Abstract

Automatic separation of arteries and veins in optical cerebral cortex images is important in clinical practice and preclinical study. In this paper, a simple but effective automatic artery-vein separation method which utilizes single-wavelength coherent illumination is presented. This method is based on the relative temporal minimum reflectance analysis of laser speckle images. The validation is demonstrated with both theoretic simulations and experimental results applied to the rat cortex. Moreover, this method can be combined with laser speckle contrast analysis so that the artery-vein separation and blood flow imaging can be simultaneously obtained using the same raw laser speckle images data to enable more accurate analysis of changes of cerebral blood flow within different tissue compartments during functional activation, disease dynamic, and neurosurgery, which may broaden the applications of laser speckle imaging in biology and medicine.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Strandgaard, J. Olesen, E. Skinhoj, and N. A. Lassen, “Autoregulation of brain circulation in severe arterial hypertension,” BMJ 1(5852), 507–510 (1973).
    [CrossRef] [PubMed]
  2. D. M. McDonald and P. L. Choyke, “Imaging of angiogenesis: from microscope to clinic,” Nat. Med. 9(6), 713–725 (2003).
    [CrossRef] [PubMed]
  3. N. E. Cameron and M. A. Cotter, “The relationship of vascular changes to metabolic factors in diabetes mellitus and their role in the development of peripheral nerve complications,” Diabetes Metab. Rev. 10(3), 189–224 (1994).
    [CrossRef] [PubMed]
  4. F. Hansen-Smith, A. S. Greene, A. W. J. Cowley, and J. H. Lombard, “Structural changes during microvascular rarefaction in chronic hypertension,” Hypertension 15(6 Pt 2), 922–928 (1990).
    [PubMed]
  5. K. Akita and H. Kuga, “A computer method of understanding ocular fundus images,” Pattern Recognit. 15(6), 431–443 (1982).
    [CrossRef]
  6. J. J. Yu, B. Hung, and H. Sun, “Automatic recognition of retinopathy from retinal images,” in Proceedings of IEEE Conference on Engineering Medicine and Biology Society (Institute of Electrical and Electronics Engineers, Philadelphia, 1990), pp. 171–173.
  7. H. Li, W. Hsu, M. L. Lee, and H. Wang, “A piecewise Gaussian Model for profiling and differentiating retinal vessels,” in Proceedings of IEEE Conference on Image Processing (Institute of Electrical and Electronics Engineers, Barcelona, 2003), pp. 1069–1072.
  8. H. Narasimha-Iyer, J. M. Beach, B. Khoobehi, and B. Roysam, “Automatic identification of retinal arteries and veins from dual-wavelength images using structural and functional features,” IEEE Trans. Biomed. Eng. 54(8), 1427–1435 (2007).
    [CrossRef] [PubMed]
  9. I. Schiessl, W. Wang, and N. McLoughlin, “Independent components of the haemodynamic response in intrinsic optical imaging,” Neuroimage 39(2), 634–646 (2008).
    [CrossRef] [PubMed]
  10. I. Vanzetta, R. Hildesheim, and A. Grinvald, “Compartment-resolved imaging of activity-dependent dynamics of cortical blood volume and oximetry,” J. Neurosci. 25(9), 2233–2244 (2005).
    [CrossRef] [PubMed]
  11. Z. Luo, Z. Yuan, Y. Pan, and C. Du, “Simultaneous imaging of cortical hemodynamics and blood oxygenation change during cerebral ischemia using dual-wavelength laser speckle contrast imaging,” Opt. Lett. 34(9), 1480–1482 (2009).
    [CrossRef] [PubMed]
  12. H. F. Zhang, K. Maslov, M. Sivaramakrishnan, G. Stoica, and L. V. Wang, “Imaging of hemoglobin oxygen saturation variations in single vessels in vivo using photoacoustic microscopy,” Appl. Phys. Lett. 90(5), 053901 (2007).
    [CrossRef]
  13. D. Hu, Y. Wang, Y. Liu, M. Li, and F. Liu, “Separation of arteries and veins in the cerebral cortex using physiological oscillations by optical imaging of intrinsic signal,” J. Biomed. Opt. 15(3), 036025 (2010).
    [CrossRef] [PubMed]
  14. L. Song, K. Maslov, and L. V. Wang, “Section-illumination photoacoustic microscopy for dynamic 3D imaging of microcirculation in vivo,” Opt. Lett. 35(9), 1482–1484 (2010).
    [CrossRef] [PubMed]
  15. P. Miao, M. Li, N. Li, A. Rege, Y. Zhu, N. Thakor, and S. Tong, “Detecting cerebral arteries and veins: from large to small,” J. Innovative Opt. Health Sci. 03(01), 61–67 (2010).
    [CrossRef]
  16. T. Lei, J. K. Udupa, P. K. Saha, and D. Odhner, “Artery-vein separation via MRA--an image processing approach,” IEEE Trans. Med. Imaging 20(8), 689–703 (2001).
    [CrossRef] [PubMed]
  17. J. Svensson, P. Leander, J. H. Maki, F. Stahlberg, and L. E. Olsson, “Separation of arteries and veins using flow-induced phase effects in contrast-enhanced MRA of the lower extremities,” Magn. Reson. Imaging 20(1), 49–57 (2002).
    [CrossRef] [PubMed]
  18. D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt. 15(1), 011109 (2010).
    [CrossRef] [PubMed]
  19. A. K. Dunn, A. Devor, A. M. Dale, and D. A. Boas, “Spatial extent of oxygen metabolism and hemodynamic changes during functional activation of the rat somatosensory cortex,” Neuroimage 27(2), 279–290 (2005).
    [CrossRef] [PubMed]
  20. J. S. Paul, A. R. Luft, E. Yew, and F. S. Sheu, “Imaging the development of an ischemic core following photochemically induced cortical infarction in rats using Laser Speckle Contrast Analysis (LASCA),” Neuroimage 29(1), 38–45 (2006).
    [CrossRef] [PubMed]
  21. T. P. Obrenovitch, S. Chen, and E. Farkas, “Simultaneous, live imaging of cortical spreading depression and associated cerebral blood flow changes, by combining voltage-sensitive dye and laser speckle contrast methods,” Neuroimage 45(1), 68–74 (2009).
    [CrossRef] [PubMed]
  22. E. Farkas, F. Bari, and T. P. Obrenovitch, “Multi-modal imaging of anoxic depolarization and hemodynamic changes induced by cardiac arrest in the rat cerebral cortex,” Neuroimage 51(2), 734–742 (2010).
    [CrossRef] [PubMed]
  23. Z. Wang, W. Luo, P. Li, J. Qiu, and Q. Luo, “Acute hyperglycemia compromises cerebral blood flow following cortical spreading depression in rats monitored by laser speckle imaging,” J. Biomed. Opt. 13(6), 064023 (2008).
    [CrossRef] [PubMed]
  24. Z. Luo, Z. Yuan, M. Tully, Y. Pan, and C. Du, “Quantification of cocaine-induced cortical blood flow changes using laser speckle contrast imaging and Doppler optical coherence tomography,” Appl. Opt. 48(10), D247–D255 (2009).
    [CrossRef] [PubMed]
  25. B. Choi, N. M. Kang, and J. S. Nelson, “Laser speckle imaging for monitoring blood flow dynamics in the in vivo rodent dorsal skin fold model,” Microvasc. Res. 68(2), 143–146 (2004).
    [CrossRef] [PubMed]
  26. R. C. Bray, K. R. Forrester, J. Reed, C. Leonard, and J. Tulip, “Endoscopic laser speckle imaging of tissue blood flow: applications in the human knee,” J. Orthop. Res. 24(8), 1650–1659 (2006).
    [CrossRef] [PubMed]
  27. H. Cheng and T. Q. Duong, “Simplified laser-speckle-imaging analysis method and its application to retinal blood flow imaging,” Opt. Lett. 32(15), 2188–2190 (2007).
    [CrossRef] [PubMed]
  28. J. D. Briers and S. Webster, “Laser speckle contrast analysis (LASCA): a nonscanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt. 1(2), 174–179 (1996).
    [CrossRef]
  29. H. Cheng, Q. Luo, S. Zeng, S. Chen, J. Cen, and H. Gong, “Modified laser speckle imaging method with improved spatial resolution,” J. Biomed. Opt. 8(3), 559–564 (2003).
    [CrossRef] [PubMed]
  30. P. Li, S. Ni, L. Zhang, S. Zeng, and Q. Luo, “Imaging cerebral blood flow through the intact rat skull with temporal laser speckle imaging,” Opt. Lett. 31(12), 1824–1826 (2006).
    [CrossRef] [PubMed]
  31. K. Murari, N. Li, A. Rege, X. Jia, A. All, and N. Thakor, “Contrast-enhanced imaging of cerebral vasculature with laser speckle,” Appl. Opt. 46(22), 5340–5346 (2007).
    [CrossRef] [PubMed]
  32. A. K. Bui, K. M. Teves, E. Indrawan, W. Jia, and B. Choi, “Longitudinal, multimodal functional imaging of microvascular response to photothermal therapy,” Opt. Lett. 35(19), 3216–3218 (2010).
    [CrossRef] [PubMed]
  33. V. Kalchenko, D. Preise, M. Bayewitch, I. Fine, K. Burd, and A. Harmelin, “In vivo dynamic light scattering microscopy of tumour blood vessels,” J. Microsc. 228(2), 118–122 (2007).
    [CrossRef] [PubMed]
  34. W. Luo, P. Li, Z. Wang, S. Zeng, and Q. Luo, “Tracing collateral circulation after ischemia in rat cortex by laser speckle imaging,” J. Innovative Opt. Health Sci. 01(02), 217–226 (2008).
    [CrossRef]
  35. H. Cheng, Y. Yan, and T. Q. Duong, “Temporal statistical analysis of laser speckle images and its application to retinal blood-flow imaging,” Opt. Express 16(14), 10214–10219 (2008).
    [CrossRef] [PubMed]
  36. P. Zakharov, A. C. Völker, M. T. Wyss, F. Haiss, N. Calcinaghi, C. Zunzunegui, A. Buck, F. Scheffold, and B. Weber, “Dynamic laser speckle imaging of cerebral blood flow,” Opt. Express 17(16), 13904–13917 (2009).
    [CrossRef] [PubMed]
  37. J. W. Goodman, Statistical Optics (Wiley & Sons, New York, 1985).
  38. J. W. Goodman, Speckle Phenomena in Optical: Theory and Applications (Roberts and Company, Englewood, Colorado, 2007).
  39. D. D. Duncan and S. J. Kirkpatrick, “Performance analysis of a maximum-likelihood speckle motion estimator,” Opt. Express 10(18), 927–941 (2002).
    [PubMed]
  40. S. J. Kirkpatrick, D. D. Duncan, R. K. Wang, and M. T. Hinds, “Quantitative temporal speckle contrast imaging for tissue mechanics,” J. Opt. Soc. Am. A 24(12), 3728–3734 (2007).
    [CrossRef] [PubMed]
  41. D. D. Duncan, S. J. Kirkpatrick, and R. K. Wang, “Statistics of local speckle contrast,” J. Opt. Soc. Am. A 25(1), 9–15 (2008).
    [CrossRef] [PubMed]
  42. R. C. Gonzalez, R. E. Woods, and S. L. Eddins, Digital Image Processing Using MATLAB (Prentice Hall, New York, 2004).
  43. D. D. Duncan and S. J. Kirkpatrick, “The copula: a tool for simulating speckle dynamics,” J. Opt. Soc. Am. A 25(1), 231–237 (2008).
    [CrossRef] [PubMed]
  44. J. Qiu, P. Li, W. Luo, J. Wang, H. Zhang, and Q. Luo, “Spatiotemporal laser speckle contrast analysis for blood flow imaging with maximized speckle contrast,” J. Biomed. Opt. 15(1), 016003 (2010).
    [CrossRef] [PubMed]
  45. J. C. Ramirez-San-Juan, R. Ramos-García, I. Guizar-Iturbide, G. Martínez-Niconoff, and B. Choi, “Impact of velocity distribution assumption on simplified laser speckle imaging equation,” Opt. Express 16(5), 3197–3203 (2008).
    [CrossRef] [PubMed]
  46. R. M. Corless, G. H. Gonnet, D. E. G. Hare, and D. J. Jeffrey, “Lambert's W function in Maple,” Maple Tech. Newslett. 9, 12–22 (1993).
  47. R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, and D. E. Knuth, “On the Lambert-W Function,” Adv. Comput. Math. 5(1), 329–359 (1996).
    [CrossRef]
  48. S. Prahl, “Optical Absorption of Hemoglobin,” (1999), http://omlc.ogi.edu/spectra/hemoglobin/index.html .
  49. A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab. 21(3), 195–201 (2001).
    [CrossRef] [PubMed]
  50. A. Jakobsson and G. E. Nilsson, “Prediction of sampling depth and photon pathlength in laser Doppler flowmetry,” Med. Biol. Eng. Comput. 31(3), 301–307 (1993).
    [CrossRef] [PubMed]

2010 (7)

D. Hu, Y. Wang, Y. Liu, M. Li, and F. Liu, “Separation of arteries and veins in the cerebral cortex using physiological oscillations by optical imaging of intrinsic signal,” J. Biomed. Opt. 15(3), 036025 (2010).
[CrossRef] [PubMed]

L. Song, K. Maslov, and L. V. Wang, “Section-illumination photoacoustic microscopy for dynamic 3D imaging of microcirculation in vivo,” Opt. Lett. 35(9), 1482–1484 (2010).
[CrossRef] [PubMed]

P. Miao, M. Li, N. Li, A. Rege, Y. Zhu, N. Thakor, and S. Tong, “Detecting cerebral arteries and veins: from large to small,” J. Innovative Opt. Health Sci. 03(01), 61–67 (2010).
[CrossRef]

D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt. 15(1), 011109 (2010).
[CrossRef] [PubMed]

E. Farkas, F. Bari, and T. P. Obrenovitch, “Multi-modal imaging of anoxic depolarization and hemodynamic changes induced by cardiac arrest in the rat cerebral cortex,” Neuroimage 51(2), 734–742 (2010).
[CrossRef] [PubMed]

A. K. Bui, K. M. Teves, E. Indrawan, W. Jia, and B. Choi, “Longitudinal, multimodal functional imaging of microvascular response to photothermal therapy,” Opt. Lett. 35(19), 3216–3218 (2010).
[CrossRef] [PubMed]

J. Qiu, P. Li, W. Luo, J. Wang, H. Zhang, and Q. Luo, “Spatiotemporal laser speckle contrast analysis for blood flow imaging with maximized speckle contrast,” J. Biomed. Opt. 15(1), 016003 (2010).
[CrossRef] [PubMed]

2009 (4)

2008 (7)

I. Schiessl, W. Wang, and N. McLoughlin, “Independent components of the haemodynamic response in intrinsic optical imaging,” Neuroimage 39(2), 634–646 (2008).
[CrossRef] [PubMed]

Z. Wang, W. Luo, P. Li, J. Qiu, and Q. Luo, “Acute hyperglycemia compromises cerebral blood flow following cortical spreading depression in rats monitored by laser speckle imaging,” J. Biomed. Opt. 13(6), 064023 (2008).
[CrossRef] [PubMed]

W. Luo, P. Li, Z. Wang, S. Zeng, and Q. Luo, “Tracing collateral circulation after ischemia in rat cortex by laser speckle imaging,” J. Innovative Opt. Health Sci. 01(02), 217–226 (2008).
[CrossRef]

H. Cheng, Y. Yan, and T. Q. Duong, “Temporal statistical analysis of laser speckle images and its application to retinal blood-flow imaging,” Opt. Express 16(14), 10214–10219 (2008).
[CrossRef] [PubMed]

J. C. Ramirez-San-Juan, R. Ramos-García, I. Guizar-Iturbide, G. Martínez-Niconoff, and B. Choi, “Impact of velocity distribution assumption on simplified laser speckle imaging equation,” Opt. Express 16(5), 3197–3203 (2008).
[CrossRef] [PubMed]

D. D. Duncan, S. J. Kirkpatrick, and R. K. Wang, “Statistics of local speckle contrast,” J. Opt. Soc. Am. A 25(1), 9–15 (2008).
[CrossRef] [PubMed]

D. D. Duncan and S. J. Kirkpatrick, “The copula: a tool for simulating speckle dynamics,” J. Opt. Soc. Am. A 25(1), 231–237 (2008).
[CrossRef] [PubMed]

2007 (6)

K. Murari, N. Li, A. Rege, X. Jia, A. All, and N. Thakor, “Contrast-enhanced imaging of cerebral vasculature with laser speckle,” Appl. Opt. 46(22), 5340–5346 (2007).
[CrossRef] [PubMed]

S. J. Kirkpatrick, D. D. Duncan, R. K. Wang, and M. T. Hinds, “Quantitative temporal speckle contrast imaging for tissue mechanics,” J. Opt. Soc. Am. A 24(12), 3728–3734 (2007).
[CrossRef] [PubMed]

V. Kalchenko, D. Preise, M. Bayewitch, I. Fine, K. Burd, and A. Harmelin, “In vivo dynamic light scattering microscopy of tumour blood vessels,” J. Microsc. 228(2), 118–122 (2007).
[CrossRef] [PubMed]

H. Cheng and T. Q. Duong, “Simplified laser-speckle-imaging analysis method and its application to retinal blood flow imaging,” Opt. Lett. 32(15), 2188–2190 (2007).
[CrossRef] [PubMed]

H. Narasimha-Iyer, J. M. Beach, B. Khoobehi, and B. Roysam, “Automatic identification of retinal arteries and veins from dual-wavelength images using structural and functional features,” IEEE Trans. Biomed. Eng. 54(8), 1427–1435 (2007).
[CrossRef] [PubMed]

H. F. Zhang, K. Maslov, M. Sivaramakrishnan, G. Stoica, and L. V. Wang, “Imaging of hemoglobin oxygen saturation variations in single vessels in vivo using photoacoustic microscopy,” Appl. Phys. Lett. 90(5), 053901 (2007).
[CrossRef]

2006 (3)

P. Li, S. Ni, L. Zhang, S. Zeng, and Q. Luo, “Imaging cerebral blood flow through the intact rat skull with temporal laser speckle imaging,” Opt. Lett. 31(12), 1824–1826 (2006).
[CrossRef] [PubMed]

J. S. Paul, A. R. Luft, E. Yew, and F. S. Sheu, “Imaging the development of an ischemic core following photochemically induced cortical infarction in rats using Laser Speckle Contrast Analysis (LASCA),” Neuroimage 29(1), 38–45 (2006).
[CrossRef] [PubMed]

R. C. Bray, K. R. Forrester, J. Reed, C. Leonard, and J. Tulip, “Endoscopic laser speckle imaging of tissue blood flow: applications in the human knee,” J. Orthop. Res. 24(8), 1650–1659 (2006).
[CrossRef] [PubMed]

2005 (2)

A. K. Dunn, A. Devor, A. M. Dale, and D. A. Boas, “Spatial extent of oxygen metabolism and hemodynamic changes during functional activation of the rat somatosensory cortex,” Neuroimage 27(2), 279–290 (2005).
[CrossRef] [PubMed]

I. Vanzetta, R. Hildesheim, and A. Grinvald, “Compartment-resolved imaging of activity-dependent dynamics of cortical blood volume and oximetry,” J. Neurosci. 25(9), 2233–2244 (2005).
[CrossRef] [PubMed]

2004 (1)

B. Choi, N. M. Kang, and J. S. Nelson, “Laser speckle imaging for monitoring blood flow dynamics in the in vivo rodent dorsal skin fold model,” Microvasc. Res. 68(2), 143–146 (2004).
[CrossRef] [PubMed]

2003 (2)

H. Cheng, Q. Luo, S. Zeng, S. Chen, J. Cen, and H. Gong, “Modified laser speckle imaging method with improved spatial resolution,” J. Biomed. Opt. 8(3), 559–564 (2003).
[CrossRef] [PubMed]

D. M. McDonald and P. L. Choyke, “Imaging of angiogenesis: from microscope to clinic,” Nat. Med. 9(6), 713–725 (2003).
[CrossRef] [PubMed]

2002 (2)

J. Svensson, P. Leander, J. H. Maki, F. Stahlberg, and L. E. Olsson, “Separation of arteries and veins using flow-induced phase effects in contrast-enhanced MRA of the lower extremities,” Magn. Reson. Imaging 20(1), 49–57 (2002).
[CrossRef] [PubMed]

D. D. Duncan and S. J. Kirkpatrick, “Performance analysis of a maximum-likelihood speckle motion estimator,” Opt. Express 10(18), 927–941 (2002).
[PubMed]

2001 (2)

A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab. 21(3), 195–201 (2001).
[CrossRef] [PubMed]

T. Lei, J. K. Udupa, P. K. Saha, and D. Odhner, “Artery-vein separation via MRA--an image processing approach,” IEEE Trans. Med. Imaging 20(8), 689–703 (2001).
[CrossRef] [PubMed]

1996 (2)

J. D. Briers and S. Webster, “Laser speckle contrast analysis (LASCA): a nonscanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt. 1(2), 174–179 (1996).
[CrossRef]

R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, and D. E. Knuth, “On the Lambert-W Function,” Adv. Comput. Math. 5(1), 329–359 (1996).
[CrossRef]

1994 (1)

N. E. Cameron and M. A. Cotter, “The relationship of vascular changes to metabolic factors in diabetes mellitus and their role in the development of peripheral nerve complications,” Diabetes Metab. Rev. 10(3), 189–224 (1994).
[CrossRef] [PubMed]

1993 (2)

A. Jakobsson and G. E. Nilsson, “Prediction of sampling depth and photon pathlength in laser Doppler flowmetry,” Med. Biol. Eng. Comput. 31(3), 301–307 (1993).
[CrossRef] [PubMed]

R. M. Corless, G. H. Gonnet, D. E. G. Hare, and D. J. Jeffrey, “Lambert's W function in Maple,” Maple Tech. Newslett. 9, 12–22 (1993).

1990 (1)

F. Hansen-Smith, A. S. Greene, A. W. J. Cowley, and J. H. Lombard, “Structural changes during microvascular rarefaction in chronic hypertension,” Hypertension 15(6 Pt 2), 922–928 (1990).
[PubMed]

1982 (1)

K. Akita and H. Kuga, “A computer method of understanding ocular fundus images,” Pattern Recognit. 15(6), 431–443 (1982).
[CrossRef]

1973 (1)

S. Strandgaard, J. Olesen, E. Skinhoj, and N. A. Lassen, “Autoregulation of brain circulation in severe arterial hypertension,” BMJ 1(5852), 507–510 (1973).
[CrossRef] [PubMed]

Akita, K.

K. Akita and H. Kuga, “A computer method of understanding ocular fundus images,” Pattern Recognit. 15(6), 431–443 (1982).
[CrossRef]

All, A.

Bari, F.

E. Farkas, F. Bari, and T. P. Obrenovitch, “Multi-modal imaging of anoxic depolarization and hemodynamic changes induced by cardiac arrest in the rat cerebral cortex,” Neuroimage 51(2), 734–742 (2010).
[CrossRef] [PubMed]

Bayewitch, M.

V. Kalchenko, D. Preise, M. Bayewitch, I. Fine, K. Burd, and A. Harmelin, “In vivo dynamic light scattering microscopy of tumour blood vessels,” J. Microsc. 228(2), 118–122 (2007).
[CrossRef] [PubMed]

Beach, J. M.

H. Narasimha-Iyer, J. M. Beach, B. Khoobehi, and B. Roysam, “Automatic identification of retinal arteries and veins from dual-wavelength images using structural and functional features,” IEEE Trans. Biomed. Eng. 54(8), 1427–1435 (2007).
[CrossRef] [PubMed]

Boas, D. A.

D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt. 15(1), 011109 (2010).
[CrossRef] [PubMed]

A. K. Dunn, A. Devor, A. M. Dale, and D. A. Boas, “Spatial extent of oxygen metabolism and hemodynamic changes during functional activation of the rat somatosensory cortex,” Neuroimage 27(2), 279–290 (2005).
[CrossRef] [PubMed]

A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab. 21(3), 195–201 (2001).
[CrossRef] [PubMed]

Bolay, H.

A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab. 21(3), 195–201 (2001).
[CrossRef] [PubMed]

Bray, R. C.

R. C. Bray, K. R. Forrester, J. Reed, C. Leonard, and J. Tulip, “Endoscopic laser speckle imaging of tissue blood flow: applications in the human knee,” J. Orthop. Res. 24(8), 1650–1659 (2006).
[CrossRef] [PubMed]

Briers, J. D.

J. D. Briers and S. Webster, “Laser speckle contrast analysis (LASCA): a nonscanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt. 1(2), 174–179 (1996).
[CrossRef]

Buck, A.

Bui, A. K.

Burd, K.

V. Kalchenko, D. Preise, M. Bayewitch, I. Fine, K. Burd, and A. Harmelin, “In vivo dynamic light scattering microscopy of tumour blood vessels,” J. Microsc. 228(2), 118–122 (2007).
[CrossRef] [PubMed]

Calcinaghi, N.

Cameron, N. E.

N. E. Cameron and M. A. Cotter, “The relationship of vascular changes to metabolic factors in diabetes mellitus and their role in the development of peripheral nerve complications,” Diabetes Metab. Rev. 10(3), 189–224 (1994).
[CrossRef] [PubMed]

Cen, J.

H. Cheng, Q. Luo, S. Zeng, S. Chen, J. Cen, and H. Gong, “Modified laser speckle imaging method with improved spatial resolution,” J. Biomed. Opt. 8(3), 559–564 (2003).
[CrossRef] [PubMed]

Chen, S.

T. P. Obrenovitch, S. Chen, and E. Farkas, “Simultaneous, live imaging of cortical spreading depression and associated cerebral blood flow changes, by combining voltage-sensitive dye and laser speckle contrast methods,” Neuroimage 45(1), 68–74 (2009).
[CrossRef] [PubMed]

H. Cheng, Q. Luo, S. Zeng, S. Chen, J. Cen, and H. Gong, “Modified laser speckle imaging method with improved spatial resolution,” J. Biomed. Opt. 8(3), 559–564 (2003).
[CrossRef] [PubMed]

Cheng, H.

Choi, B.

Choyke, P. L.

D. M. McDonald and P. L. Choyke, “Imaging of angiogenesis: from microscope to clinic,” Nat. Med. 9(6), 713–725 (2003).
[CrossRef] [PubMed]

Corless, R. M.

R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, and D. E. Knuth, “On the Lambert-W Function,” Adv. Comput. Math. 5(1), 329–359 (1996).
[CrossRef]

R. M. Corless, G. H. Gonnet, D. E. G. Hare, and D. J. Jeffrey, “Lambert's W function in Maple,” Maple Tech. Newslett. 9, 12–22 (1993).

Cotter, M. A.

N. E. Cameron and M. A. Cotter, “The relationship of vascular changes to metabolic factors in diabetes mellitus and their role in the development of peripheral nerve complications,” Diabetes Metab. Rev. 10(3), 189–224 (1994).
[CrossRef] [PubMed]

Cowley, A. W. J.

F. Hansen-Smith, A. S. Greene, A. W. J. Cowley, and J. H. Lombard, “Structural changes during microvascular rarefaction in chronic hypertension,” Hypertension 15(6 Pt 2), 922–928 (1990).
[PubMed]

Dale, A. M.

A. K. Dunn, A. Devor, A. M. Dale, and D. A. Boas, “Spatial extent of oxygen metabolism and hemodynamic changes during functional activation of the rat somatosensory cortex,” Neuroimage 27(2), 279–290 (2005).
[CrossRef] [PubMed]

Devor, A.

A. K. Dunn, A. Devor, A. M. Dale, and D. A. Boas, “Spatial extent of oxygen metabolism and hemodynamic changes during functional activation of the rat somatosensory cortex,” Neuroimage 27(2), 279–290 (2005).
[CrossRef] [PubMed]

Du, C.

Duncan, D. D.

Dunn, A. K.

D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt. 15(1), 011109 (2010).
[CrossRef] [PubMed]

A. K. Dunn, A. Devor, A. M. Dale, and D. A. Boas, “Spatial extent of oxygen metabolism and hemodynamic changes during functional activation of the rat somatosensory cortex,” Neuroimage 27(2), 279–290 (2005).
[CrossRef] [PubMed]

A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab. 21(3), 195–201 (2001).
[CrossRef] [PubMed]

Duong, T. Q.

Farkas, E.

E. Farkas, F. Bari, and T. P. Obrenovitch, “Multi-modal imaging of anoxic depolarization and hemodynamic changes induced by cardiac arrest in the rat cerebral cortex,” Neuroimage 51(2), 734–742 (2010).
[CrossRef] [PubMed]

T. P. Obrenovitch, S. Chen, and E. Farkas, “Simultaneous, live imaging of cortical spreading depression and associated cerebral blood flow changes, by combining voltage-sensitive dye and laser speckle contrast methods,” Neuroimage 45(1), 68–74 (2009).
[CrossRef] [PubMed]

Fine, I.

V. Kalchenko, D. Preise, M. Bayewitch, I. Fine, K. Burd, and A. Harmelin, “In vivo dynamic light scattering microscopy of tumour blood vessels,” J. Microsc. 228(2), 118–122 (2007).
[CrossRef] [PubMed]

Forrester, K. R.

R. C. Bray, K. R. Forrester, J. Reed, C. Leonard, and J. Tulip, “Endoscopic laser speckle imaging of tissue blood flow: applications in the human knee,” J. Orthop. Res. 24(8), 1650–1659 (2006).
[CrossRef] [PubMed]

Gong, H.

H. Cheng, Q. Luo, S. Zeng, S. Chen, J. Cen, and H. Gong, “Modified laser speckle imaging method with improved spatial resolution,” J. Biomed. Opt. 8(3), 559–564 (2003).
[CrossRef] [PubMed]

Gonnet, G. H.

R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, and D. E. Knuth, “On the Lambert-W Function,” Adv. Comput. Math. 5(1), 329–359 (1996).
[CrossRef]

R. M. Corless, G. H. Gonnet, D. E. G. Hare, and D. J. Jeffrey, “Lambert's W function in Maple,” Maple Tech. Newslett. 9, 12–22 (1993).

Greene, A. S.

F. Hansen-Smith, A. S. Greene, A. W. J. Cowley, and J. H. Lombard, “Structural changes during microvascular rarefaction in chronic hypertension,” Hypertension 15(6 Pt 2), 922–928 (1990).
[PubMed]

Grinvald, A.

I. Vanzetta, R. Hildesheim, and A. Grinvald, “Compartment-resolved imaging of activity-dependent dynamics of cortical blood volume and oximetry,” J. Neurosci. 25(9), 2233–2244 (2005).
[CrossRef] [PubMed]

Guizar-Iturbide, I.

Haiss, F.

Hansen-Smith, F.

F. Hansen-Smith, A. S. Greene, A. W. J. Cowley, and J. H. Lombard, “Structural changes during microvascular rarefaction in chronic hypertension,” Hypertension 15(6 Pt 2), 922–928 (1990).
[PubMed]

Hare, D. E. G.

R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, and D. E. Knuth, “On the Lambert-W Function,” Adv. Comput. Math. 5(1), 329–359 (1996).
[CrossRef]

R. M. Corless, G. H. Gonnet, D. E. G. Hare, and D. J. Jeffrey, “Lambert's W function in Maple,” Maple Tech. Newslett. 9, 12–22 (1993).

Harmelin, A.

V. Kalchenko, D. Preise, M. Bayewitch, I. Fine, K. Burd, and A. Harmelin, “In vivo dynamic light scattering microscopy of tumour blood vessels,” J. Microsc. 228(2), 118–122 (2007).
[CrossRef] [PubMed]

Hildesheim, R.

I. Vanzetta, R. Hildesheim, and A. Grinvald, “Compartment-resolved imaging of activity-dependent dynamics of cortical blood volume and oximetry,” J. Neurosci. 25(9), 2233–2244 (2005).
[CrossRef] [PubMed]

Hinds, M. T.

Hu, D.

D. Hu, Y. Wang, Y. Liu, M. Li, and F. Liu, “Separation of arteries and veins in the cerebral cortex using physiological oscillations by optical imaging of intrinsic signal,” J. Biomed. Opt. 15(3), 036025 (2010).
[CrossRef] [PubMed]

Indrawan, E.

Jakobsson, A.

A. Jakobsson and G. E. Nilsson, “Prediction of sampling depth and photon pathlength in laser Doppler flowmetry,” Med. Biol. Eng. Comput. 31(3), 301–307 (1993).
[CrossRef] [PubMed]

Jeffrey, D. J.

R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, and D. E. Knuth, “On the Lambert-W Function,” Adv. Comput. Math. 5(1), 329–359 (1996).
[CrossRef]

R. M. Corless, G. H. Gonnet, D. E. G. Hare, and D. J. Jeffrey, “Lambert's W function in Maple,” Maple Tech. Newslett. 9, 12–22 (1993).

Jia, W.

Jia, X.

Kalchenko, V.

V. Kalchenko, D. Preise, M. Bayewitch, I. Fine, K. Burd, and A. Harmelin, “In vivo dynamic light scattering microscopy of tumour blood vessels,” J. Microsc. 228(2), 118–122 (2007).
[CrossRef] [PubMed]

Kang, N. M.

B. Choi, N. M. Kang, and J. S. Nelson, “Laser speckle imaging for monitoring blood flow dynamics in the in vivo rodent dorsal skin fold model,” Microvasc. Res. 68(2), 143–146 (2004).
[CrossRef] [PubMed]

Khoobehi, B.

H. Narasimha-Iyer, J. M. Beach, B. Khoobehi, and B. Roysam, “Automatic identification of retinal arteries and veins from dual-wavelength images using structural and functional features,” IEEE Trans. Biomed. Eng. 54(8), 1427–1435 (2007).
[CrossRef] [PubMed]

Kirkpatrick, S. J.

Knuth, D. E.

R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, and D. E. Knuth, “On the Lambert-W Function,” Adv. Comput. Math. 5(1), 329–359 (1996).
[CrossRef]

Kuga, H.

K. Akita and H. Kuga, “A computer method of understanding ocular fundus images,” Pattern Recognit. 15(6), 431–443 (1982).
[CrossRef]

Lassen, N. A.

S. Strandgaard, J. Olesen, E. Skinhoj, and N. A. Lassen, “Autoregulation of brain circulation in severe arterial hypertension,” BMJ 1(5852), 507–510 (1973).
[CrossRef] [PubMed]

Leander, P.

J. Svensson, P. Leander, J. H. Maki, F. Stahlberg, and L. E. Olsson, “Separation of arteries and veins using flow-induced phase effects in contrast-enhanced MRA of the lower extremities,” Magn. Reson. Imaging 20(1), 49–57 (2002).
[CrossRef] [PubMed]

Lei, T.

T. Lei, J. K. Udupa, P. K. Saha, and D. Odhner, “Artery-vein separation via MRA--an image processing approach,” IEEE Trans. Med. Imaging 20(8), 689–703 (2001).
[CrossRef] [PubMed]

Leonard, C.

R. C. Bray, K. R. Forrester, J. Reed, C. Leonard, and J. Tulip, “Endoscopic laser speckle imaging of tissue blood flow: applications in the human knee,” J. Orthop. Res. 24(8), 1650–1659 (2006).
[CrossRef] [PubMed]

Li, M.

D. Hu, Y. Wang, Y. Liu, M. Li, and F. Liu, “Separation of arteries and veins in the cerebral cortex using physiological oscillations by optical imaging of intrinsic signal,” J. Biomed. Opt. 15(3), 036025 (2010).
[CrossRef] [PubMed]

P. Miao, M. Li, N. Li, A. Rege, Y. Zhu, N. Thakor, and S. Tong, “Detecting cerebral arteries and veins: from large to small,” J. Innovative Opt. Health Sci. 03(01), 61–67 (2010).
[CrossRef]

Li, N.

P. Miao, M. Li, N. Li, A. Rege, Y. Zhu, N. Thakor, and S. Tong, “Detecting cerebral arteries and veins: from large to small,” J. Innovative Opt. Health Sci. 03(01), 61–67 (2010).
[CrossRef]

K. Murari, N. Li, A. Rege, X. Jia, A. All, and N. Thakor, “Contrast-enhanced imaging of cerebral vasculature with laser speckle,” Appl. Opt. 46(22), 5340–5346 (2007).
[CrossRef] [PubMed]

Li, P.

J. Qiu, P. Li, W. Luo, J. Wang, H. Zhang, and Q. Luo, “Spatiotemporal laser speckle contrast analysis for blood flow imaging with maximized speckle contrast,” J. Biomed. Opt. 15(1), 016003 (2010).
[CrossRef] [PubMed]

Z. Wang, W. Luo, P. Li, J. Qiu, and Q. Luo, “Acute hyperglycemia compromises cerebral blood flow following cortical spreading depression in rats monitored by laser speckle imaging,” J. Biomed. Opt. 13(6), 064023 (2008).
[CrossRef] [PubMed]

W. Luo, P. Li, Z. Wang, S. Zeng, and Q. Luo, “Tracing collateral circulation after ischemia in rat cortex by laser speckle imaging,” J. Innovative Opt. Health Sci. 01(02), 217–226 (2008).
[CrossRef]

P. Li, S. Ni, L. Zhang, S. Zeng, and Q. Luo, “Imaging cerebral blood flow through the intact rat skull with temporal laser speckle imaging,” Opt. Lett. 31(12), 1824–1826 (2006).
[CrossRef] [PubMed]

Liu, F.

D. Hu, Y. Wang, Y. Liu, M. Li, and F. Liu, “Separation of arteries and veins in the cerebral cortex using physiological oscillations by optical imaging of intrinsic signal,” J. Biomed. Opt. 15(3), 036025 (2010).
[CrossRef] [PubMed]

Liu, Y.

D. Hu, Y. Wang, Y. Liu, M. Li, and F. Liu, “Separation of arteries and veins in the cerebral cortex using physiological oscillations by optical imaging of intrinsic signal,” J. Biomed. Opt. 15(3), 036025 (2010).
[CrossRef] [PubMed]

Lombard, J. H.

F. Hansen-Smith, A. S. Greene, A. W. J. Cowley, and J. H. Lombard, “Structural changes during microvascular rarefaction in chronic hypertension,” Hypertension 15(6 Pt 2), 922–928 (1990).
[PubMed]

Luft, A. R.

J. S. Paul, A. R. Luft, E. Yew, and F. S. Sheu, “Imaging the development of an ischemic core following photochemically induced cortical infarction in rats using Laser Speckle Contrast Analysis (LASCA),” Neuroimage 29(1), 38–45 (2006).
[CrossRef] [PubMed]

Luo, Q.

J. Qiu, P. Li, W. Luo, J. Wang, H. Zhang, and Q. Luo, “Spatiotemporal laser speckle contrast analysis for blood flow imaging with maximized speckle contrast,” J. Biomed. Opt. 15(1), 016003 (2010).
[CrossRef] [PubMed]

Z. Wang, W. Luo, P. Li, J. Qiu, and Q. Luo, “Acute hyperglycemia compromises cerebral blood flow following cortical spreading depression in rats monitored by laser speckle imaging,” J. Biomed. Opt. 13(6), 064023 (2008).
[CrossRef] [PubMed]

W. Luo, P. Li, Z. Wang, S. Zeng, and Q. Luo, “Tracing collateral circulation after ischemia in rat cortex by laser speckle imaging,” J. Innovative Opt. Health Sci. 01(02), 217–226 (2008).
[CrossRef]

P. Li, S. Ni, L. Zhang, S. Zeng, and Q. Luo, “Imaging cerebral blood flow through the intact rat skull with temporal laser speckle imaging,” Opt. Lett. 31(12), 1824–1826 (2006).
[CrossRef] [PubMed]

H. Cheng, Q. Luo, S. Zeng, S. Chen, J. Cen, and H. Gong, “Modified laser speckle imaging method with improved spatial resolution,” J. Biomed. Opt. 8(3), 559–564 (2003).
[CrossRef] [PubMed]

Luo, W.

J. Qiu, P. Li, W. Luo, J. Wang, H. Zhang, and Q. Luo, “Spatiotemporal laser speckle contrast analysis for blood flow imaging with maximized speckle contrast,” J. Biomed. Opt. 15(1), 016003 (2010).
[CrossRef] [PubMed]

Z. Wang, W. Luo, P. Li, J. Qiu, and Q. Luo, “Acute hyperglycemia compromises cerebral blood flow following cortical spreading depression in rats monitored by laser speckle imaging,” J. Biomed. Opt. 13(6), 064023 (2008).
[CrossRef] [PubMed]

W. Luo, P. Li, Z. Wang, S. Zeng, and Q. Luo, “Tracing collateral circulation after ischemia in rat cortex by laser speckle imaging,” J. Innovative Opt. Health Sci. 01(02), 217–226 (2008).
[CrossRef]

Luo, Z.

Maki, J. H.

J. Svensson, P. Leander, J. H. Maki, F. Stahlberg, and L. E. Olsson, “Separation of arteries and veins using flow-induced phase effects in contrast-enhanced MRA of the lower extremities,” Magn. Reson. Imaging 20(1), 49–57 (2002).
[CrossRef] [PubMed]

Martínez-Niconoff, G.

Maslov, K.

L. Song, K. Maslov, and L. V. Wang, “Section-illumination photoacoustic microscopy for dynamic 3D imaging of microcirculation in vivo,” Opt. Lett. 35(9), 1482–1484 (2010).
[CrossRef] [PubMed]

H. F. Zhang, K. Maslov, M. Sivaramakrishnan, G. Stoica, and L. V. Wang, “Imaging of hemoglobin oxygen saturation variations in single vessels in vivo using photoacoustic microscopy,” Appl. Phys. Lett. 90(5), 053901 (2007).
[CrossRef]

McDonald, D. M.

D. M. McDonald and P. L. Choyke, “Imaging of angiogenesis: from microscope to clinic,” Nat. Med. 9(6), 713–725 (2003).
[CrossRef] [PubMed]

McLoughlin, N.

I. Schiessl, W. Wang, and N. McLoughlin, “Independent components of the haemodynamic response in intrinsic optical imaging,” Neuroimage 39(2), 634–646 (2008).
[CrossRef] [PubMed]

Miao, P.

P. Miao, M. Li, N. Li, A. Rege, Y. Zhu, N. Thakor, and S. Tong, “Detecting cerebral arteries and veins: from large to small,” J. Innovative Opt. Health Sci. 03(01), 61–67 (2010).
[CrossRef]

Moskowitz, M. A.

A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab. 21(3), 195–201 (2001).
[CrossRef] [PubMed]

Murari, K.

Narasimha-Iyer, H.

H. Narasimha-Iyer, J. M. Beach, B. Khoobehi, and B. Roysam, “Automatic identification of retinal arteries and veins from dual-wavelength images using structural and functional features,” IEEE Trans. Biomed. Eng. 54(8), 1427–1435 (2007).
[CrossRef] [PubMed]

Nelson, J. S.

B. Choi, N. M. Kang, and J. S. Nelson, “Laser speckle imaging for monitoring blood flow dynamics in the in vivo rodent dorsal skin fold model,” Microvasc. Res. 68(2), 143–146 (2004).
[CrossRef] [PubMed]

Ni, S.

Nilsson, G. E.

A. Jakobsson and G. E. Nilsson, “Prediction of sampling depth and photon pathlength in laser Doppler flowmetry,” Med. Biol. Eng. Comput. 31(3), 301–307 (1993).
[CrossRef] [PubMed]

Obrenovitch, T. P.

E. Farkas, F. Bari, and T. P. Obrenovitch, “Multi-modal imaging of anoxic depolarization and hemodynamic changes induced by cardiac arrest in the rat cerebral cortex,” Neuroimage 51(2), 734–742 (2010).
[CrossRef] [PubMed]

T. P. Obrenovitch, S. Chen, and E. Farkas, “Simultaneous, live imaging of cortical spreading depression and associated cerebral blood flow changes, by combining voltage-sensitive dye and laser speckle contrast methods,” Neuroimage 45(1), 68–74 (2009).
[CrossRef] [PubMed]

Odhner, D.

T. Lei, J. K. Udupa, P. K. Saha, and D. Odhner, “Artery-vein separation via MRA--an image processing approach,” IEEE Trans. Med. Imaging 20(8), 689–703 (2001).
[CrossRef] [PubMed]

Olesen, J.

S. Strandgaard, J. Olesen, E. Skinhoj, and N. A. Lassen, “Autoregulation of brain circulation in severe arterial hypertension,” BMJ 1(5852), 507–510 (1973).
[CrossRef] [PubMed]

Olsson, L. E.

J. Svensson, P. Leander, J. H. Maki, F. Stahlberg, and L. E. Olsson, “Separation of arteries and veins using flow-induced phase effects in contrast-enhanced MRA of the lower extremities,” Magn. Reson. Imaging 20(1), 49–57 (2002).
[CrossRef] [PubMed]

Pan, Y.

Paul, J. S.

J. S. Paul, A. R. Luft, E. Yew, and F. S. Sheu, “Imaging the development of an ischemic core following photochemically induced cortical infarction in rats using Laser Speckle Contrast Analysis (LASCA),” Neuroimage 29(1), 38–45 (2006).
[CrossRef] [PubMed]

Preise, D.

V. Kalchenko, D. Preise, M. Bayewitch, I. Fine, K. Burd, and A. Harmelin, “In vivo dynamic light scattering microscopy of tumour blood vessels,” J. Microsc. 228(2), 118–122 (2007).
[CrossRef] [PubMed]

Qiu, J.

J. Qiu, P. Li, W. Luo, J. Wang, H. Zhang, and Q. Luo, “Spatiotemporal laser speckle contrast analysis for blood flow imaging with maximized speckle contrast,” J. Biomed. Opt. 15(1), 016003 (2010).
[CrossRef] [PubMed]

Z. Wang, W. Luo, P. Li, J. Qiu, and Q. Luo, “Acute hyperglycemia compromises cerebral blood flow following cortical spreading depression in rats monitored by laser speckle imaging,” J. Biomed. Opt. 13(6), 064023 (2008).
[CrossRef] [PubMed]

Ramirez-San-Juan, J. C.

Ramos-García, R.

Reed, J.

R. C. Bray, K. R. Forrester, J. Reed, C. Leonard, and J. Tulip, “Endoscopic laser speckle imaging of tissue blood flow: applications in the human knee,” J. Orthop. Res. 24(8), 1650–1659 (2006).
[CrossRef] [PubMed]

Rege, A.

P. Miao, M. Li, N. Li, A. Rege, Y. Zhu, N. Thakor, and S. Tong, “Detecting cerebral arteries and veins: from large to small,” J. Innovative Opt. Health Sci. 03(01), 61–67 (2010).
[CrossRef]

K. Murari, N. Li, A. Rege, X. Jia, A. All, and N. Thakor, “Contrast-enhanced imaging of cerebral vasculature with laser speckle,” Appl. Opt. 46(22), 5340–5346 (2007).
[CrossRef] [PubMed]

Roysam, B.

H. Narasimha-Iyer, J. M. Beach, B. Khoobehi, and B. Roysam, “Automatic identification of retinal arteries and veins from dual-wavelength images using structural and functional features,” IEEE Trans. Biomed. Eng. 54(8), 1427–1435 (2007).
[CrossRef] [PubMed]

Saha, P. K.

T. Lei, J. K. Udupa, P. K. Saha, and D. Odhner, “Artery-vein separation via MRA--an image processing approach,” IEEE Trans. Med. Imaging 20(8), 689–703 (2001).
[CrossRef] [PubMed]

Scheffold, F.

Schiessl, I.

I. Schiessl, W. Wang, and N. McLoughlin, “Independent components of the haemodynamic response in intrinsic optical imaging,” Neuroimage 39(2), 634–646 (2008).
[CrossRef] [PubMed]

Sheu, F. S.

J. S. Paul, A. R. Luft, E. Yew, and F. S. Sheu, “Imaging the development of an ischemic core following photochemically induced cortical infarction in rats using Laser Speckle Contrast Analysis (LASCA),” Neuroimage 29(1), 38–45 (2006).
[CrossRef] [PubMed]

Sivaramakrishnan, M.

H. F. Zhang, K. Maslov, M. Sivaramakrishnan, G. Stoica, and L. V. Wang, “Imaging of hemoglobin oxygen saturation variations in single vessels in vivo using photoacoustic microscopy,” Appl. Phys. Lett. 90(5), 053901 (2007).
[CrossRef]

Skinhoj, E.

S. Strandgaard, J. Olesen, E. Skinhoj, and N. A. Lassen, “Autoregulation of brain circulation in severe arterial hypertension,” BMJ 1(5852), 507–510 (1973).
[CrossRef] [PubMed]

Song, L.

Stahlberg, F.

J. Svensson, P. Leander, J. H. Maki, F. Stahlberg, and L. E. Olsson, “Separation of arteries and veins using flow-induced phase effects in contrast-enhanced MRA of the lower extremities,” Magn. Reson. Imaging 20(1), 49–57 (2002).
[CrossRef] [PubMed]

Stoica, G.

H. F. Zhang, K. Maslov, M. Sivaramakrishnan, G. Stoica, and L. V. Wang, “Imaging of hemoglobin oxygen saturation variations in single vessels in vivo using photoacoustic microscopy,” Appl. Phys. Lett. 90(5), 053901 (2007).
[CrossRef]

Strandgaard, S.

S. Strandgaard, J. Olesen, E. Skinhoj, and N. A. Lassen, “Autoregulation of brain circulation in severe arterial hypertension,” BMJ 1(5852), 507–510 (1973).
[CrossRef] [PubMed]

Svensson, J.

J. Svensson, P. Leander, J. H. Maki, F. Stahlberg, and L. E. Olsson, “Separation of arteries and veins using flow-induced phase effects in contrast-enhanced MRA of the lower extremities,” Magn. Reson. Imaging 20(1), 49–57 (2002).
[CrossRef] [PubMed]

Teves, K. M.

Thakor, N.

P. Miao, M. Li, N. Li, A. Rege, Y. Zhu, N. Thakor, and S. Tong, “Detecting cerebral arteries and veins: from large to small,” J. Innovative Opt. Health Sci. 03(01), 61–67 (2010).
[CrossRef]

K. Murari, N. Li, A. Rege, X. Jia, A. All, and N. Thakor, “Contrast-enhanced imaging of cerebral vasculature with laser speckle,” Appl. Opt. 46(22), 5340–5346 (2007).
[CrossRef] [PubMed]

Tong, S.

P. Miao, M. Li, N. Li, A. Rege, Y. Zhu, N. Thakor, and S. Tong, “Detecting cerebral arteries and veins: from large to small,” J. Innovative Opt. Health Sci. 03(01), 61–67 (2010).
[CrossRef]

Tulip, J.

R. C. Bray, K. R. Forrester, J. Reed, C. Leonard, and J. Tulip, “Endoscopic laser speckle imaging of tissue blood flow: applications in the human knee,” J. Orthop. Res. 24(8), 1650–1659 (2006).
[CrossRef] [PubMed]

Tully, M.

Udupa, J. K.

T. Lei, J. K. Udupa, P. K. Saha, and D. Odhner, “Artery-vein separation via MRA--an image processing approach,” IEEE Trans. Med. Imaging 20(8), 689–703 (2001).
[CrossRef] [PubMed]

Vanzetta, I.

I. Vanzetta, R. Hildesheim, and A. Grinvald, “Compartment-resolved imaging of activity-dependent dynamics of cortical blood volume and oximetry,” J. Neurosci. 25(9), 2233–2244 (2005).
[CrossRef] [PubMed]

Völker, A. C.

Wang, J.

J. Qiu, P. Li, W. Luo, J. Wang, H. Zhang, and Q. Luo, “Spatiotemporal laser speckle contrast analysis for blood flow imaging with maximized speckle contrast,” J. Biomed. Opt. 15(1), 016003 (2010).
[CrossRef] [PubMed]

Wang, L. V.

L. Song, K. Maslov, and L. V. Wang, “Section-illumination photoacoustic microscopy for dynamic 3D imaging of microcirculation in vivo,” Opt. Lett. 35(9), 1482–1484 (2010).
[CrossRef] [PubMed]

H. F. Zhang, K. Maslov, M. Sivaramakrishnan, G. Stoica, and L. V. Wang, “Imaging of hemoglobin oxygen saturation variations in single vessels in vivo using photoacoustic microscopy,” Appl. Phys. Lett. 90(5), 053901 (2007).
[CrossRef]

Wang, R. K.

Wang, W.

I. Schiessl, W. Wang, and N. McLoughlin, “Independent components of the haemodynamic response in intrinsic optical imaging,” Neuroimage 39(2), 634–646 (2008).
[CrossRef] [PubMed]

Wang, Y.

D. Hu, Y. Wang, Y. Liu, M. Li, and F. Liu, “Separation of arteries and veins in the cerebral cortex using physiological oscillations by optical imaging of intrinsic signal,” J. Biomed. Opt. 15(3), 036025 (2010).
[CrossRef] [PubMed]

Wang, Z.

W. Luo, P. Li, Z. Wang, S. Zeng, and Q. Luo, “Tracing collateral circulation after ischemia in rat cortex by laser speckle imaging,” J. Innovative Opt. Health Sci. 01(02), 217–226 (2008).
[CrossRef]

Z. Wang, W. Luo, P. Li, J. Qiu, and Q. Luo, “Acute hyperglycemia compromises cerebral blood flow following cortical spreading depression in rats monitored by laser speckle imaging,” J. Biomed. Opt. 13(6), 064023 (2008).
[CrossRef] [PubMed]

Weber, B.

Webster, S.

J. D. Briers and S. Webster, “Laser speckle contrast analysis (LASCA): a nonscanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt. 1(2), 174–179 (1996).
[CrossRef]

Wyss, M. T.

Yan, Y.

Yew, E.

J. S. Paul, A. R. Luft, E. Yew, and F. S. Sheu, “Imaging the development of an ischemic core following photochemically induced cortical infarction in rats using Laser Speckle Contrast Analysis (LASCA),” Neuroimage 29(1), 38–45 (2006).
[CrossRef] [PubMed]

Yuan, Z.

Zakharov, P.

Zeng, S.

W. Luo, P. Li, Z. Wang, S. Zeng, and Q. Luo, “Tracing collateral circulation after ischemia in rat cortex by laser speckle imaging,” J. Innovative Opt. Health Sci. 01(02), 217–226 (2008).
[CrossRef]

P. Li, S. Ni, L. Zhang, S. Zeng, and Q. Luo, “Imaging cerebral blood flow through the intact rat skull with temporal laser speckle imaging,” Opt. Lett. 31(12), 1824–1826 (2006).
[CrossRef] [PubMed]

H. Cheng, Q. Luo, S. Zeng, S. Chen, J. Cen, and H. Gong, “Modified laser speckle imaging method with improved spatial resolution,” J. Biomed. Opt. 8(3), 559–564 (2003).
[CrossRef] [PubMed]

Zhang, H.

J. Qiu, P. Li, W. Luo, J. Wang, H. Zhang, and Q. Luo, “Spatiotemporal laser speckle contrast analysis for blood flow imaging with maximized speckle contrast,” J. Biomed. Opt. 15(1), 016003 (2010).
[CrossRef] [PubMed]

Zhang, H. F.

H. F. Zhang, K. Maslov, M. Sivaramakrishnan, G. Stoica, and L. V. Wang, “Imaging of hemoglobin oxygen saturation variations in single vessels in vivo using photoacoustic microscopy,” Appl. Phys. Lett. 90(5), 053901 (2007).
[CrossRef]

Zhang, L.

Zhu, Y.

P. Miao, M. Li, N. Li, A. Rege, Y. Zhu, N. Thakor, and S. Tong, “Detecting cerebral arteries and veins: from large to small,” J. Innovative Opt. Health Sci. 03(01), 61–67 (2010).
[CrossRef]

Zunzunegui, C.

Adv. Comput. Math. (1)

R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, and D. E. Knuth, “On the Lambert-W Function,” Adv. Comput. Math. 5(1), 329–359 (1996).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

H. F. Zhang, K. Maslov, M. Sivaramakrishnan, G. Stoica, and L. V. Wang, “Imaging of hemoglobin oxygen saturation variations in single vessels in vivo using photoacoustic microscopy,” Appl. Phys. Lett. 90(5), 053901 (2007).
[CrossRef]

BMJ (1)

S. Strandgaard, J. Olesen, E. Skinhoj, and N. A. Lassen, “Autoregulation of brain circulation in severe arterial hypertension,” BMJ 1(5852), 507–510 (1973).
[CrossRef] [PubMed]

Diabetes Metab. Rev. (1)

N. E. Cameron and M. A. Cotter, “The relationship of vascular changes to metabolic factors in diabetes mellitus and their role in the development of peripheral nerve complications,” Diabetes Metab. Rev. 10(3), 189–224 (1994).
[CrossRef] [PubMed]

Hypertension (1)

F. Hansen-Smith, A. S. Greene, A. W. J. Cowley, and J. H. Lombard, “Structural changes during microvascular rarefaction in chronic hypertension,” Hypertension 15(6 Pt 2), 922–928 (1990).
[PubMed]

IEEE Trans. Biomed. Eng. (1)

H. Narasimha-Iyer, J. M. Beach, B. Khoobehi, and B. Roysam, “Automatic identification of retinal arteries and veins from dual-wavelength images using structural and functional features,” IEEE Trans. Biomed. Eng. 54(8), 1427–1435 (2007).
[CrossRef] [PubMed]

IEEE Trans. Med. Imaging (1)

T. Lei, J. K. Udupa, P. K. Saha, and D. Odhner, “Artery-vein separation via MRA--an image processing approach,” IEEE Trans. Med. Imaging 20(8), 689–703 (2001).
[CrossRef] [PubMed]

J. Biomed. Opt. (6)

Z. Wang, W. Luo, P. Li, J. Qiu, and Q. Luo, “Acute hyperglycemia compromises cerebral blood flow following cortical spreading depression in rats monitored by laser speckle imaging,” J. Biomed. Opt. 13(6), 064023 (2008).
[CrossRef] [PubMed]

J. D. Briers and S. Webster, “Laser speckle contrast analysis (LASCA): a nonscanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt. 1(2), 174–179 (1996).
[CrossRef]

H. Cheng, Q. Luo, S. Zeng, S. Chen, J. Cen, and H. Gong, “Modified laser speckle imaging method with improved spatial resolution,” J. Biomed. Opt. 8(3), 559–564 (2003).
[CrossRef] [PubMed]

D. Hu, Y. Wang, Y. Liu, M. Li, and F. Liu, “Separation of arteries and veins in the cerebral cortex using physiological oscillations by optical imaging of intrinsic signal,” J. Biomed. Opt. 15(3), 036025 (2010).
[CrossRef] [PubMed]

D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt. 15(1), 011109 (2010).
[CrossRef] [PubMed]

J. Qiu, P. Li, W. Luo, J. Wang, H. Zhang, and Q. Luo, “Spatiotemporal laser speckle contrast analysis for blood flow imaging with maximized speckle contrast,” J. Biomed. Opt. 15(1), 016003 (2010).
[CrossRef] [PubMed]

J. Cereb. Blood Flow Metab. (1)

A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab. 21(3), 195–201 (2001).
[CrossRef] [PubMed]

J. Innovative Opt. Health Sci. (2)

W. Luo, P. Li, Z. Wang, S. Zeng, and Q. Luo, “Tracing collateral circulation after ischemia in rat cortex by laser speckle imaging,” J. Innovative Opt. Health Sci. 01(02), 217–226 (2008).
[CrossRef]

P. Miao, M. Li, N. Li, A. Rege, Y. Zhu, N. Thakor, and S. Tong, “Detecting cerebral arteries and veins: from large to small,” J. Innovative Opt. Health Sci. 03(01), 61–67 (2010).
[CrossRef]

J. Microsc. (1)

V. Kalchenko, D. Preise, M. Bayewitch, I. Fine, K. Burd, and A. Harmelin, “In vivo dynamic light scattering microscopy of tumour blood vessels,” J. Microsc. 228(2), 118–122 (2007).
[CrossRef] [PubMed]

J. Neurosci. (1)

I. Vanzetta, R. Hildesheim, and A. Grinvald, “Compartment-resolved imaging of activity-dependent dynamics of cortical blood volume and oximetry,” J. Neurosci. 25(9), 2233–2244 (2005).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (3)

J. Orthop. Res. (1)

R. C. Bray, K. R. Forrester, J. Reed, C. Leonard, and J. Tulip, “Endoscopic laser speckle imaging of tissue blood flow: applications in the human knee,” J. Orthop. Res. 24(8), 1650–1659 (2006).
[CrossRef] [PubMed]

Magn. Reson. Imaging (1)

J. Svensson, P. Leander, J. H. Maki, F. Stahlberg, and L. E. Olsson, “Separation of arteries and veins using flow-induced phase effects in contrast-enhanced MRA of the lower extremities,” Magn. Reson. Imaging 20(1), 49–57 (2002).
[CrossRef] [PubMed]

Maple Tech. Newslett. (1)

R. M. Corless, G. H. Gonnet, D. E. G. Hare, and D. J. Jeffrey, “Lambert's W function in Maple,” Maple Tech. Newslett. 9, 12–22 (1993).

Med. Biol. Eng. Comput. (1)

A. Jakobsson and G. E. Nilsson, “Prediction of sampling depth and photon pathlength in laser Doppler flowmetry,” Med. Biol. Eng. Comput. 31(3), 301–307 (1993).
[CrossRef] [PubMed]

Microvasc. Res. (1)

B. Choi, N. M. Kang, and J. S. Nelson, “Laser speckle imaging for monitoring blood flow dynamics in the in vivo rodent dorsal skin fold model,” Microvasc. Res. 68(2), 143–146 (2004).
[CrossRef] [PubMed]

Nat. Med. (1)

D. M. McDonald and P. L. Choyke, “Imaging of angiogenesis: from microscope to clinic,” Nat. Med. 9(6), 713–725 (2003).
[CrossRef] [PubMed]

Neuroimage (5)

I. Schiessl, W. Wang, and N. McLoughlin, “Independent components of the haemodynamic response in intrinsic optical imaging,” Neuroimage 39(2), 634–646 (2008).
[CrossRef] [PubMed]

A. K. Dunn, A. Devor, A. M. Dale, and D. A. Boas, “Spatial extent of oxygen metabolism and hemodynamic changes during functional activation of the rat somatosensory cortex,” Neuroimage 27(2), 279–290 (2005).
[CrossRef] [PubMed]

J. S. Paul, A. R. Luft, E. Yew, and F. S. Sheu, “Imaging the development of an ischemic core following photochemically induced cortical infarction in rats using Laser Speckle Contrast Analysis (LASCA),” Neuroimage 29(1), 38–45 (2006).
[CrossRef] [PubMed]

T. P. Obrenovitch, S. Chen, and E. Farkas, “Simultaneous, live imaging of cortical spreading depression and associated cerebral blood flow changes, by combining voltage-sensitive dye and laser speckle contrast methods,” Neuroimage 45(1), 68–74 (2009).
[CrossRef] [PubMed]

E. Farkas, F. Bari, and T. P. Obrenovitch, “Multi-modal imaging of anoxic depolarization and hemodynamic changes induced by cardiac arrest in the rat cerebral cortex,” Neuroimage 51(2), 734–742 (2010).
[CrossRef] [PubMed]

Opt. Express (4)

Opt. Lett. (5)

Pattern Recognit. (1)

K. Akita and H. Kuga, “A computer method of understanding ocular fundus images,” Pattern Recognit. 15(6), 431–443 (1982).
[CrossRef]

Other (6)

J. J. Yu, B. Hung, and H. Sun, “Automatic recognition of retinopathy from retinal images,” in Proceedings of IEEE Conference on Engineering Medicine and Biology Society (Institute of Electrical and Electronics Engineers, Philadelphia, 1990), pp. 171–173.

H. Li, W. Hsu, M. L. Lee, and H. Wang, “A piecewise Gaussian Model for profiling and differentiating retinal vessels,” in Proceedings of IEEE Conference on Image Processing (Institute of Electrical and Electronics Engineers, Barcelona, 2003), pp. 1069–1072.

J. W. Goodman, Statistical Optics (Wiley & Sons, New York, 1985).

J. W. Goodman, Speckle Phenomena in Optical: Theory and Applications (Roberts and Company, Englewood, Colorado, 2007).

R. C. Gonzalez, R. E. Woods, and S. L. Eddins, Digital Image Processing Using MATLAB (Prentice Hall, New York, 2004).

S. Prahl, “Optical Absorption of Hemoglobin,” (1999), http://omlc.ogi.edu/spectra/hemoglobin/index.html .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Intensity PDF of dynamic speckle. (a) Gamma function vs. Rayleigh function. The solid lines are Gamma distributions, and the dashed lines are Rayleigh distributions. (b) PDFs obtained by numerical simulation of laser speckles. (c) A Moving plate phantom experimental results. In (b) and (c), the solid lines are experimental PDFs, and the dashed lines are fitted Rayleigh distributions.

Fig. 2
Fig. 2

Temporal minimum intensity. (a) Temporal minimum intensity image computed from 500 sequence laser speckle images. (b) Theoretical predicted temporal minimum intensity image computed with Eq. (8), where <Ix,y > t and Kt (x, y) are computed from the same data set as for (a). (c) The relative difference image of (a) and (b), defined as |((b) - (a)) / (a)|.

Fig. 3
Fig. 3

Relative temporal minimum reflectance. (a) Distribution image of RTMR as a function of R/Rcn and 1/Kt 2 , the pseudo color is used to quantify the RTMR value, blue to red: low RTMR to high RTMR. (b) An artery-vein identification image obtained by the ratio of optical density at 540 nm and 560 nm, white to black: arteries, parenchyma, veins. 200 arterial points and 200 venous points are indicated and marked by red color and blue color respectively. (c)–(g) Distributions of RTMR of 200 arterial points and 200 venous points marked by red color and blue color respectively under 540 nm, 560 nm, 570 nm, 600 nm and 632.8 nm. (h) The predicted RTMR distributions of artery, vein and cortical parenchyma.

Fig. 4
Fig. 4

Artery-vein separation. (a) Laser speckle temporal contrast image. (b) Temporal minimum intensity image. (c) Estimated cortical parenchyma background image. (d) The artery-vein identification image obtained by the ratio of optical density at 540 nm and 560 nm, white to black: arteries, parenchyma, veins. (e) Relative temporal minimum reflectance image. (f) Results of artery-vein separation shown by pseudo-color.

Fig. 5
Fig. 5

Truth Positive Rate. (a) RTMR values of 200 venous points vs. RTMR values of their cortical parenchyma neighborhoods one by one. (b) RTMR values of 200 arterial points vs. RTMR values of their cortical parenchyma neighborhoods one by one. (c) The artery-vein identification image obtained by the ratio of optical density at 540 nm and 560 nm, white to black: arteries, parenchyma, veins.

Fig. 6
Fig. 6

Effective wavelength range. (a) Laser temporal contrast image under He-Ne laser illumination. (b)–(d) Normalized temporal minimum intensity images under 540 nm, 632.8 nm and 660 nm laser illumination, respectively.

Fig. 7
Fig. 7

Normalized reflected image at 540 nm (a), 560 nm (b), 570 nm (c), 600 nm (d) and 632.8 nm (e), respectively. (f) Normalized laser speckle temporal contrast image.

Fig. 8
Fig. 8

An application of RTMR analysis combined with LSCA during CSD. (a) Spatial pattern of blood flow velocity. (b) Laser speckle temporal contrast. (c) The magnified image and the resultant of artery-vein separation corresponding to P as shown in (a). (d) The average ratio changes of blood flow velocity at different tissue in P, respectively.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

R T M R ( x , y ) = I min , x , y I c n ( x , y ) s
p g ( I ) = { a g b g I b g 1 Γ ( b g ) e a g I , I 0 0 , I < 0 , a g = μ / σ 2 ,       b g = μ 2 / σ 2 ,
p ( I ) = { 2 b ( I a ) e ( I a ) 2 / b , I a 0 , I < a , b = 4 σ 2 4 π ,       a = μ σ π 4 π ,
2 ( I t , x , y a ) 2 b × e 2 ( I t , x , y a ) 2 / b = b p 2 2 .
w ( I t , x , y ) = 2 ( I t , x , y a ) 2 b ,       X ( p ) = b p 2 2 .
w e w = X .
w = 2 ( I min , x , y a ) 2 b 0 I min , x , y a = μ x , y σ x , y π 4 π .
K t ( x , y ) = σ x , y I x , y t ,
I min , x , y = I x , y t K t ( x , y ) × I x , y t π 4 π = I x , y t ( 1 K t ( x , y ) π 4 π ) .
R T M R ( x , y ) = I min , x , y I c n ( x , y ) s = I x , y t I c n ( x , y ) s ( 1 K t ( x , y ) π 4 π ) .
R T M R ( x , y ) = R ( x , y ) R c n ( x , y ) ( 1 K t ( x , y ) π 4 π ) .
O D R = O D 540 O D 560 = log 10 ( I s t d 540 R s t d 540 I 540 ) / log 10 ( I s t d 560 R s t d 560 I 560 ) ,

Metrics