

S. M. Kim, I. Y. Cho, W. I. Kim, K.-U. Jeong, S. H. Lee, G.-D. Lee, J. Son, J.-J. Lyu, and K. H. Kim, “Surface-Modification on Vertical Alignment Layer Using UV-Curable Reactive Mesogens,” Jpn. J. Appl. Phys. 48(3), 032405 (2009).
[CrossRef]

Kim, Y. S.

S. G. Kim, S. M. Kim, Y. S. Kim, H. K. Lee, S. H. Lee, J.-J. Lyu, K. H. Kim, R. Lu, and S.-T. Wu, “Trapping of defect point to improve response time via controlled azimuthal anchoring in a vertically aligned liquid crystal cell with polymer wall,” J. Phys. D Appl. Phys. 41(5), 055401 (2008).
[CrossRef]

S. G. Kim, S. M. Kim, Y. S. Kim, H. K. Lee, S. H. Lee, G.-D. Lee, J.-J. Lyu, and K. H. Kim, “Stabilization of the liquid crystal director in the patterned vertical alignment mode through formation of pretilte angle by reactive mesogen,” Appl. Phys. Lett. 90(26), 261910 (2007).
[CrossRef]

Kobayashi, S.

T. Shimomura, H. Mada, and S. Kobayashi, “Angular Dependence of Voltage Controlled Color Formaion with a Twisted Nematic Liquid Crystal Cell,” Jpn. J. Appl. Phys. 15(9), 1815–1816 (1976).
[CrossRef]

Kondo, K.

M. Oh-e and K. Kondo, “Electro-optical characteristics and switching behavior of the in-plane switching mode,” Appl. Phys. Lett. 67(26), 3895–3897 (1995).
[CrossRef]

Lee, G.-D.

S. M. Kim, I. Y. Cho, W. I. Kim, K.-U. Jeong, S. H. Lee, G.-D. Lee, J. Son, J.-J. Lyu, and K. H. Kim, “Surface-Modification on Vertical Alignment Layer Using UV-Curable Reactive Mesogens,” Jpn. J. Appl. Phys. 48(3), 032405 (2009).
[CrossRef]

S. G. Kim, S. M. Kim, Y. S. Kim, H. K. Lee, S. H. Lee, G.-D. Lee, J.-J. Lyu, and K. H. Kim, “Stabilization of the liquid crystal director in the patterned vertical alignment mode through formation of pretilte angle by reactive mesogen,” Appl. Phys. Lett. 90(26), 261910 (2007).
[CrossRef]

B. S. Jung, I. S. Baik, I. S. Song, G.-D. Lee, and S. H. Lee, “Study on colour characteristics depending on orientation of liquid crystal in the in-plane switching mode,” Liq. Cryst. 33(9), 1077–1082 (2006).
[CrossRef]

Lee, H. K.

S. G. Kim, S. M. Kim, Y. S. Kim, H. K. Lee, S. H. Lee, J.-J. Lyu, K. H. Kim, R. Lu, and S.-T. Wu, “Trapping of defect point to improve response time via controlled azimuthal anchoring in a vertically aligned liquid crystal cell with polymer wall,” J. Phys. D Appl. Phys. 41(5), 055401 (2008).
[CrossRef]

S. G. Kim, S. M. Kim, Y. S. Kim, H. K. Lee, S. H. Lee, G.-D. Lee, J.-J. Lyu, and K. H. Kim, “Stabilization of the liquid crystal director in the patterned vertical alignment mode through formation of pretilte angle by reactive mesogen,” Appl. Phys. Lett. 90(26), 261910 (2007).
[CrossRef]

Lee, M.-H.

S. H. Jung, H. Y. Kim, M.-H. Lee, J. M. Rhee, and S. H. Lee, “Cell gap-dependent transmission characteristics of a fringe-electric field-driven homogeneously aligned liquid crystal cell, for a liquid crystal with negative dielectric anisotropy,” Liq. Cryst. 32(2), 267–275 (2005).
[CrossRef]

Lee, S. H.

M. Kim, M. S. Kim, B. G. Kang, M.-K. Kim, S. Yoon, S. H. Lee, Z. Ge, L. Rao, S. Gauza, and S.-T. Wu, “Wall-shaped electrodes for reducing the operation voltage of polymer-stabilized blue phase liquid crystal displays,” J. Phys. D Appl. Phys. 42(23), 235502 (2009).
[CrossRef]

S. M. Kim, I. Y. Cho, W. I. Kim, K.-U. Jeong, S. H. Lee, G.-D. Lee, J. Son, J.-J. Lyu, and K. H. Kim, “Surface-Modification on Vertical Alignment Layer Using UV-Curable Reactive Mesogens,” Jpn. J. Appl. Phys. 48(3), 032405 (2009).
[CrossRef]

S. G. Kim, S. M. Kim, Y. S. Kim, H. K. Lee, S. H. Lee, J.-J. Lyu, K. H. Kim, R. Lu, and S.-T. Wu, “Trapping of defect point to improve response time via controlled azimuthal anchoring in a vertically aligned liquid crystal cell with polymer wall,” J. Phys. D Appl. Phys. 41(5), 055401 (2008).
[CrossRef]

S. G. Kim, S. M. Kim, Y. S. Kim, H. K. Lee, S. H. Lee, G.-D. Lee, J.-J. Lyu, and K. H. Kim, “Stabilization of the liquid crystal director in the patterned vertical alignment mode through formation of pretilte angle by reactive mesogen,” Appl. Phys. Lett. 90(26), 261910 (2007).
[CrossRef]

B. S. Jung, I. S. Baik, I. S. Song, G.-D. Lee, and S. H. Lee, “Study on colour characteristics depending on orientation of liquid crystal in the in-plane switching mode,” Liq. Cryst. 33(9), 1077–1082 (2006).
[CrossRef]

M. S. Kim, Y. H. Jung, S. M. Seen, H. Y. Kim, S. Y. Kim, Y. J. Lim, and S. H. Lee, “A Novel Fringe Field Switching Mode with 3-partition Pixel Slit,” Jpn. J. Appl. Phys. 44(5A), 3121–3125 (2005).
[CrossRef]

S. H. Jung, H. Y. Kim, M.-H. Lee, J. M. Rhee, and S. H. Lee, “Cell gap-dependent transmission characteristics of a fringe-electric field-driven homogeneously aligned liquid crystal cell, for a liquid crystal with negative dielectric anisotropy,” Liq. Cryst. 32(2), 267–275 (2005).
[CrossRef]

S. H. Lee, S. L. Lee, and H. Y. Kim, “Electro-optic characteristics and switching principle of a nematic liquid crystal cell controlled by fringe-field switching,” Appl. Phys. Lett. 73(20), 2881–2883 (1998).
[CrossRef]

Lee, S. L.

S. H. Lee, S. L. Lee, and H. Y. Kim, “Electro-optic characteristics and switching principle of a nematic liquid crystal cell controlled by fringe-field switching,” Appl. Phys. Lett. 73(20), 2881–2883 (1998).
[CrossRef]

Lim, Y. J.

M. S. Kim, Y. H. Jung, S. M. Seen, H. Y. Kim, S. Y. Kim, Y. J. Lim, and S. H. Lee, “A Novel Fringe Field Switching Mode with 3-partition Pixel Slit,” Jpn. J. Appl. Phys. 44(5A), 3121–3125 (2005).
[CrossRef]

Lu, R.

S. G. Kim, S. M. Kim, Y. S. Kim, H. K. Lee, S. H. Lee, J.-J. Lyu, K. H. Kim, R. Lu, and S.-T. Wu, “Trapping of defect point to improve response time via controlled azimuthal anchoring in a vertically aligned liquid crystal cell with polymer wall,” J. Phys. D Appl. Phys. 41(5), 055401 (2008).
[CrossRef]

Lyu, J.-J.

S. M. Kim, I. Y. Cho, W. I. Kim, K.-U. Jeong, S. H. Lee, G.-D. Lee, J. Son, J.-J. Lyu, and K. H. Kim, “Surface-Modification on Vertical Alignment Layer Using UV-Curable Reactive Mesogens,” Jpn. J. Appl. Phys. 48(3), 032405 (2009).
[CrossRef]

S. G. Kim, S. M. Kim, Y. S. Kim, H. K. Lee, S. H. Lee, J.-J. Lyu, K. H. Kim, R. Lu, and S.-T. Wu, “Trapping of defect point to improve response time via controlled azimuthal anchoring in a vertically aligned liquid crystal cell with polymer wall,” J. Phys. D Appl. Phys. 41(5), 055401 (2008).
[CrossRef]

S. G. Kim, S. M. Kim, Y. S. Kim, H. K. Lee, S. H. Lee, G.-D. Lee, J.-J. Lyu, and K. H. Kim, “Stabilization of the liquid crystal director in the patterned vertical alignment mode through formation of pretilte angle by reactive mesogen,” Appl. Phys. Lett. 90(26), 261910 (2007).
[CrossRef]

Mada, H.

T. Shimomura, H. Mada, and S. Kobayashi, “Angular Dependence of Voltage Controlled Color Formaion with a Twisted Nematic Liquid Crystal Cell,” Jpn. J. Appl. Phys. 15(9), 1815–1816 (1976).
[CrossRef]

Nagamura, T.

Y. Hisakado, H. Kikuchi, T. Nagamura, and T. Kajiyama, “Large Electro-optic Kerr Effect in Polymer-Stabilized Liquid-Crystalline Blue Phases,” Adv. Mater. (Deerfield Beach Fla.) 17(1), 96–98 (2005).
[CrossRef]

Oh-e, M.

M. Oh-e and K. Kondo, “Electro-optical characteristics and switching behavior of the in-plane switching mode,” Appl. Phys. Lett. 67(26), 3895–3897 (1995).
[CrossRef]

Rao, L.

M. Kim, M. S. Kim, B. G. Kang, M.-K. Kim, S. Yoon, S. H. Lee, Z. Ge, L. Rao, S. Gauza, and S.-T. Wu, “Wall-shaped electrodes for reducing the operation voltage of polymer-stabilized blue phase liquid crystal displays,” J. Phys. D Appl. Phys. 42(23), 235502 (2009).
[CrossRef]

Rhee, J. M.

S. H. Jung, H. Y. Kim, M.-H. Lee, J. M. Rhee, and S. H. Lee, “Cell gap-dependent transmission characteristics of a fringe-electric field-driven homogeneously aligned liquid crystal cell, for a liquid crystal with negative dielectric anisotropy,” Liq. Cryst. 32(2), 267–275 (2005).
[CrossRef]

Seen, S. M.

M. S. Kim, Y. H. Jung, S. M. Seen, H. Y. Kim, S. Y. Kim, Y. J. Lim, and S. H. Lee, “A Novel Fringe Field Switching Mode with 3-partition Pixel Slit,” Jpn. J. Appl. Phys. 44(5A), 3121–3125 (2005).
[CrossRef]

Seo, C.-R.

H.-K. Hong and C.-R. Seo, “Dependency of Liquid Crystal of In-Plane Switching Mode on Rubbing Angle,” Jpn. J. Appl. Phys. 43(11A), 7639–7642 (2004).
[CrossRef]

Shimomura, T.

T. Shimomura, H. Mada, and S. Kobayashi, “Angular Dependence of Voltage Controlled Color Formaion with a Twisted Nematic Liquid Crystal Cell,” Jpn. J. Appl. Phys. 15(9), 1815–1816 (1976).
[CrossRef]

Son, J.

S. M. Kim, I. Y. Cho, W. I. Kim, K.-U. Jeong, S. H. Lee, G.-D. Lee, J. Son, J.-J. Lyu, and K. H. Kim, “Surface-Modification on Vertical Alignment Layer Using UV-Curable Reactive Mesogens,” Jpn. J. Appl. Phys. 48(3), 032405 (2009).
[CrossRef]

Song, I. S.

B. S. Jung, I. S. Baik, I. S. Song, G.-D. Lee, and S. H. Lee, “Study on colour characteristics depending on orientation of liquid crystal in the in-plane switching mode,” Liq. Cryst. 33(9), 1077–1082 (2006).
[CrossRef]

Wu, S.-T.

M. Kim, M. S. Kim, B. G. Kang, M.-K. Kim, S. Yoon, S. H. Lee, Z. Ge, L. Rao, S. Gauza, and S.-T. Wu, “Wall-shaped electrodes for reducing the operation voltage of polymer-stabilized blue phase liquid crystal displays,” J. Phys. D Appl. Phys. 42(23), 235502 (2009).
[CrossRef]

S. G. Kim, S. M. Kim, Y. S. Kim, H. K. Lee, S. H. Lee, J.-J. Lyu, K. H. Kim, R. Lu, and S.-T. Wu, “Trapping of defect point to improve response time via controlled azimuthal anchoring in a vertically aligned liquid crystal cell with polymer wall,” J. Phys. D Appl. Phys. 41(5), 055401 (2008).
[CrossRef]

S.-T. Wu, U. Efron, and L. D. Hess, “Optical rotator power of 90° twisted nematic liquid crystals,” Appl. Phys. Lett. 44(9), 842–844 (1984).
[CrossRef]

Yamamoto, S.-I.

S.-W. Choi, S.-I. Yamamoto, Y. Haseba, H. Higuchi, and H. Kikuchi, “Optically isotropic-nanostructured liquid crystal composite with high Kerr constant,” Appl. Phys. Lett. 92(4), 043119 (2008).
[CrossRef]

Yoon, S.

M. Kim, M. S. Kim, B. G. Kang, M.-K. Kim, S. Yoon, S. H. Lee, Z. Ge, L. Rao, S. Gauza, and S.-T. Wu, “Wall-shaped electrodes for reducing the operation voltage of polymer-stabilized blue phase liquid crystal displays,” J. Phys. D Appl. Phys. 42(23), 235502 (2009).
[CrossRef]

Adv. Mater. (Deerfield Beach Fla.)

Y. Hisakado, H. Kikuchi, T. Nagamura, and T. Kajiyama, “Large Electro-optic Kerr Effect in Polymer-Stabilized Liquid-Crystalline Blue Phases,” Adv. Mater. (Deerfield Beach Fla.) 17(1), 96–98 (2005).
[CrossRef]

Appl. Phys. Lett.

S.-W. Choi, S.-I. Yamamoto, Y. Haseba, H. Higuchi, and H. Kikuchi, “Optically isotropic-nanostructured liquid crystal composite with high Kerr constant,” Appl. Phys. Lett. 92(4), 043119 (2008).
[CrossRef]

S. G. Kim, S. M. Kim, Y. S. Kim, H. K. Lee, S. H. Lee, G.-D. Lee, J.-J. Lyu, and K. H. Kim, “Stabilization of the liquid crystal director in the patterned vertical alignment mode through formation of pretilte angle by reactive mesogen,” Appl. Phys. Lett. 90(26), 261910 (2007).
[CrossRef]

S.-T. Wu, U. Efron, and L. D. Hess, “Optical rotator power of 90° twisted nematic liquid crystals,” Appl. Phys. Lett. 44(9), 842–844 (1984).
[CrossRef]

M. Oh-e and K. Kondo, “Electro-optical characteristics and switching behavior of the in-plane switching mode,” Appl. Phys. Lett. 67(26), 3895–3897 (1995).
[CrossRef]

S. H. Lee, S. L. Lee, and H. Y. Kim, “Electro-optic characteristics and switching principle of a nematic liquid crystal cell controlled by fringe-field switching,” Appl. Phys. Lett. 73(20), 2881–2883 (1998).
[CrossRef]

J. Phys. D Appl. Phys.

S. G. Kim, S. M. Kim, Y. S. Kim, H. K. Lee, S. H. Lee, J.-J. Lyu, K. H. Kim, R. Lu, and S.-T. Wu, “Trapping of defect point to improve response time via controlled azimuthal anchoring in a vertically aligned liquid crystal cell with polymer wall,” J. Phys. D Appl. Phys. 41(5), 055401 (2008).
[CrossRef]

M. Kim, M. S. Kim, B. G. Kang, M.-K. Kim, S. Yoon, S. H. Lee, Z. Ge, L. Rao, S. Gauza, and S.-T. Wu, “Wall-shaped electrodes for reducing the operation voltage of polymer-stabilized blue phase liquid crystal displays,” J. Phys. D Appl. Phys. 42(23), 235502 (2009).
[CrossRef]

Jpn. J. Appl. Phys.

S. M. Kim, I. Y. Cho, W. I. Kim, K.-U. Jeong, S. H. Lee, G.-D. Lee, J. Son, J.-J. Lyu, and K. H. Kim, “Surface-Modification on Vertical Alignment Layer Using UV-Curable Reactive Mesogens,” Jpn. J. Appl. Phys. 48(3), 032405 (2009).
[CrossRef]

M. S. Kim, Y. H. Jung, S. M. Seen, H. Y. Kim, S. Y. Kim, Y. J. Lim, and S. H. Lee, “A Novel Fringe Field Switching Mode with 3-partition Pixel Slit,” Jpn. J. Appl. Phys. 44(5A), 3121–3125 (2005).
[CrossRef]

H.-K. Hong and C.-R. Seo, “Dependency of Liquid Crystal of In-Plane Switching Mode on Rubbing Angle,” Jpn. J. Appl. Phys. 43(11A), 7639–7642 (2004).
[CrossRef]

T. Shimomura, H. Mada, and S. Kobayashi, “Angular Dependence of Voltage Controlled Color Formaion with a Twisted Nematic Liquid Crystal Cell,” Jpn. J. Appl. Phys. 15(9), 1815–1816 (1976).
[CrossRef]

Liq. Cryst.

B. S. Jung, I. S. Baik, I. S. Song, G.-D. Lee, and S. H. Lee, “Study on colour characteristics depending on orientation of liquid crystal in the in-plane switching mode,” Liq. Cryst. 33(9), 1077–1082 (2006).
[CrossRef]

S. H. Jung, H. Y. Kim, M.-H. Lee, J. M. Rhee, and S. H. Lee, “Cell gap-dependent transmission characteristics of a fringe-electric field-driven homogeneously aligned liquid crystal cell, for a liquid crystal with negative dielectric anisotropy,” Liq. Cryst. 32(2), 267–275 (2005).
[CrossRef]

Other

K. Hanaoka, Y. Nakanishi, Y. Inoue, S. Tanuma, Y. Koike, and K. Okamoto, “ A New MVA-LCD by Polymer Sustained Alignment Technology” Proc. of Soc. Info. Display Symp. Digest 35, 1200–2003 (2004).

S. Suwa, T. Isozaki, Y. Inoue, M. Nakamura, M. Miyakawa, and T. Urabe, “Novel Field-induced Pre-tilt Alignment Technique Using a Photo-reactive Alignment Layer for VA LCD” Proc. of Soc. Info. Display Symp. Digest 41, 595–598 (2010).

K. Miyachi and K. Kobayashi, Y. Yamada, and S. Mizushima, “The World’s First Photo Alignment LCD Technology Applied to Generation Ten Factory,” Proc. of Soc. Info. Display Symp. Digest 41, 579–582 (2010).

T. Ishinabe, T. Miyashita, and T. Uchida, “Novel Wide Viewing Angle Polarizer with High Achromaticity” Proc. of Soc. Info. Display Symp. Digest 31, 1094–1097 (2000).

S. Yano, T. Ishinabe, T. Miyashita, T. Uchida, and Y. Fujimura, “ Wide Viewing Angle Polarizer using Biaxial Film” Proc. of the 7th International Display Workshop (Society for Information Display, Kobe, Japan), 419–422 (2000).

W. L. Hai, “Poloarizer for LCD Application” Proc. of the 12th International Display Workshop/ Asia Display (Society for Information Display, Takamatsu, Japan), 1313–1316 (2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Optical configuration of polarizer using the TAC or PET films (a) and calculated color contour with brightness of polarizer using the TAC (b) and PET (c) films, respectively.

Fig. 2
Fig. 2

Comparisons of the photographs of PVA LC cell applying the TAC film and PET film (a) in the normal direction, (b) in the oblique direction. (a) and (b) in the figure show the visible part in the LC cell for the TAC film and the PET film, respectively

Fig. 3
Fig. 3

Optical configuration (a) and calculated contour with brightness (b) of the low-cost polarizer in BLU without DBEF

Fig. 4
Fig. 4

Degree of polarization according to an incident angle

Fig. 5
Fig. 5

POM microphotographs depending on rotation of the cured RM film between two crossed polarizers: 0° (a), 45° (b), and 90° (c).

Fig. 6
Fig. 6

Comparison of the optical transmittance of the light in accordance with angle of rotation of quarter-wave retarder (triangle) and the polymerized RM layer (circle) between two crossed polarizer.

Fig. 7
Fig. 7

Optical configuration (a) and color contour with brightness (b) of the low-cost polarizer using RM in BLU with DBEF

Tables (1)

Tables Icon

Table 1 Optical property for each optical component in polarizer

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

R 0 = ( n x n y ) × d
R t h = { n x + n y 2 n z } × d
N Z = n x n z n x n y = R t h R 0 + 1 2
P y ( % ) = T TD T MD T TD + T MD × 100
T t e = 1 n i cos θ i n 2 1 ( n i n 2 Sin θ i ) 2 n i cos θ i + n 2 1 ( n i n 2 Sin θ i ) 2 , T t m = 1 n i 1 ( n i n 2 Sin θ i ) 2 n 2 cos θ i n i 1 ( n i n 2 Sin θ i ) 2 + n 2 cos θ i
D O P = S 1 2 + S 2 2 + S 3 2 S 0 × 100

Metrics