Abstract

We demonstrate highly efficient pulse stretching in Er3+-doped femtosecond mode-locked fiber lasers by tailoring cavity dispersion using an intracavity short-pass edge filter. The cavity dispersion is preset at around zero to obtain the shortest pulsewidth. When the cutoff wavelength of the short-pass edge filter is thermo-optically tuned to overlap the constituting spectral components of mode-locked pulses, large negative waveguide dispersion is introduced by the steep cutoff slope and the total cavity dispersion is moved to normal dispersion regime to broaden the pulsewidth. The time-bandwidth product of the mode-locked pulse increases with the decreasing temperature at the optical liquid surrounding the short-pass edge filter. Pulse stretch ratio of 3.53 (623.8fs/176.8fs) can be efficiently achieved under a temperature variation of 4°C.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Nishizawa, Y. Chen, P. Hsiung, E. P. Ippen, and J. G. Fujimoto, “Real-time, ultrahigh-resolution, optical coherence tomography with an all-fiber, femtosecond fiber laser continuum at 1.5 microm,” Opt. Lett. 29(24), 2846–2848 (2004).
    [CrossRef] [PubMed]
  2. D. I. Yeom, E. C. Mägi, M. R. E. Lamont, M. A. F. Roelens, L. Fu, and B. J. Eggleton, “Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires,” Opt. Lett. 33(7), 660–662 (2008).
    [CrossRef] [PubMed]
  3. Y. Zhao, Y. Liang, N. Zhang, M. Wang, and X. Zhu, “Pulse width effect in ultrafast laser ionization imaging,” Opt. Lett. 33(21), 2467–2469 (2008).
    [CrossRef] [PubMed]
  4. F. Röser, T. Eidam, J. Rothhardt, O. Schmidt, D. N. Schimpf, J. Limpert, and A. Tünnermann, “Millijoule pulse energy high repetition rate femtosecond fiber chirped-pulse amplification system,” Opt. Lett. 32(24), 3495–3497 (2007).
    [CrossRef] [PubMed]
  5. A. Chong, W. H. Renninger, and F. W. Wise, “Properties of normal-dispersion femtosecond fiber lasers,” J. Opt. Soc. Am. B 25(2), 140–148 (2008).
    [CrossRef]
  6. V. P. Kalosha, L. Chen, and X. Bao, “Ultra-short pulse operation of all-optical fiber passively mode-locked ytterbium laser,” Opt. Express 14(11), 4935–4945 (2006).
    [CrossRef] [PubMed]
  7. M. E. Fermann, K. Sugden, and I. Bennion, “High-power soliton fiber laser based on pulse width control with chirped fiber Bragg gratings,” Opt. Lett. 20(2), 172–174 (1995).
    [CrossRef] [PubMed]
  8. F. Haxsen, D. Wandt, U. Morgner, J. Neumann, and D. Kracht, “Pulse characteristics of a passively mode-locked thulium fiber laser with positive and negative cavity dispersion,” Opt. Express 18(18), 18981–18988 (2010).
    [CrossRef] [PubMed]
  9. H. A. Haus, J. G. Fujimoto, and E. P. Ippen, “Structures for additive pulse mode locking,” J. Opt. Soc. Am. B 8(10), 2068–2076 (1991).
    [CrossRef]
  10. N. K. Chen, C. M. Hung, S. Chi, and Y. Lai, “Towards the short-wavelength limit lasing at 1450 nm over 4I13/2→4I15/2 transition in silica-based erbium-doped fiber,” Opt. Express 15(25), 16448–16456 (2007).
    [CrossRef] [PubMed]
  11. N. K. Chen, K. C. Hsu, S. K. Liaw, Y. Lai, and S. Chi, “Influence of depressed-index outer ring on evanescent tunneling loss in tapered double-cladding fibers,” Opt. Lett. 33(15), 1666–1668 (2008).
    [CrossRef] [PubMed]
  12. A. M. Vengsarkar and W. A. Reed, “Dispersion-compensating single-mode fibers: efficient designs for first- and second-order compensation,” Opt. Lett. 18(11), 924–926 (1993).
    [CrossRef] [PubMed]
  13. C. D. Poole, J. M. Weisenfeld, D. J. DiGiovanni, and A. M. Vengsarkar, “Optical fiber-based dispersion compensation using higher order modes near cutoff,” J. Lightwave Technol. 12(10), 1746–1758 (1994).
    [CrossRef]
  14. R. Zhang, J. Teipel, X. Zhang, D. Nau, and H. Giessen, “Group velocity dispersion of tapered fibers immersed in different liquids,” Opt. Express 12(8), 1700–1707 (2004).
    [CrossRef] [PubMed]
  15. M. Rusu, R. Herda, S. Kivistö, and O. G. Okhotnikov, “Fiber taper for dispersion management in a mode-locked ytterbium fiber laser,” Opt. Lett. 31(15), 2257–2259 (2006).
    [CrossRef] [PubMed]
  16. E. Ding, S. Lefrancois, J. N. Kutz, and F. W. Wise, “Scaling fiber lasers to large mode area: an investigation of passive mode-locking using a multi-mode fiber,” IEEE Photon. Technol. Lett. 47(5), 597–606 (2011).
    [CrossRef] [PubMed]
  17. N. K. Chen, S. Chi, and S. M. Tseng, “Wideband tunable fiber short-pass filter based on side-polished fiber with dispersive polymer overlay,” Opt. Lett. 29(19), 2219–2221 (2004).
    [CrossRef] [PubMed]
  18. H. P. Chuang and C. B. Huang, “Generation and delivery of 1-ps optical pulses with ultrahigh repetition-rates over 25-km single mode fiber by a spectral line-by-line pulse shaper,” Opt. Express 18(23), 24003–24011 (2010).
    [CrossRef] [PubMed]
  19. Y. F. Chen, S. W. Tsai, S. C. Wang, and J. Chen, “A diode-pumped high power Q-switched and self-mode-locked Nd:YVO4 laser with a LiF:F2−saturable absorber,” Appl. Phys. B 73, 115–118 (2001).
    [CrossRef]

2011 (1)

E. Ding, S. Lefrancois, J. N. Kutz, and F. W. Wise, “Scaling fiber lasers to large mode area: an investigation of passive mode-locking using a multi-mode fiber,” IEEE Photon. Technol. Lett. 47(5), 597–606 (2011).
[CrossRef] [PubMed]

2010 (2)

2008 (4)

2007 (2)

2006 (2)

2004 (3)

2001 (1)

Y. F. Chen, S. W. Tsai, S. C. Wang, and J. Chen, “A diode-pumped high power Q-switched and self-mode-locked Nd:YVO4 laser with a LiF:F2−saturable absorber,” Appl. Phys. B 73, 115–118 (2001).
[CrossRef]

1995 (1)

1994 (1)

C. D. Poole, J. M. Weisenfeld, D. J. DiGiovanni, and A. M. Vengsarkar, “Optical fiber-based dispersion compensation using higher order modes near cutoff,” J. Lightwave Technol. 12(10), 1746–1758 (1994).
[CrossRef]

1993 (1)

1991 (1)

Bao, X.

Bennion, I.

Chen, J.

Y. F. Chen, S. W. Tsai, S. C. Wang, and J. Chen, “A diode-pumped high power Q-switched and self-mode-locked Nd:YVO4 laser with a LiF:F2−saturable absorber,” Appl. Phys. B 73, 115–118 (2001).
[CrossRef]

Chen, L.

Chen, N. K.

Chen, Y.

Chen, Y. F.

Y. F. Chen, S. W. Tsai, S. C. Wang, and J. Chen, “A diode-pumped high power Q-switched and self-mode-locked Nd:YVO4 laser with a LiF:F2−saturable absorber,” Appl. Phys. B 73, 115–118 (2001).
[CrossRef]

Chi, S.

Chong, A.

Chuang, H. P.

DiGiovanni, D. J.

C. D. Poole, J. M. Weisenfeld, D. J. DiGiovanni, and A. M. Vengsarkar, “Optical fiber-based dispersion compensation using higher order modes near cutoff,” J. Lightwave Technol. 12(10), 1746–1758 (1994).
[CrossRef]

Ding, E.

E. Ding, S. Lefrancois, J. N. Kutz, and F. W. Wise, “Scaling fiber lasers to large mode area: an investigation of passive mode-locking using a multi-mode fiber,” IEEE Photon. Technol. Lett. 47(5), 597–606 (2011).
[CrossRef] [PubMed]

Eggleton, B. J.

Eidam, T.

Fermann, M. E.

Fu, L.

Fujimoto, J. G.

Giessen, H.

Haus, H. A.

Haxsen, F.

Herda, R.

Hsiung, P.

Hsu, K. C.

Huang, C. B.

Hung, C. M.

Ippen, E. P.

Kalosha, V. P.

Kivistö, S.

Kracht, D.

Kutz, J. N.

E. Ding, S. Lefrancois, J. N. Kutz, and F. W. Wise, “Scaling fiber lasers to large mode area: an investigation of passive mode-locking using a multi-mode fiber,” IEEE Photon. Technol. Lett. 47(5), 597–606 (2011).
[CrossRef] [PubMed]

Lai, Y.

Lamont, M. R. E.

Lefrancois, S.

E. Ding, S. Lefrancois, J. N. Kutz, and F. W. Wise, “Scaling fiber lasers to large mode area: an investigation of passive mode-locking using a multi-mode fiber,” IEEE Photon. Technol. Lett. 47(5), 597–606 (2011).
[CrossRef] [PubMed]

Liang, Y.

Liaw, S. K.

Limpert, J.

Mägi, E. C.

Morgner, U.

Nau, D.

Neumann, J.

Nishizawa, N.

Okhotnikov, O. G.

Poole, C. D.

C. D. Poole, J. M. Weisenfeld, D. J. DiGiovanni, and A. M. Vengsarkar, “Optical fiber-based dispersion compensation using higher order modes near cutoff,” J. Lightwave Technol. 12(10), 1746–1758 (1994).
[CrossRef]

Reed, W. A.

Renninger, W. H.

Roelens, M. A. F.

Röser, F.

Rothhardt, J.

Rusu, M.

Schimpf, D. N.

Schmidt, O.

Sugden, K.

Teipel, J.

Tsai, S. W.

Y. F. Chen, S. W. Tsai, S. C. Wang, and J. Chen, “A diode-pumped high power Q-switched and self-mode-locked Nd:YVO4 laser with a LiF:F2−saturable absorber,” Appl. Phys. B 73, 115–118 (2001).
[CrossRef]

Tseng, S. M.

Tünnermann, A.

Vengsarkar, A. M.

C. D. Poole, J. M. Weisenfeld, D. J. DiGiovanni, and A. M. Vengsarkar, “Optical fiber-based dispersion compensation using higher order modes near cutoff,” J. Lightwave Technol. 12(10), 1746–1758 (1994).
[CrossRef]

A. M. Vengsarkar and W. A. Reed, “Dispersion-compensating single-mode fibers: efficient designs for first- and second-order compensation,” Opt. Lett. 18(11), 924–926 (1993).
[CrossRef] [PubMed]

Wandt, D.

Wang, M.

Wang, S. C.

Y. F. Chen, S. W. Tsai, S. C. Wang, and J. Chen, “A diode-pumped high power Q-switched and self-mode-locked Nd:YVO4 laser with a LiF:F2−saturable absorber,” Appl. Phys. B 73, 115–118 (2001).
[CrossRef]

Weisenfeld, J. M.

C. D. Poole, J. M. Weisenfeld, D. J. DiGiovanni, and A. M. Vengsarkar, “Optical fiber-based dispersion compensation using higher order modes near cutoff,” J. Lightwave Technol. 12(10), 1746–1758 (1994).
[CrossRef]

Wise, F. W.

E. Ding, S. Lefrancois, J. N. Kutz, and F. W. Wise, “Scaling fiber lasers to large mode area: an investigation of passive mode-locking using a multi-mode fiber,” IEEE Photon. Technol. Lett. 47(5), 597–606 (2011).
[CrossRef] [PubMed]

A. Chong, W. H. Renninger, and F. W. Wise, “Properties of normal-dispersion femtosecond fiber lasers,” J. Opt. Soc. Am. B 25(2), 140–148 (2008).
[CrossRef]

Yeom, D. I.

Zhang, N.

Zhang, R.

Zhang, X.

Zhao, Y.

Zhu, X.

Appl. Phys. B (1)

Y. F. Chen, S. W. Tsai, S. C. Wang, and J. Chen, “A diode-pumped high power Q-switched and self-mode-locked Nd:YVO4 laser with a LiF:F2−saturable absorber,” Appl. Phys. B 73, 115–118 (2001).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

E. Ding, S. Lefrancois, J. N. Kutz, and F. W. Wise, “Scaling fiber lasers to large mode area: an investigation of passive mode-locking using a multi-mode fiber,” IEEE Photon. Technol. Lett. 47(5), 597–606 (2011).
[CrossRef] [PubMed]

J. Lightwave Technol. (1)

C. D. Poole, J. M. Weisenfeld, D. J. DiGiovanni, and A. M. Vengsarkar, “Optical fiber-based dispersion compensation using higher order modes near cutoff,” J. Lightwave Technol. 12(10), 1746–1758 (1994).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Express (5)

Opt. Lett. (9)

N. K. Chen, S. Chi, and S. M. Tseng, “Wideband tunable fiber short-pass filter based on side-polished fiber with dispersive polymer overlay,” Opt. Lett. 29(19), 2219–2221 (2004).
[CrossRef] [PubMed]

M. Rusu, R. Herda, S. Kivistö, and O. G. Okhotnikov, “Fiber taper for dispersion management in a mode-locked ytterbium fiber laser,” Opt. Lett. 31(15), 2257–2259 (2006).
[CrossRef] [PubMed]

M. E. Fermann, K. Sugden, and I. Bennion, “High-power soliton fiber laser based on pulse width control with chirped fiber Bragg gratings,” Opt. Lett. 20(2), 172–174 (1995).
[CrossRef] [PubMed]

N. K. Chen, K. C. Hsu, S. K. Liaw, Y. Lai, and S. Chi, “Influence of depressed-index outer ring on evanescent tunneling loss in tapered double-cladding fibers,” Opt. Lett. 33(15), 1666–1668 (2008).
[CrossRef] [PubMed]

A. M. Vengsarkar and W. A. Reed, “Dispersion-compensating single-mode fibers: efficient designs for first- and second-order compensation,” Opt. Lett. 18(11), 924–926 (1993).
[CrossRef] [PubMed]

N. Nishizawa, Y. Chen, P. Hsiung, E. P. Ippen, and J. G. Fujimoto, “Real-time, ultrahigh-resolution, optical coherence tomography with an all-fiber, femtosecond fiber laser continuum at 1.5 microm,” Opt. Lett. 29(24), 2846–2848 (2004).
[CrossRef] [PubMed]

D. I. Yeom, E. C. Mägi, M. R. E. Lamont, M. A. F. Roelens, L. Fu, and B. J. Eggleton, “Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires,” Opt. Lett. 33(7), 660–662 (2008).
[CrossRef] [PubMed]

Y. Zhao, Y. Liang, N. Zhang, M. Wang, and X. Zhu, “Pulse width effect in ultrafast laser ionization imaging,” Opt. Lett. 33(21), 2467–2469 (2008).
[CrossRef] [PubMed]

F. Röser, T. Eidam, J. Rothhardt, O. Schmidt, D. N. Schimpf, J. Limpert, and A. Tünnermann, “Millijoule pulse energy high repetition rate femtosecond fiber chirped-pulse amplification system,” Opt. Lett. 32(24), 3495–3497 (2007).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

(a) Experimental set-up of our pulse-stretchable Er3+-doped mode-locked fiber laser. WDM: wavelength division multiplexer, OSA: optical spectrum analyzer, RF: RF spectrum analyzer, AC: autocorrelator, SPEF: short-pass edge filter, EDF: erbium-doped fiber, PS: pulse shaper, PMT: photomultiplier tube, LIA: lock-in amplifier. (b) Spectral responses of a SPEF with an optical liquid (nD = 1.456) at different heating temperatures. (Res: 1 nm).

Fig. 2
Fig. 2

(a) Output spectra of Er3+-doped mode-locked fiber laser with the SPEF operating at different temperatures (Res: 1 nm). (b) Pulse duration of the output pulses at different temperatures (assuming a Gaussian pulse shape). (c) Time-bandwidth product at different temperatures. (d) RF spectrum of the mode-locked laser.

Metrics