Abstract

Silicon antireflection is realized with vertical-aligned SiNWs by using improved metal-induced etching technique. The spectral responses of the transmission, reflection, and absorption characteristics for the SiNWs of different lengths are investigated. In order to realize short SiNWs to provide sufficiently low reflection, a post chemical etching process is developed to make the nanowires have a larger length fluctuation and/or tapered structure. The use of short SiNWs can allow a faster process time and avoid the sub-bandgap absorption that frequently occurs in long nanowires. Short SiNWs can also provide more compatible material structure and fabrication procedures than long ones can for applying to make optoelectronic devices. Taking the applications to solar cells as examples, the SiNWs fabricated by the proposed technique can provide 92% of solar weighted absorption with about 720 nm long wires because of the resultant effective graded index and enhanced multiple optical scattering from the random SiNW lengths and tapered wires after KOH etching.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. Fan, D. J. Ruebusch, A. A. Rathore, R. Kapadia, O. Ergen, P. W. Leu, and A. Javey, “Challenges and prospects of nanopillar-based solar cells,” Nano Res. 2(11), 829–843 (2009).
    [CrossRef]
  2. Y.-J. Hung, S.-L. Lee, and L. A. Coldren, “Deep and tapered silicon photonic crystals for achieving anti-reflection and enhanced absorption,” Opt. Express 18(7), 6841–6852 (2010).
    [CrossRef] [PubMed]
  3. S. K. Srivastava, D. Kumar, P. K. Singh, M. Kar, V. Kumar, and M. Husain, “Excellent antireflection properties of vertical silicon nanowire arrays,” Sol. Energy Mater. Sol. Cells 94(9), 1506–1511 (2010).
    [CrossRef]
  4. C. Chen, R. Jia, H. Yue, H. Li, X. Liu, D. Wu, W. Ding, T. Ye, S. Kasai, H. Tamotsu, J. Chu, and S. Wang, “Silicon nanowire-array-textured solar cells for photovoltaic application,” J. Appl. Phys. 108(9), 094318 (2010).
    [CrossRef]
  5. D. Kumar, S. K. Srivastava, P. K. Singh, M. Husain, and V. Kumar, “Fabrication of silicon nanowire arrays based solar cell with improved performance,” Sol. Energy Mater. Sol. Cells 95(1), 215–218 (2011).
    [CrossRef]
  6. L. A. Dobrzanski and A. Drygala, “Surface texturing of multicrystalline silicon solar cells,” J. Achieve. Mater. Manuf. Eng. 31, 77–82 (2008).
  7. T. Qiu, X. L. Wu, G. G. Siu, and P. K. Chu, “Intergrowth mechanism of silicon nanowires and silver dendrites,” J. Electron. Mater. 35(10), 1879–1884 (2006).
    [CrossRef]
  8. D. Kumar, S. K. Srivastava, P. K. Singh, K. N. Sood, V. N. Singh, N. Dilawar, and M. Husain, “Room temperature growth of wafer-scale silicon nanowire arrays and their Raman characteristics,” J. Nanopart. Res. 12(6), 2267–2276 (2010).
    [CrossRef]
  9. K. Peng, A. Lu, R. Zhang, and S.-T. Lee, “Motility of metal nanoparticles in silicon and induced anisotropic silicon etching,” Adv. Funct. Mater. 18(19), 3026–3035 (2008).
    [CrossRef]
  10. C. Chartier, S. Bastide, and C. Levy-Clement, “Metal-assisted chemical etching of silicon in HF-H2O2,” Electrochim. Acta 53(17), 5509–5516 (2008).
    [CrossRef]
  11. Y.-J. Hung, K.-C. Wu, S.-L. Lee, and Y.-T. Pan, “Realization and characterization of aligned silicon nanowire array with thin silver film,” IEEE Photon. J. (to be published).
    [CrossRef]
  12. L. Tsakalakos, J. Balch, J. Fronheiser, M.-Y. Shih, S. F. LeBoeuf, M. Pietrzykowski, P. J. Codella, B. A. Korevaar, O. Sulima, J. Rand, A. Davuluru, and U. Rapol, “Strong broadband optical absorption in silicon nanowire films,” J. Nanophotonics 1(1), 013552 (2007).
    [CrossRef]
  13. H. Fang, Y. Wu, J. Zhao, and J. Zhu, “Silver catalysis in the fabrication of silicon nanowire arrays,” Nanotechnology 17(15), 3768–3774 (2006).
    [CrossRef]
  14. R. Koch, “The intrinsic stress of polycrystalline and epitaxial thin metal films,” J. Phys. Condens. Matter 6(45), 9519–9550 (1994).
    [CrossRef]
  15. J.-Y. Jung, Z. Guo, S.-W. Jee, H.-D. Um, K.-T. Park, and J.-H. Lee, “A strong antireflective solar cell prepared by tapering silicon nanowires,” Opt. Express 18(Suppl 3), A286–A292 (2010).
    [CrossRef] [PubMed]
  16. H. Bao and X. Ruan, “Optical absorption enhancement in disordered vertical silicon nanowire arrays for photovoltaic applications,” Opt. Lett. 35(20), 3378–3380 (2010).
    [CrossRef] [PubMed]
  17. C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett. 78(13), 1850–1853 (2001).
    [CrossRef]

2011 (1)

D. Kumar, S. K. Srivastava, P. K. Singh, M. Husain, and V. Kumar, “Fabrication of silicon nanowire arrays based solar cell with improved performance,” Sol. Energy Mater. Sol. Cells 95(1), 215–218 (2011).
[CrossRef]

2010 (6)

Y.-J. Hung, S.-L. Lee, and L. A. Coldren, “Deep and tapered silicon photonic crystals for achieving anti-reflection and enhanced absorption,” Opt. Express 18(7), 6841–6852 (2010).
[CrossRef] [PubMed]

S. K. Srivastava, D. Kumar, P. K. Singh, M. Kar, V. Kumar, and M. Husain, “Excellent antireflection properties of vertical silicon nanowire arrays,” Sol. Energy Mater. Sol. Cells 94(9), 1506–1511 (2010).
[CrossRef]

C. Chen, R. Jia, H. Yue, H. Li, X. Liu, D. Wu, W. Ding, T. Ye, S. Kasai, H. Tamotsu, J. Chu, and S. Wang, “Silicon nanowire-array-textured solar cells for photovoltaic application,” J. Appl. Phys. 108(9), 094318 (2010).
[CrossRef]

D. Kumar, S. K. Srivastava, P. K. Singh, K. N. Sood, V. N. Singh, N. Dilawar, and M. Husain, “Room temperature growth of wafer-scale silicon nanowire arrays and their Raman characteristics,” J. Nanopart. Res. 12(6), 2267–2276 (2010).
[CrossRef]

J.-Y. Jung, Z. Guo, S.-W. Jee, H.-D. Um, K.-T. Park, and J.-H. Lee, “A strong antireflective solar cell prepared by tapering silicon nanowires,” Opt. Express 18(Suppl 3), A286–A292 (2010).
[CrossRef] [PubMed]

H. Bao and X. Ruan, “Optical absorption enhancement in disordered vertical silicon nanowire arrays for photovoltaic applications,” Opt. Lett. 35(20), 3378–3380 (2010).
[CrossRef] [PubMed]

2009 (1)

Z. Fan, D. J. Ruebusch, A. A. Rathore, R. Kapadia, O. Ergen, P. W. Leu, and A. Javey, “Challenges and prospects of nanopillar-based solar cells,” Nano Res. 2(11), 829–843 (2009).
[CrossRef]

2008 (3)

K. Peng, A. Lu, R. Zhang, and S.-T. Lee, “Motility of metal nanoparticles in silicon and induced anisotropic silicon etching,” Adv. Funct. Mater. 18(19), 3026–3035 (2008).
[CrossRef]

C. Chartier, S. Bastide, and C. Levy-Clement, “Metal-assisted chemical etching of silicon in HF-H2O2,” Electrochim. Acta 53(17), 5509–5516 (2008).
[CrossRef]

L. A. Dobrzanski and A. Drygala, “Surface texturing of multicrystalline silicon solar cells,” J. Achieve. Mater. Manuf. Eng. 31, 77–82 (2008).

2007 (1)

L. Tsakalakos, J. Balch, J. Fronheiser, M.-Y. Shih, S. F. LeBoeuf, M. Pietrzykowski, P. J. Codella, B. A. Korevaar, O. Sulima, J. Rand, A. Davuluru, and U. Rapol, “Strong broadband optical absorption in silicon nanowire films,” J. Nanophotonics 1(1), 013552 (2007).
[CrossRef]

2006 (2)

H. Fang, Y. Wu, J. Zhao, and J. Zhu, “Silver catalysis in the fabrication of silicon nanowire arrays,” Nanotechnology 17(15), 3768–3774 (2006).
[CrossRef]

T. Qiu, X. L. Wu, G. G. Siu, and P. K. Chu, “Intergrowth mechanism of silicon nanowires and silver dendrites,” J. Electron. Mater. 35(10), 1879–1884 (2006).
[CrossRef]

2001 (1)

C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett. 78(13), 1850–1853 (2001).
[CrossRef]

1994 (1)

R. Koch, “The intrinsic stress of polycrystalline and epitaxial thin metal films,” J. Phys. Condens. Matter 6(45), 9519–9550 (1994).
[CrossRef]

Balch, J.

L. Tsakalakos, J. Balch, J. Fronheiser, M.-Y. Shih, S. F. LeBoeuf, M. Pietrzykowski, P. J. Codella, B. A. Korevaar, O. Sulima, J. Rand, A. Davuluru, and U. Rapol, “Strong broadband optical absorption in silicon nanowire films,” J. Nanophotonics 1(1), 013552 (2007).
[CrossRef]

Bao, H.

Bastide, S.

C. Chartier, S. Bastide, and C. Levy-Clement, “Metal-assisted chemical etching of silicon in HF-H2O2,” Electrochim. Acta 53(17), 5509–5516 (2008).
[CrossRef]

Carey, J. E.

C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett. 78(13), 1850–1853 (2001).
[CrossRef]

Chartier, C.

C. Chartier, S. Bastide, and C. Levy-Clement, “Metal-assisted chemical etching of silicon in HF-H2O2,” Electrochim. Acta 53(17), 5509–5516 (2008).
[CrossRef]

Chen, C.

C. Chen, R. Jia, H. Yue, H. Li, X. Liu, D. Wu, W. Ding, T. Ye, S. Kasai, H. Tamotsu, J. Chu, and S. Wang, “Silicon nanowire-array-textured solar cells for photovoltaic application,” J. Appl. Phys. 108(9), 094318 (2010).
[CrossRef]

Chu, J.

C. Chen, R. Jia, H. Yue, H. Li, X. Liu, D. Wu, W. Ding, T. Ye, S. Kasai, H. Tamotsu, J. Chu, and S. Wang, “Silicon nanowire-array-textured solar cells for photovoltaic application,” J. Appl. Phys. 108(9), 094318 (2010).
[CrossRef]

Chu, P. K.

T. Qiu, X. L. Wu, G. G. Siu, and P. K. Chu, “Intergrowth mechanism of silicon nanowires and silver dendrites,” J. Electron. Mater. 35(10), 1879–1884 (2006).
[CrossRef]

Codella, P. J.

L. Tsakalakos, J. Balch, J. Fronheiser, M.-Y. Shih, S. F. LeBoeuf, M. Pietrzykowski, P. J. Codella, B. A. Korevaar, O. Sulima, J. Rand, A. Davuluru, and U. Rapol, “Strong broadband optical absorption in silicon nanowire films,” J. Nanophotonics 1(1), 013552 (2007).
[CrossRef]

Coldren, L. A.

Crouch, C. H.

C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett. 78(13), 1850–1853 (2001).
[CrossRef]

Davuluru, A.

L. Tsakalakos, J. Balch, J. Fronheiser, M.-Y. Shih, S. F. LeBoeuf, M. Pietrzykowski, P. J. Codella, B. A. Korevaar, O. Sulima, J. Rand, A. Davuluru, and U. Rapol, “Strong broadband optical absorption in silicon nanowire films,” J. Nanophotonics 1(1), 013552 (2007).
[CrossRef]

Dilawar, N.

D. Kumar, S. K. Srivastava, P. K. Singh, K. N. Sood, V. N. Singh, N. Dilawar, and M. Husain, “Room temperature growth of wafer-scale silicon nanowire arrays and their Raman characteristics,” J. Nanopart. Res. 12(6), 2267–2276 (2010).
[CrossRef]

Ding, W.

C. Chen, R. Jia, H. Yue, H. Li, X. Liu, D. Wu, W. Ding, T. Ye, S. Kasai, H. Tamotsu, J. Chu, and S. Wang, “Silicon nanowire-array-textured solar cells for photovoltaic application,” J. Appl. Phys. 108(9), 094318 (2010).
[CrossRef]

Dobrzanski, L. A.

L. A. Dobrzanski and A. Drygala, “Surface texturing of multicrystalline silicon solar cells,” J. Achieve. Mater. Manuf. Eng. 31, 77–82 (2008).

Drygala, A.

L. A. Dobrzanski and A. Drygala, “Surface texturing of multicrystalline silicon solar cells,” J. Achieve. Mater. Manuf. Eng. 31, 77–82 (2008).

Ergen, O.

Z. Fan, D. J. Ruebusch, A. A. Rathore, R. Kapadia, O. Ergen, P. W. Leu, and A. Javey, “Challenges and prospects of nanopillar-based solar cells,” Nano Res. 2(11), 829–843 (2009).
[CrossRef]

Fan, Z.

Z. Fan, D. J. Ruebusch, A. A. Rathore, R. Kapadia, O. Ergen, P. W. Leu, and A. Javey, “Challenges and prospects of nanopillar-based solar cells,” Nano Res. 2(11), 829–843 (2009).
[CrossRef]

Fang, H.

H. Fang, Y. Wu, J. Zhao, and J. Zhu, “Silver catalysis in the fabrication of silicon nanowire arrays,” Nanotechnology 17(15), 3768–3774 (2006).
[CrossRef]

Farrell, R. M.

C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett. 78(13), 1850–1853 (2001).
[CrossRef]

Fronheiser, J.

L. Tsakalakos, J. Balch, J. Fronheiser, M.-Y. Shih, S. F. LeBoeuf, M. Pietrzykowski, P. J. Codella, B. A. Korevaar, O. Sulima, J. Rand, A. Davuluru, and U. Rapol, “Strong broadband optical absorption in silicon nanowire films,” J. Nanophotonics 1(1), 013552 (2007).
[CrossRef]

Gothoskar, P.

C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett. 78(13), 1850–1853 (2001).
[CrossRef]

Guo, Z.

Hung, Y.-J.

Y.-J. Hung, S.-L. Lee, and L. A. Coldren, “Deep and tapered silicon photonic crystals for achieving anti-reflection and enhanced absorption,” Opt. Express 18(7), 6841–6852 (2010).
[CrossRef] [PubMed]

Y.-J. Hung, K.-C. Wu, S.-L. Lee, and Y.-T. Pan, “Realization and characterization of aligned silicon nanowire array with thin silver film,” IEEE Photon. J. (to be published).
[CrossRef]

Husain, M.

D. Kumar, S. K. Srivastava, P. K. Singh, M. Husain, and V. Kumar, “Fabrication of silicon nanowire arrays based solar cell with improved performance,” Sol. Energy Mater. Sol. Cells 95(1), 215–218 (2011).
[CrossRef]

D. Kumar, S. K. Srivastava, P. K. Singh, K. N. Sood, V. N. Singh, N. Dilawar, and M. Husain, “Room temperature growth of wafer-scale silicon nanowire arrays and their Raman characteristics,” J. Nanopart. Res. 12(6), 2267–2276 (2010).
[CrossRef]

S. K. Srivastava, D. Kumar, P. K. Singh, M. Kar, V. Kumar, and M. Husain, “Excellent antireflection properties of vertical silicon nanowire arrays,” Sol. Energy Mater. Sol. Cells 94(9), 1506–1511 (2010).
[CrossRef]

Javey, A.

Z. Fan, D. J. Ruebusch, A. A. Rathore, R. Kapadia, O. Ergen, P. W. Leu, and A. Javey, “Challenges and prospects of nanopillar-based solar cells,” Nano Res. 2(11), 829–843 (2009).
[CrossRef]

Jee, S.-W.

Jia, R.

C. Chen, R. Jia, H. Yue, H. Li, X. Liu, D. Wu, W. Ding, T. Ye, S. Kasai, H. Tamotsu, J. Chu, and S. Wang, “Silicon nanowire-array-textured solar cells for photovoltaic application,” J. Appl. Phys. 108(9), 094318 (2010).
[CrossRef]

Jung, J.-Y.

Kapadia, R.

Z. Fan, D. J. Ruebusch, A. A. Rathore, R. Kapadia, O. Ergen, P. W. Leu, and A. Javey, “Challenges and prospects of nanopillar-based solar cells,” Nano Res. 2(11), 829–843 (2009).
[CrossRef]

Kar, M.

S. K. Srivastava, D. Kumar, P. K. Singh, M. Kar, V. Kumar, and M. Husain, “Excellent antireflection properties of vertical silicon nanowire arrays,” Sol. Energy Mater. Sol. Cells 94(9), 1506–1511 (2010).
[CrossRef]

Karger, A.

C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett. 78(13), 1850–1853 (2001).
[CrossRef]

Kasai, S.

C. Chen, R. Jia, H. Yue, H. Li, X. Liu, D. Wu, W. Ding, T. Ye, S. Kasai, H. Tamotsu, J. Chu, and S. Wang, “Silicon nanowire-array-textured solar cells for photovoltaic application,” J. Appl. Phys. 108(9), 094318 (2010).
[CrossRef]

Koch, R.

R. Koch, “The intrinsic stress of polycrystalline and epitaxial thin metal films,” J. Phys. Condens. Matter 6(45), 9519–9550 (1994).
[CrossRef]

Korevaar, B. A.

L. Tsakalakos, J. Balch, J. Fronheiser, M.-Y. Shih, S. F. LeBoeuf, M. Pietrzykowski, P. J. Codella, B. A. Korevaar, O. Sulima, J. Rand, A. Davuluru, and U. Rapol, “Strong broadband optical absorption in silicon nanowire films,” J. Nanophotonics 1(1), 013552 (2007).
[CrossRef]

Kumar, D.

D. Kumar, S. K. Srivastava, P. K. Singh, M. Husain, and V. Kumar, “Fabrication of silicon nanowire arrays based solar cell with improved performance,” Sol. Energy Mater. Sol. Cells 95(1), 215–218 (2011).
[CrossRef]

S. K. Srivastava, D. Kumar, P. K. Singh, M. Kar, V. Kumar, and M. Husain, “Excellent antireflection properties of vertical silicon nanowire arrays,” Sol. Energy Mater. Sol. Cells 94(9), 1506–1511 (2010).
[CrossRef]

D. Kumar, S. K. Srivastava, P. K. Singh, K. N. Sood, V. N. Singh, N. Dilawar, and M. Husain, “Room temperature growth of wafer-scale silicon nanowire arrays and their Raman characteristics,” J. Nanopart. Res. 12(6), 2267–2276 (2010).
[CrossRef]

Kumar, V.

D. Kumar, S. K. Srivastava, P. K. Singh, M. Husain, and V. Kumar, “Fabrication of silicon nanowire arrays based solar cell with improved performance,” Sol. Energy Mater. Sol. Cells 95(1), 215–218 (2011).
[CrossRef]

S. K. Srivastava, D. Kumar, P. K. Singh, M. Kar, V. Kumar, and M. Husain, “Excellent antireflection properties of vertical silicon nanowire arrays,” Sol. Energy Mater. Sol. Cells 94(9), 1506–1511 (2010).
[CrossRef]

LeBoeuf, S. F.

L. Tsakalakos, J. Balch, J. Fronheiser, M.-Y. Shih, S. F. LeBoeuf, M. Pietrzykowski, P. J. Codella, B. A. Korevaar, O. Sulima, J. Rand, A. Davuluru, and U. Rapol, “Strong broadband optical absorption in silicon nanowire films,” J. Nanophotonics 1(1), 013552 (2007).
[CrossRef]

Lee, J.-H.

Lee, S.-L.

Y.-J. Hung, S.-L. Lee, and L. A. Coldren, “Deep and tapered silicon photonic crystals for achieving anti-reflection and enhanced absorption,” Opt. Express 18(7), 6841–6852 (2010).
[CrossRef] [PubMed]

Y.-J. Hung, K.-C. Wu, S.-L. Lee, and Y.-T. Pan, “Realization and characterization of aligned silicon nanowire array with thin silver film,” IEEE Photon. J. (to be published).
[CrossRef]

Lee, S.-T.

K. Peng, A. Lu, R. Zhang, and S.-T. Lee, “Motility of metal nanoparticles in silicon and induced anisotropic silicon etching,” Adv. Funct. Mater. 18(19), 3026–3035 (2008).
[CrossRef]

Leu, P. W.

Z. Fan, D. J. Ruebusch, A. A. Rathore, R. Kapadia, O. Ergen, P. W. Leu, and A. Javey, “Challenges and prospects of nanopillar-based solar cells,” Nano Res. 2(11), 829–843 (2009).
[CrossRef]

Levinson, J. A.

C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett. 78(13), 1850–1853 (2001).
[CrossRef]

Levy-Clement, C.

C. Chartier, S. Bastide, and C. Levy-Clement, “Metal-assisted chemical etching of silicon in HF-H2O2,” Electrochim. Acta 53(17), 5509–5516 (2008).
[CrossRef]

Li, H.

C. Chen, R. Jia, H. Yue, H. Li, X. Liu, D. Wu, W. Ding, T. Ye, S. Kasai, H. Tamotsu, J. Chu, and S. Wang, “Silicon nanowire-array-textured solar cells for photovoltaic application,” J. Appl. Phys. 108(9), 094318 (2010).
[CrossRef]

Liu, X.

C. Chen, R. Jia, H. Yue, H. Li, X. Liu, D. Wu, W. Ding, T. Ye, S. Kasai, H. Tamotsu, J. Chu, and S. Wang, “Silicon nanowire-array-textured solar cells for photovoltaic application,” J. Appl. Phys. 108(9), 094318 (2010).
[CrossRef]

Lu, A.

K. Peng, A. Lu, R. Zhang, and S.-T. Lee, “Motility of metal nanoparticles in silicon and induced anisotropic silicon etching,” Adv. Funct. Mater. 18(19), 3026–3035 (2008).
[CrossRef]

Mazur, E.

C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett. 78(13), 1850–1853 (2001).
[CrossRef]

Pan, Y.-T.

Y.-J. Hung, K.-C. Wu, S.-L. Lee, and Y.-T. Pan, “Realization and characterization of aligned silicon nanowire array with thin silver film,” IEEE Photon. J. (to be published).
[CrossRef]

Park, K.-T.

Peng, K.

K. Peng, A. Lu, R. Zhang, and S.-T. Lee, “Motility of metal nanoparticles in silicon and induced anisotropic silicon etching,” Adv. Funct. Mater. 18(19), 3026–3035 (2008).
[CrossRef]

Pietrzykowski, M.

L. Tsakalakos, J. Balch, J. Fronheiser, M.-Y. Shih, S. F. LeBoeuf, M. Pietrzykowski, P. J. Codella, B. A. Korevaar, O. Sulima, J. Rand, A. Davuluru, and U. Rapol, “Strong broadband optical absorption in silicon nanowire films,” J. Nanophotonics 1(1), 013552 (2007).
[CrossRef]

Qiu, T.

T. Qiu, X. L. Wu, G. G. Siu, and P. K. Chu, “Intergrowth mechanism of silicon nanowires and silver dendrites,” J. Electron. Mater. 35(10), 1879–1884 (2006).
[CrossRef]

Rand, J.

L. Tsakalakos, J. Balch, J. Fronheiser, M.-Y. Shih, S. F. LeBoeuf, M. Pietrzykowski, P. J. Codella, B. A. Korevaar, O. Sulima, J. Rand, A. Davuluru, and U. Rapol, “Strong broadband optical absorption in silicon nanowire films,” J. Nanophotonics 1(1), 013552 (2007).
[CrossRef]

Rapol, U.

L. Tsakalakos, J. Balch, J. Fronheiser, M.-Y. Shih, S. F. LeBoeuf, M. Pietrzykowski, P. J. Codella, B. A. Korevaar, O. Sulima, J. Rand, A. Davuluru, and U. Rapol, “Strong broadband optical absorption in silicon nanowire films,” J. Nanophotonics 1(1), 013552 (2007).
[CrossRef]

Rathore, A. A.

Z. Fan, D. J. Ruebusch, A. A. Rathore, R. Kapadia, O. Ergen, P. W. Leu, and A. Javey, “Challenges and prospects of nanopillar-based solar cells,” Nano Res. 2(11), 829–843 (2009).
[CrossRef]

Ruan, X.

Ruebusch, D. J.

Z. Fan, D. J. Ruebusch, A. A. Rathore, R. Kapadia, O. Ergen, P. W. Leu, and A. Javey, “Challenges and prospects of nanopillar-based solar cells,” Nano Res. 2(11), 829–843 (2009).
[CrossRef]

Shih, M.-Y.

L. Tsakalakos, J. Balch, J. Fronheiser, M.-Y. Shih, S. F. LeBoeuf, M. Pietrzykowski, P. J. Codella, B. A. Korevaar, O. Sulima, J. Rand, A. Davuluru, and U. Rapol, “Strong broadband optical absorption in silicon nanowire films,” J. Nanophotonics 1(1), 013552 (2007).
[CrossRef]

Singh, P. K.

D. Kumar, S. K. Srivastava, P. K. Singh, M. Husain, and V. Kumar, “Fabrication of silicon nanowire arrays based solar cell with improved performance,” Sol. Energy Mater. Sol. Cells 95(1), 215–218 (2011).
[CrossRef]

D. Kumar, S. K. Srivastava, P. K. Singh, K. N. Sood, V. N. Singh, N. Dilawar, and M. Husain, “Room temperature growth of wafer-scale silicon nanowire arrays and their Raman characteristics,” J. Nanopart. Res. 12(6), 2267–2276 (2010).
[CrossRef]

S. K. Srivastava, D. Kumar, P. K. Singh, M. Kar, V. Kumar, and M. Husain, “Excellent antireflection properties of vertical silicon nanowire arrays,” Sol. Energy Mater. Sol. Cells 94(9), 1506–1511 (2010).
[CrossRef]

Singh, V. N.

D. Kumar, S. K. Srivastava, P. K. Singh, K. N. Sood, V. N. Singh, N. Dilawar, and M. Husain, “Room temperature growth of wafer-scale silicon nanowire arrays and their Raman characteristics,” J. Nanopart. Res. 12(6), 2267–2276 (2010).
[CrossRef]

Siu, G. G.

T. Qiu, X. L. Wu, G. G. Siu, and P. K. Chu, “Intergrowth mechanism of silicon nanowires and silver dendrites,” J. Electron. Mater. 35(10), 1879–1884 (2006).
[CrossRef]

Sood, K. N.

D. Kumar, S. K. Srivastava, P. K. Singh, K. N. Sood, V. N. Singh, N. Dilawar, and M. Husain, “Room temperature growth of wafer-scale silicon nanowire arrays and their Raman characteristics,” J. Nanopart. Res. 12(6), 2267–2276 (2010).
[CrossRef]

Srivastava, S. K.

D. Kumar, S. K. Srivastava, P. K. Singh, M. Husain, and V. Kumar, “Fabrication of silicon nanowire arrays based solar cell with improved performance,” Sol. Energy Mater. Sol. Cells 95(1), 215–218 (2011).
[CrossRef]

S. K. Srivastava, D. Kumar, P. K. Singh, M. Kar, V. Kumar, and M. Husain, “Excellent antireflection properties of vertical silicon nanowire arrays,” Sol. Energy Mater. Sol. Cells 94(9), 1506–1511 (2010).
[CrossRef]

D. Kumar, S. K. Srivastava, P. K. Singh, K. N. Sood, V. N. Singh, N. Dilawar, and M. Husain, “Room temperature growth of wafer-scale silicon nanowire arrays and their Raman characteristics,” J. Nanopart. Res. 12(6), 2267–2276 (2010).
[CrossRef]

Sulima, O.

L. Tsakalakos, J. Balch, J. Fronheiser, M.-Y. Shih, S. F. LeBoeuf, M. Pietrzykowski, P. J. Codella, B. A. Korevaar, O. Sulima, J. Rand, A. Davuluru, and U. Rapol, “Strong broadband optical absorption in silicon nanowire films,” J. Nanophotonics 1(1), 013552 (2007).
[CrossRef]

Tamotsu, H.

C. Chen, R. Jia, H. Yue, H. Li, X. Liu, D. Wu, W. Ding, T. Ye, S. Kasai, H. Tamotsu, J. Chu, and S. Wang, “Silicon nanowire-array-textured solar cells for photovoltaic application,” J. Appl. Phys. 108(9), 094318 (2010).
[CrossRef]

Tsakalakos, L.

L. Tsakalakos, J. Balch, J. Fronheiser, M.-Y. Shih, S. F. LeBoeuf, M. Pietrzykowski, P. J. Codella, B. A. Korevaar, O. Sulima, J. Rand, A. Davuluru, and U. Rapol, “Strong broadband optical absorption in silicon nanowire films,” J. Nanophotonics 1(1), 013552 (2007).
[CrossRef]

Um, H.-D.

Wang, S.

C. Chen, R. Jia, H. Yue, H. Li, X. Liu, D. Wu, W. Ding, T. Ye, S. Kasai, H. Tamotsu, J. Chu, and S. Wang, “Silicon nanowire-array-textured solar cells for photovoltaic application,” J. Appl. Phys. 108(9), 094318 (2010).
[CrossRef]

Wu, C.

C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett. 78(13), 1850–1853 (2001).
[CrossRef]

Wu, D.

C. Chen, R. Jia, H. Yue, H. Li, X. Liu, D. Wu, W. Ding, T. Ye, S. Kasai, H. Tamotsu, J. Chu, and S. Wang, “Silicon nanowire-array-textured solar cells for photovoltaic application,” J. Appl. Phys. 108(9), 094318 (2010).
[CrossRef]

Wu, K.-C.

Y.-J. Hung, K.-C. Wu, S.-L. Lee, and Y.-T. Pan, “Realization and characterization of aligned silicon nanowire array with thin silver film,” IEEE Photon. J. (to be published).
[CrossRef]

Wu, X. L.

T. Qiu, X. L. Wu, G. G. Siu, and P. K. Chu, “Intergrowth mechanism of silicon nanowires and silver dendrites,” J. Electron. Mater. 35(10), 1879–1884 (2006).
[CrossRef]

Wu, Y.

H. Fang, Y. Wu, J. Zhao, and J. Zhu, “Silver catalysis in the fabrication of silicon nanowire arrays,” Nanotechnology 17(15), 3768–3774 (2006).
[CrossRef]

Ye, T.

C. Chen, R. Jia, H. Yue, H. Li, X. Liu, D. Wu, W. Ding, T. Ye, S. Kasai, H. Tamotsu, J. Chu, and S. Wang, “Silicon nanowire-array-textured solar cells for photovoltaic application,” J. Appl. Phys. 108(9), 094318 (2010).
[CrossRef]

Younkin, R.

C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett. 78(13), 1850–1853 (2001).
[CrossRef]

Yue, H.

C. Chen, R. Jia, H. Yue, H. Li, X. Liu, D. Wu, W. Ding, T. Ye, S. Kasai, H. Tamotsu, J. Chu, and S. Wang, “Silicon nanowire-array-textured solar cells for photovoltaic application,” J. Appl. Phys. 108(9), 094318 (2010).
[CrossRef]

Zhang, R.

K. Peng, A. Lu, R. Zhang, and S.-T. Lee, “Motility of metal nanoparticles in silicon and induced anisotropic silicon etching,” Adv. Funct. Mater. 18(19), 3026–3035 (2008).
[CrossRef]

Zhao, J.

H. Fang, Y. Wu, J. Zhao, and J. Zhu, “Silver catalysis in the fabrication of silicon nanowire arrays,” Nanotechnology 17(15), 3768–3774 (2006).
[CrossRef]

Zhao, L.

C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett. 78(13), 1850–1853 (2001).
[CrossRef]

Zhu, J.

H. Fang, Y. Wu, J. Zhao, and J. Zhu, “Silver catalysis in the fabrication of silicon nanowire arrays,” Nanotechnology 17(15), 3768–3774 (2006).
[CrossRef]

Adv. Funct. Mater. (1)

K. Peng, A. Lu, R. Zhang, and S.-T. Lee, “Motility of metal nanoparticles in silicon and induced anisotropic silicon etching,” Adv. Funct. Mater. 18(19), 3026–3035 (2008).
[CrossRef]

Appl. Phys. Lett. (1)

C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett. 78(13), 1850–1853 (2001).
[CrossRef]

Electrochim. Acta (1)

C. Chartier, S. Bastide, and C. Levy-Clement, “Metal-assisted chemical etching of silicon in HF-H2O2,” Electrochim. Acta 53(17), 5509–5516 (2008).
[CrossRef]

IEEE Photon. J. (1)

Y.-J. Hung, K.-C. Wu, S.-L. Lee, and Y.-T. Pan, “Realization and characterization of aligned silicon nanowire array with thin silver film,” IEEE Photon. J. (to be published).
[CrossRef]

J. Achieve. Mater. Manuf. Eng. (1)

L. A. Dobrzanski and A. Drygala, “Surface texturing of multicrystalline silicon solar cells,” J. Achieve. Mater. Manuf. Eng. 31, 77–82 (2008).

J. Appl. Phys. (1)

C. Chen, R. Jia, H. Yue, H. Li, X. Liu, D. Wu, W. Ding, T. Ye, S. Kasai, H. Tamotsu, J. Chu, and S. Wang, “Silicon nanowire-array-textured solar cells for photovoltaic application,” J. Appl. Phys. 108(9), 094318 (2010).
[CrossRef]

J. Electron. Mater. (1)

T. Qiu, X. L. Wu, G. G. Siu, and P. K. Chu, “Intergrowth mechanism of silicon nanowires and silver dendrites,” J. Electron. Mater. 35(10), 1879–1884 (2006).
[CrossRef]

J. Nanopart. Res. (1)

D. Kumar, S. K. Srivastava, P. K. Singh, K. N. Sood, V. N. Singh, N. Dilawar, and M. Husain, “Room temperature growth of wafer-scale silicon nanowire arrays and their Raman characteristics,” J. Nanopart. Res. 12(6), 2267–2276 (2010).
[CrossRef]

J. Nanophotonics (1)

L. Tsakalakos, J. Balch, J. Fronheiser, M.-Y. Shih, S. F. LeBoeuf, M. Pietrzykowski, P. J. Codella, B. A. Korevaar, O. Sulima, J. Rand, A. Davuluru, and U. Rapol, “Strong broadband optical absorption in silicon nanowire films,” J. Nanophotonics 1(1), 013552 (2007).
[CrossRef]

J. Phys. Condens. Matter (1)

R. Koch, “The intrinsic stress of polycrystalline and epitaxial thin metal films,” J. Phys. Condens. Matter 6(45), 9519–9550 (1994).
[CrossRef]

Nano Res. (1)

Z. Fan, D. J. Ruebusch, A. A. Rathore, R. Kapadia, O. Ergen, P. W. Leu, and A. Javey, “Challenges and prospects of nanopillar-based solar cells,” Nano Res. 2(11), 829–843 (2009).
[CrossRef]

Nanotechnology (1)

H. Fang, Y. Wu, J. Zhao, and J. Zhu, “Silver catalysis in the fabrication of silicon nanowire arrays,” Nanotechnology 17(15), 3768–3774 (2006).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Sol. Energy Mater. Sol. Cells (2)

S. K. Srivastava, D. Kumar, P. K. Singh, M. Kar, V. Kumar, and M. Husain, “Excellent antireflection properties of vertical silicon nanowire arrays,” Sol. Energy Mater. Sol. Cells 94(9), 1506–1511 (2010).
[CrossRef]

D. Kumar, S. K. Srivastava, P. K. Singh, M. Husain, and V. Kumar, “Fabrication of silicon nanowire arrays based solar cell with improved performance,” Sol. Energy Mater. Sol. Cells 95(1), 215–218 (2011).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

(a) Process comparison between conventional metal-induced wet etching scheme and the proposed scheme. (b) Cross-sectional SEM view of an etched Si sample at a distance of about 90 μm from the surface, showing that thin silver film can act as uniformly-distributed silver nano-particles which locate at the bottom of the channels after etching.

Fig. 2
Fig. 2

Top and cross-sectional SEM views of (a) 120-nm tall, (b) 800-nm tall and (c) 5250-nm tall SiNWs realized with different etching time.

Fig. 3
Fig. 3

Photographs of 4-inch bare silicon and 1-μm tall SiNWs over silicon.

Fig. 4
Fig. 4

SEM pictures of (a) original SiNWs, (b) SiNWs after initial KOH etching and (c) SiNWs after later KOH etching. Schematic illustrations of the resultant SiNW profiles and their corresponding effective refractive index profiles across the air-to-wire axis are also shown.

Fig. 5
Fig. 5

(a) Simulated total optical reflection spectra of bare silicon and SiNWs with and without random heights and (b) the contribution of SiNW height variation to the reduction of total optical reflection of SiNWs.

Fig. 6
Fig. 6

(a) Measured optical specular reflection spectra of bare silicon and SiNWs with 0.59-μm and 1.06-μm in height, respectively. (b) Fitted effective index of 0.59-μm tall SiNWs with the wavelengths.

Fig. 7
Fig. 7

Measured total optical (a) reflection and (b) transmission spectra of bare silicon and SiNWs with different heights. (c) Comparison of total and specular-only reflection spectra of 0.59-μm and 6.98-μm tall SiNWs.

Fig. 8
Fig. 8

(a) 3D contour plot of measured total optical reflection spectra of SiNWs after different etching time. (b) Total optical reflection of SiNWs at 530 nm of wavelength (peak wavelength of AM1.5 solar spectrum), total optical absorption of SiNWs at 1300 nm of wavelength (Si transparent region) and etched SiNW height under different etching time.

Fig. 9
Fig. 9

Measured total optical (a) reflection and (b) transmission spectra of bare silicon, original SiNWs and KOH-etched SiNWs.

Fig. 10
Fig. 10

(a) Total optical absorption spectra of bare silicon and SiNWs with different etched heights for mapping AM1.5 solar spectrum. (b) Solar weighted absorption of SiNWs with different etched heights.

Fig. 11
Fig. 11

SiNW height and solar weighted absorption under different KOH etching time. The volume ratio is indicated with SiNW height curve.

Metrics