Abstract

An all-optical scheme for ultra-wideband (UWB) signal generation (positive and negative monocycle and doublet pulses) and multicasting using a nonlinear optical loop mirror (NOLM) is proposed and demonstrated. Five UWB signals (1 monocycle and 4 doublet pulses) are generated simultaneously from a single Gaussian optical pulse. The fractional bandwidths of the monocycle pulses are approximately 100% while those of the doublet pulses range from 100% to 133%. The UWB signals are then modulated using a 215 - 1 pseudorandom bit sequence (PRBS) and error-free performance for each multicast channel is obtained.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Porcino and W. Hirt, “Ultra-wideband radio technology: Potential and challenges ahead,” IEEE Commun. Mag. 41(7), 66–74 (2003).
    [CrossRef]
  2. Fed. Commun. Commission, Revision of Part 15 of the Commission’s Rules Regarding Ultra-Wideband Transmission Systems, Tech. Rep. ET-Dockett 98–153, FCC02–48, Apr. (2002).
  3. J. Yao, F. Zeng, and Q. Wang, “Photonic generation of ultrawideband signals,” IEEE/OSA J Lightw. Technol. 25(11), 3219–3235 (2007).
    [CrossRef]
  4. C.-B. Huang, Z. Jiang, D. E. Leaird, J. Caraquitena, and A. M. Weiner, “Spectral line-by-line shaping for optical and microwave arbitrary waveform generation,” Lasers Photon. Rev. 2(4), 227–248 (2008).
    [CrossRef]
  5. S. Pan and J. P. Yao, “UWB-over-fiber communication: modulation and transmission,” J. Lightw. Technol. 28(16), 2445–2455 (2010).
    [CrossRef]
  6. J. R. Foerster, “The performance of a direct-sequence spread spectrum ultra-wideband system in the presence of multipath, narrowband interference and multiuser interference,” IEEE Conf. UWB Sys and Tech (2002), 87–91.
  7. S. T. Abraham, N. C. Tran, C. M. Okonkwo, H. S. Chen, E. Tangdiongga, and A. M. J. Koonen, “Service multicasting by all-optical routing of 1 Gb/s IR-UWB for in-building networks,” in Conf. on Opt. Fiber Commun. (OFC’2011), paper JWA68.
  8. F. Wang, J. Dong, E. Xu, and X. Zhang, “All-optical UWB generation and modulation using SOA-XPM effect and DWDM-based multi-channel frequency discrimination,” Opt. Express 18(24), 24588–24594 (2010).
    [CrossRef] [PubMed]
  9. F. Zhang, J. Wu, S. Fu, K. Xu, Y. Li, X. Hong, P. Shum, and J. Lin, “Simultaneous multi-channel CMW-band and MMW-band UWB monocycle pulse generation using FWM effect in a highly nonlinear photonic crystal fiber,” Opt. Express 18(15), 15870–15875 (2010).
    [CrossRef] [PubMed]
  10. T. Huang, J. Li, J. Sun, and L. R. Chen, “Photonic generation of UWB pulses using a nonlinear optical loop mirror and its distribution over fiber link,” IEEE Photon. Technol. Lett. in press.
  11. A. Bogoni, M. Scaffardi, P. Ghelfi, and L. Poti, “Nonlinear optical loop mirrors: investigation solution and experimental validation for undesirable counterpropagating effects in all-optical signal processing,” IEEE J. Sel. Top. Quantum Electron. 10(5), 1115–1123 (2004).
    [CrossRef]
  12. J. Yu, X. Zheng, F. Liu, C. Peucheret, A. T. Clausen, H. N. Poulsen, and P. Jeppesen, “8×40 Gb/s 55-km WDM transmission over conventional fiber using a new RZ optical source,” IEEE Photon. Technol. Lett. 12(7), 912–914 (2000).
    [CrossRef]

2010

2008

C.-B. Huang, Z. Jiang, D. E. Leaird, J. Caraquitena, and A. M. Weiner, “Spectral line-by-line shaping for optical and microwave arbitrary waveform generation,” Lasers Photon. Rev. 2(4), 227–248 (2008).
[CrossRef]

2007

J. Yao, F. Zeng, and Q. Wang, “Photonic generation of ultrawideband signals,” IEEE/OSA J Lightw. Technol. 25(11), 3219–3235 (2007).
[CrossRef]

2004

A. Bogoni, M. Scaffardi, P. Ghelfi, and L. Poti, “Nonlinear optical loop mirrors: investigation solution and experimental validation for undesirable counterpropagating effects in all-optical signal processing,” IEEE J. Sel. Top. Quantum Electron. 10(5), 1115–1123 (2004).
[CrossRef]

2003

D. Porcino and W. Hirt, “Ultra-wideband radio technology: Potential and challenges ahead,” IEEE Commun. Mag. 41(7), 66–74 (2003).
[CrossRef]

2000

J. Yu, X. Zheng, F. Liu, C. Peucheret, A. T. Clausen, H. N. Poulsen, and P. Jeppesen, “8×40 Gb/s 55-km WDM transmission over conventional fiber using a new RZ optical source,” IEEE Photon. Technol. Lett. 12(7), 912–914 (2000).
[CrossRef]

Bogoni, A.

A. Bogoni, M. Scaffardi, P. Ghelfi, and L. Poti, “Nonlinear optical loop mirrors: investigation solution and experimental validation for undesirable counterpropagating effects in all-optical signal processing,” IEEE J. Sel. Top. Quantum Electron. 10(5), 1115–1123 (2004).
[CrossRef]

Caraquitena, J.

C.-B. Huang, Z. Jiang, D. E. Leaird, J. Caraquitena, and A. M. Weiner, “Spectral line-by-line shaping for optical and microwave arbitrary waveform generation,” Lasers Photon. Rev. 2(4), 227–248 (2008).
[CrossRef]

Chen, L. R.

T. Huang, J. Li, J. Sun, and L. R. Chen, “Photonic generation of UWB pulses using a nonlinear optical loop mirror and its distribution over fiber link,” IEEE Photon. Technol. Lett. in press.

Clausen, A. T.

J. Yu, X. Zheng, F. Liu, C. Peucheret, A. T. Clausen, H. N. Poulsen, and P. Jeppesen, “8×40 Gb/s 55-km WDM transmission over conventional fiber using a new RZ optical source,” IEEE Photon. Technol. Lett. 12(7), 912–914 (2000).
[CrossRef]

Dong, J.

Fu, S.

Ghelfi, P.

A. Bogoni, M. Scaffardi, P. Ghelfi, and L. Poti, “Nonlinear optical loop mirrors: investigation solution and experimental validation for undesirable counterpropagating effects in all-optical signal processing,” IEEE J. Sel. Top. Quantum Electron. 10(5), 1115–1123 (2004).
[CrossRef]

Hirt, W.

D. Porcino and W. Hirt, “Ultra-wideband radio technology: Potential and challenges ahead,” IEEE Commun. Mag. 41(7), 66–74 (2003).
[CrossRef]

Hong, X.

Huang, C.-B.

C.-B. Huang, Z. Jiang, D. E. Leaird, J. Caraquitena, and A. M. Weiner, “Spectral line-by-line shaping for optical and microwave arbitrary waveform generation,” Lasers Photon. Rev. 2(4), 227–248 (2008).
[CrossRef]

Huang, T.

T. Huang, J. Li, J. Sun, and L. R. Chen, “Photonic generation of UWB pulses using a nonlinear optical loop mirror and its distribution over fiber link,” IEEE Photon. Technol. Lett. in press.

Jeppesen, P.

J. Yu, X. Zheng, F. Liu, C. Peucheret, A. T. Clausen, H. N. Poulsen, and P. Jeppesen, “8×40 Gb/s 55-km WDM transmission over conventional fiber using a new RZ optical source,” IEEE Photon. Technol. Lett. 12(7), 912–914 (2000).
[CrossRef]

Jiang, Z.

C.-B. Huang, Z. Jiang, D. E. Leaird, J. Caraquitena, and A. M. Weiner, “Spectral line-by-line shaping for optical and microwave arbitrary waveform generation,” Lasers Photon. Rev. 2(4), 227–248 (2008).
[CrossRef]

Leaird, D. E.

C.-B. Huang, Z. Jiang, D. E. Leaird, J. Caraquitena, and A. M. Weiner, “Spectral line-by-line shaping for optical and microwave arbitrary waveform generation,” Lasers Photon. Rev. 2(4), 227–248 (2008).
[CrossRef]

Li, J.

T. Huang, J. Li, J. Sun, and L. R. Chen, “Photonic generation of UWB pulses using a nonlinear optical loop mirror and its distribution over fiber link,” IEEE Photon. Technol. Lett. in press.

Li, Y.

Lin, J.

Liu, F.

J. Yu, X. Zheng, F. Liu, C. Peucheret, A. T. Clausen, H. N. Poulsen, and P. Jeppesen, “8×40 Gb/s 55-km WDM transmission over conventional fiber using a new RZ optical source,” IEEE Photon. Technol. Lett. 12(7), 912–914 (2000).
[CrossRef]

Pan, S.

S. Pan and J. P. Yao, “UWB-over-fiber communication: modulation and transmission,” J. Lightw. Technol. 28(16), 2445–2455 (2010).
[CrossRef]

Peucheret, C.

J. Yu, X. Zheng, F. Liu, C. Peucheret, A. T. Clausen, H. N. Poulsen, and P. Jeppesen, “8×40 Gb/s 55-km WDM transmission over conventional fiber using a new RZ optical source,” IEEE Photon. Technol. Lett. 12(7), 912–914 (2000).
[CrossRef]

Porcino, D.

D. Porcino and W. Hirt, “Ultra-wideband radio technology: Potential and challenges ahead,” IEEE Commun. Mag. 41(7), 66–74 (2003).
[CrossRef]

Poti, L.

A. Bogoni, M. Scaffardi, P. Ghelfi, and L. Poti, “Nonlinear optical loop mirrors: investigation solution and experimental validation for undesirable counterpropagating effects in all-optical signal processing,” IEEE J. Sel. Top. Quantum Electron. 10(5), 1115–1123 (2004).
[CrossRef]

Poulsen, H. N.

J. Yu, X. Zheng, F. Liu, C. Peucheret, A. T. Clausen, H. N. Poulsen, and P. Jeppesen, “8×40 Gb/s 55-km WDM transmission over conventional fiber using a new RZ optical source,” IEEE Photon. Technol. Lett. 12(7), 912–914 (2000).
[CrossRef]

Scaffardi, M.

A. Bogoni, M. Scaffardi, P. Ghelfi, and L. Poti, “Nonlinear optical loop mirrors: investigation solution and experimental validation for undesirable counterpropagating effects in all-optical signal processing,” IEEE J. Sel. Top. Quantum Electron. 10(5), 1115–1123 (2004).
[CrossRef]

Shum, P.

Sun, J.

T. Huang, J. Li, J. Sun, and L. R. Chen, “Photonic generation of UWB pulses using a nonlinear optical loop mirror and its distribution over fiber link,” IEEE Photon. Technol. Lett. in press.

Wang, F.

Wang, Q.

J. Yao, F. Zeng, and Q. Wang, “Photonic generation of ultrawideband signals,” IEEE/OSA J Lightw. Technol. 25(11), 3219–3235 (2007).
[CrossRef]

Weiner, A. M.

C.-B. Huang, Z. Jiang, D. E. Leaird, J. Caraquitena, and A. M. Weiner, “Spectral line-by-line shaping for optical and microwave arbitrary waveform generation,” Lasers Photon. Rev. 2(4), 227–248 (2008).
[CrossRef]

Wu, J.

Xu, E.

Xu, K.

Yao, J.

J. Yao, F. Zeng, and Q. Wang, “Photonic generation of ultrawideband signals,” IEEE/OSA J Lightw. Technol. 25(11), 3219–3235 (2007).
[CrossRef]

Yao, J. P.

S. Pan and J. P. Yao, “UWB-over-fiber communication: modulation and transmission,” J. Lightw. Technol. 28(16), 2445–2455 (2010).
[CrossRef]

Yu, J.

J. Yu, X. Zheng, F. Liu, C. Peucheret, A. T. Clausen, H. N. Poulsen, and P. Jeppesen, “8×40 Gb/s 55-km WDM transmission over conventional fiber using a new RZ optical source,” IEEE Photon. Technol. Lett. 12(7), 912–914 (2000).
[CrossRef]

Zeng, F.

J. Yao, F. Zeng, and Q. Wang, “Photonic generation of ultrawideband signals,” IEEE/OSA J Lightw. Technol. 25(11), 3219–3235 (2007).
[CrossRef]

Zhang, F.

Zhang, X.

Zheng, X.

J. Yu, X. Zheng, F. Liu, C. Peucheret, A. T. Clausen, H. N. Poulsen, and P. Jeppesen, “8×40 Gb/s 55-km WDM transmission over conventional fiber using a new RZ optical source,” IEEE Photon. Technol. Lett. 12(7), 912–914 (2000).
[CrossRef]

IEEE Commun. Mag.

D. Porcino and W. Hirt, “Ultra-wideband radio technology: Potential and challenges ahead,” IEEE Commun. Mag. 41(7), 66–74 (2003).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

A. Bogoni, M. Scaffardi, P. Ghelfi, and L. Poti, “Nonlinear optical loop mirrors: investigation solution and experimental validation for undesirable counterpropagating effects in all-optical signal processing,” IEEE J. Sel. Top. Quantum Electron. 10(5), 1115–1123 (2004).
[CrossRef]

IEEE Photon. Technol. Lett.

J. Yu, X. Zheng, F. Liu, C. Peucheret, A. T. Clausen, H. N. Poulsen, and P. Jeppesen, “8×40 Gb/s 55-km WDM transmission over conventional fiber using a new RZ optical source,” IEEE Photon. Technol. Lett. 12(7), 912–914 (2000).
[CrossRef]

T. Huang, J. Li, J. Sun, and L. R. Chen, “Photonic generation of UWB pulses using a nonlinear optical loop mirror and its distribution over fiber link,” IEEE Photon. Technol. Lett. in press.

IEEE/OSA J Lightw. Technol.

J. Yao, F. Zeng, and Q. Wang, “Photonic generation of ultrawideband signals,” IEEE/OSA J Lightw. Technol. 25(11), 3219–3235 (2007).
[CrossRef]

J. Lightw. Technol.

S. Pan and J. P. Yao, “UWB-over-fiber communication: modulation and transmission,” J. Lightw. Technol. 28(16), 2445–2455 (2010).
[CrossRef]

Lasers Photon. Rev.

C.-B. Huang, Z. Jiang, D. E. Leaird, J. Caraquitena, and A. M. Weiner, “Spectral line-by-line shaping for optical and microwave arbitrary waveform generation,” Lasers Photon. Rev. 2(4), 227–248 (2008).
[CrossRef]

Opt. Express

Other

J. R. Foerster, “The performance of a direct-sequence spread spectrum ultra-wideband system in the presence of multipath, narrowband interference and multiuser interference,” IEEE Conf. UWB Sys and Tech (2002), 87–91.

S. T. Abraham, N. C. Tran, C. M. Okonkwo, H. S. Chen, E. Tangdiongga, and A. M. J. Koonen, “Service multicasting by all-optical routing of 1 Gb/s IR-UWB for in-building networks,” in Conf. on Opt. Fiber Commun. (OFC’2011), paper JWA68.

Fed. Commun. Commission, Revision of Part 15 of the Commission’s Rules Regarding Ultra-Wideband Transmission Systems, Tech. Rep. ET-Dockett 98–153, FCC02–48, Apr. (2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Schematic of a nonlinear optical fiber loop mirror. (b) Simulation of the NOLM transfer function for different values of φ.

Fig. 2
Fig. 2

Conventional transfer curve and modified transfer curve of NOLM.

Fig. 3
Fig. 3

(a) Schematic diagram of the experimental setup. (b) Optical spectrum measured at the output of the NOLM.

Fig. 4
Fig. 4

Waveforms and corresponding electrical spectra (resolution bandwidth = 300 kHz) of each channel. (a) 1536.61 nm, (b) 1537.41 nm, (c) 1538.16 nm, (d) 1538.97 nm, and (e) 1553.85 nm or 1554.06 nm.

Fig. 5
Fig. 5

Measured eye diagram and corresponding electrical spectra (resolution bandwidth = 300 kHz) of each channel. (a) 1536.61 nm, (b) 1537.41 nm, (c) 1538.16 nm, (d) 1538.97 nm, and (e) 1554.06 nm.

Fig. 6
Fig. 6

Measured BER of each multicast channel (doublet pulses and monocycle pulses).

Metrics