Abstract

Abstract: This article presents a fabrication technique for generating densely populated and randomly oriented silica nanofibres by direct ablation of silica glass using a femtosecond laser with 12.4 MHz repetition rate and a pulse width of 214 fs, under ambient conditions. Four types of nanofibres with diameters ranging from a few tens of nanometers to a few hundreds of nanometers were formed. Some fibers reach lengths of 10 mm. The possible mechanisms for fibre formation have been explored.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Tong and E. Mazur, “Glass nanofibers for micro- and nano-scale photonic devices,” J. Non-Cryst. Solids 354(12-13), 1240–1244 (2008).
    [CrossRef]
  2. Z. M. Huang, Y. Z. Zhang, M. Kotaki, and S. Ramakrishna, “A review on polymer nanofibers by electrospinning and their applications in nanocomposites,” Compos. Sci. Technol. 63(15), 2223–2253 (2003).
    [CrossRef]
  3. S. Ramakrishna, An introduction to electrospinning and nanofibers (World Scientific Pub Co Inc, 2005).
  4. L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
    [CrossRef] [PubMed]
  5. S. S. Choi, S. G. Lee, S. S. Im, S. H. Kim, and Y. L. Joo, “Silica nanofibers from electrospinning/sol-gel process,” J. Mater. Sci. Lett. 22(12), 891–893 (2003).
    [CrossRef]
  6. C. Yan, T. Zhang, and P. S. Lee, “Flow assisted synthesis of highly ordered silica nanowire arrays,” Appl. Phys., A Mater. Sci. Process. 94(4), 763–766 (2009).
    [CrossRef]
  7. L. Dai, L. You, X. Duan, W. Lian, and G. Qin, “Growth of silica nanowire arrays by reaction of Si substrate with oxygen using Ga as catalyst,” Phys. Lett. A 335(4), 304–309 (2005).
    [CrossRef]
  8. Z. W. Pan, Z. R. Dai, C. Ma, and Z. L. Wang, “Molten gallium as a catalyst for the large-scale growth of highly aligned silica nanowires,” J. Am. Chem. Soc. 124(8), 1817–1822 (2002).
    [CrossRef] [PubMed]
  9. Z. Wang, R. Gao, J. Gole, and J. Stout, “Silica nanotubes and nanofiber arrays,” Adv. Mater. 12(24), 1938–1940 (2000).
    [CrossRef]
  10. D. Yu, Q. L. Hang, Y. Ding, H. Zhang, Z. Bai, J. Wang, Y. Zou, W. Qian, G. Xiong, and S. Feng, “Amorphous silica nanowires: Intensive blue light emitters,” Appl. Phys. Lett. 73(21), 3076–3078 (1998).
    [CrossRef]
  11. X. Wu, W. Song, K. Wang, T. Hu, B. Zhao, Y. Sun, and J. Du, “Preparation and photoluminescence properties of amorphous silica nanowires,” Chem. Phys. Lett. 336(1-2), 53–56 (2001).
    [CrossRef]
  12. L. Tong, J. Lou, Z. Ye, G. T. Svacha, and E. Mazur, “Self-modulated taper drawing of silica nanowires,” Nanotechnology 16(9), 1445–1448 (2005).
    [CrossRef]
  13. V. N. Tokarev, S. Lazare, C. Belin, and D. Debarre, “Viscous flow and ablation pressure phenomena in nanosecond UV laser irradiation of polymers,” Appl. Phys., A Mater. Sci. Process. 79(4-6), 717–720 (2004).
    [CrossRef]
  14. G. A. J. Markillie, H. J. Baker, F. J. Villarreal, and D. R. Hall, “Effect of vaporization and melt ejection on laser machining of silica glass micro-optical components,” Appl. Opt. 41(27), 5660–5667 (2002).
    [CrossRef] [PubMed]
  15. A. Zoubir, L. Shah, K. Richardson, and M. Richardson, “Practical uses of femtosecond laser micro-materials processing,” Appl. Phys., A Mater. Sci. Process. 77, 311–315 (2003).
  16. E. Gamaly, A. Rode, B. Luther-Davies, and V. Tikhonchuk, “Ablation of solids by femtosecond lasers: Ablation mechanism and ablation thresholds for metals and dielectrics,” Phys. Plasmas 9(3), 949 (2002).
    [CrossRef]
  17. V. Koubassov, J. Laprise, F. Théberge, E. Förster, R. Sauerbrey, B. Müller, U. Glatzel, and S. Chin, “Ultrafast laser-induced melting of glass,” Appl. Phys., A Mater. Sci. Process. 79, 499–505 (2004).
    [CrossRef]
  18. R. E. Russo, X. Mao, J. J. Gonzalez, and S. S. Mao, “Femtosecond laser ablation ICP-MS,” J. Anal. At. Spectrom. 17, 1072–1075 (2002).
    [CrossRef]
  19. M. Feit, A. Komashko, and A. Rubenchik, “Ultra-short pulse laser interaction with transparent dielectrics,” Appl. Phys., A Mater. Sci. Process. 79(7), 1657–1661 (2004).
    [CrossRef]
  20. S. Chin, “From multiphoton to tunnel ionization,” Advances in multi-photon processes and spectroscopy, S. H. Lin, A. A. Villaeys and Y. Fujimura, eds. World Scientific, Singapore, 16, 249–272 (2004).
  21. A. Kaiser, B. Rethfeld, M. Vicanek, and G. Simon, “Microscopic processes in dielectrics under irradiation by subpicosecond laser pulses,” Phys. Rev. B 61(17), 11437–11450 (2000).
    [CrossRef]
  22. A. Brodeur and S. Chin, “Band-gap dependence of the ultrafast white-light continuum,” Phys. Rev. Lett. 80(20), 4406–4409 (1998).
    [CrossRef]
  23. F. Korte, J. Koch, and B. Chichkov, “Formation of microbumps and nanojets on gold targets by femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 79(4-6), 879–881 (2004).
    [CrossRef]
  24. M. R. Kasaai, V. Kacham, F. Theberge, and S. L. Chin, “The interaction of femtosecond and nanosecond laser pulses with the surface of glass,” J. Non-Cryst. Solids 319(1-2), 129–135 (2003).
    [CrossRef]
  25. T. Tamaki, W. Watanabe, and K. Itoh, “Laser micro-welding of transparent materials by a localized heat accumulation effect using a femtosecond fiber laser at 1558 nm,” Opt. Express 14(22), 10460–10468 (2006).
    [CrossRef] [PubMed]
  26. B. Tan and K. Venkatakrishnan, “Synthesis of fibrous nanoparticle aggregates by femtosecond laser ablation in air,” Opt. Express 17(2), 1064–1069 (2009).
    [CrossRef] [PubMed]
  27. A. Ben-Yakar, R. L. Byer, A. Harkin, J. Ashmore, H. A. Stone, M. Shen, and E. Mazur, “Morphology of femtosecond-laser-ablated borosilicate glass surfaces,” Appl. Phys. Lett. 83(15), 3030–3032 (2003).
    [CrossRef]
  28. K. L. Wray and T. J. Connolly, “Thermal conductivity of clear fused silica at high temperatures,” J. Appl. Phys. 30(11), 1702–1705 (1959).
    [CrossRef]
  29. B. Luther-Davies, A. V. Rode, N. R. Madsen, and E. G. Gamaly, “Picosecond high-repetition-rate pulsed laser ablation of dielectrics: The effect of energy accumulation between pulses,” Opt. Eng. 44(5), 051102–051108 (2005).
    [CrossRef]
  30. A. Ben-Yakar, A. Harkin, J. Ashmore, R. L. Byer, and H. A. Stone, “Thermal and fluid processes of a thin melt zone during femtosecond laser ablation of glass: The formation of rims by single laser pulses,” J. Phys. D 40(5), 1447–1459 (2007).
    [CrossRef]
  31. S. Juodkazis, H. Misawa, O. A. Louchev, and K. Kitamura, “Femtosecond laser ablation of chalcogenide glass: Explosive formation of nano-fibres against thermo-capillary growth of micro-spheres,” Nanotechnology 17(19), 4802–4805 (2006).
    [CrossRef]

2009

C. Yan, T. Zhang, and P. S. Lee, “Flow assisted synthesis of highly ordered silica nanowire arrays,” Appl. Phys., A Mater. Sci. Process. 94(4), 763–766 (2009).
[CrossRef]

B. Tan and K. Venkatakrishnan, “Synthesis of fibrous nanoparticle aggregates by femtosecond laser ablation in air,” Opt. Express 17(2), 1064–1069 (2009).
[CrossRef] [PubMed]

2008

L. Tong and E. Mazur, “Glass nanofibers for micro- and nano-scale photonic devices,” J. Non-Cryst. Solids 354(12-13), 1240–1244 (2008).
[CrossRef]

2007

A. Ben-Yakar, A. Harkin, J. Ashmore, R. L. Byer, and H. A. Stone, “Thermal and fluid processes of a thin melt zone during femtosecond laser ablation of glass: The formation of rims by single laser pulses,” J. Phys. D 40(5), 1447–1459 (2007).
[CrossRef]

2006

S. Juodkazis, H. Misawa, O. A. Louchev, and K. Kitamura, “Femtosecond laser ablation of chalcogenide glass: Explosive formation of nano-fibres against thermo-capillary growth of micro-spheres,” Nanotechnology 17(19), 4802–4805 (2006).
[CrossRef]

T. Tamaki, W. Watanabe, and K. Itoh, “Laser micro-welding of transparent materials by a localized heat accumulation effect using a femtosecond fiber laser at 1558 nm,” Opt. Express 14(22), 10460–10468 (2006).
[CrossRef] [PubMed]

2005

B. Luther-Davies, A. V. Rode, N. R. Madsen, and E. G. Gamaly, “Picosecond high-repetition-rate pulsed laser ablation of dielectrics: The effect of energy accumulation between pulses,” Opt. Eng. 44(5), 051102–051108 (2005).
[CrossRef]

L. Dai, L. You, X. Duan, W. Lian, and G. Qin, “Growth of silica nanowire arrays by reaction of Si substrate with oxygen using Ga as catalyst,” Phys. Lett. A 335(4), 304–309 (2005).
[CrossRef]

L. Tong, J. Lou, Z. Ye, G. T. Svacha, and E. Mazur, “Self-modulated taper drawing of silica nanowires,” Nanotechnology 16(9), 1445–1448 (2005).
[CrossRef]

2004

V. N. Tokarev, S. Lazare, C. Belin, and D. Debarre, “Viscous flow and ablation pressure phenomena in nanosecond UV laser irradiation of polymers,” Appl. Phys., A Mater. Sci. Process. 79(4-6), 717–720 (2004).
[CrossRef]

V. Koubassov, J. Laprise, F. Théberge, E. Förster, R. Sauerbrey, B. Müller, U. Glatzel, and S. Chin, “Ultrafast laser-induced melting of glass,” Appl. Phys., A Mater. Sci. Process. 79, 499–505 (2004).
[CrossRef]

M. Feit, A. Komashko, and A. Rubenchik, “Ultra-short pulse laser interaction with transparent dielectrics,” Appl. Phys., A Mater. Sci. Process. 79(7), 1657–1661 (2004).
[CrossRef]

F. Korte, J. Koch, and B. Chichkov, “Formation of microbumps and nanojets on gold targets by femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 79(4-6), 879–881 (2004).
[CrossRef]

2003

M. R. Kasaai, V. Kacham, F. Theberge, and S. L. Chin, “The interaction of femtosecond and nanosecond laser pulses with the surface of glass,” J. Non-Cryst. Solids 319(1-2), 129–135 (2003).
[CrossRef]

A. Ben-Yakar, R. L. Byer, A. Harkin, J. Ashmore, H. A. Stone, M. Shen, and E. Mazur, “Morphology of femtosecond-laser-ablated borosilicate glass surfaces,” Appl. Phys. Lett. 83(15), 3030–3032 (2003).
[CrossRef]

A. Zoubir, L. Shah, K. Richardson, and M. Richardson, “Practical uses of femtosecond laser micro-materials processing,” Appl. Phys., A Mater. Sci. Process. 77, 311–315 (2003).

Z. M. Huang, Y. Z. Zhang, M. Kotaki, and S. Ramakrishna, “A review on polymer nanofibers by electrospinning and their applications in nanocomposites,” Compos. Sci. Technol. 63(15), 2223–2253 (2003).
[CrossRef]

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

S. S. Choi, S. G. Lee, S. S. Im, S. H. Kim, and Y. L. Joo, “Silica nanofibers from electrospinning/sol-gel process,” J. Mater. Sci. Lett. 22(12), 891–893 (2003).
[CrossRef]

2002

Z. W. Pan, Z. R. Dai, C. Ma, and Z. L. Wang, “Molten gallium as a catalyst for the large-scale growth of highly aligned silica nanowires,” J. Am. Chem. Soc. 124(8), 1817–1822 (2002).
[CrossRef] [PubMed]

E. Gamaly, A. Rode, B. Luther-Davies, and V. Tikhonchuk, “Ablation of solids by femtosecond lasers: Ablation mechanism and ablation thresholds for metals and dielectrics,” Phys. Plasmas 9(3), 949 (2002).
[CrossRef]

G. A. J. Markillie, H. J. Baker, F. J. Villarreal, and D. R. Hall, “Effect of vaporization and melt ejection on laser machining of silica glass micro-optical components,” Appl. Opt. 41(27), 5660–5667 (2002).
[CrossRef] [PubMed]

R. E. Russo, X. Mao, J. J. Gonzalez, and S. S. Mao, “Femtosecond laser ablation ICP-MS,” J. Anal. At. Spectrom. 17, 1072–1075 (2002).
[CrossRef]

2001

X. Wu, W. Song, K. Wang, T. Hu, B. Zhao, Y. Sun, and J. Du, “Preparation and photoluminescence properties of amorphous silica nanowires,” Chem. Phys. Lett. 336(1-2), 53–56 (2001).
[CrossRef]

2000

A. Kaiser, B. Rethfeld, M. Vicanek, and G. Simon, “Microscopic processes in dielectrics under irradiation by subpicosecond laser pulses,” Phys. Rev. B 61(17), 11437–11450 (2000).
[CrossRef]

Z. Wang, R. Gao, J. Gole, and J. Stout, “Silica nanotubes and nanofiber arrays,” Adv. Mater. 12(24), 1938–1940 (2000).
[CrossRef]

1998

D. Yu, Q. L. Hang, Y. Ding, H. Zhang, Z. Bai, J. Wang, Y. Zou, W. Qian, G. Xiong, and S. Feng, “Amorphous silica nanowires: Intensive blue light emitters,” Appl. Phys. Lett. 73(21), 3076–3078 (1998).
[CrossRef]

A. Brodeur and S. Chin, “Band-gap dependence of the ultrafast white-light continuum,” Phys. Rev. Lett. 80(20), 4406–4409 (1998).
[CrossRef]

1959

K. L. Wray and T. J. Connolly, “Thermal conductivity of clear fused silica at high temperatures,” J. Appl. Phys. 30(11), 1702–1705 (1959).
[CrossRef]

Ashcom, J. B.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Ashmore, J.

A. Ben-Yakar, A. Harkin, J. Ashmore, R. L. Byer, and H. A. Stone, “Thermal and fluid processes of a thin melt zone during femtosecond laser ablation of glass: The formation of rims by single laser pulses,” J. Phys. D 40(5), 1447–1459 (2007).
[CrossRef]

A. Ben-Yakar, R. L. Byer, A. Harkin, J. Ashmore, H. A. Stone, M. Shen, and E. Mazur, “Morphology of femtosecond-laser-ablated borosilicate glass surfaces,” Appl. Phys. Lett. 83(15), 3030–3032 (2003).
[CrossRef]

Bai, Z.

D. Yu, Q. L. Hang, Y. Ding, H. Zhang, Z. Bai, J. Wang, Y. Zou, W. Qian, G. Xiong, and S. Feng, “Amorphous silica nanowires: Intensive blue light emitters,” Appl. Phys. Lett. 73(21), 3076–3078 (1998).
[CrossRef]

Baker, H. J.

Belin, C.

V. N. Tokarev, S. Lazare, C. Belin, and D. Debarre, “Viscous flow and ablation pressure phenomena in nanosecond UV laser irradiation of polymers,” Appl. Phys., A Mater. Sci. Process. 79(4-6), 717–720 (2004).
[CrossRef]

Ben-Yakar, A.

A. Ben-Yakar, A. Harkin, J. Ashmore, R. L. Byer, and H. A. Stone, “Thermal and fluid processes of a thin melt zone during femtosecond laser ablation of glass: The formation of rims by single laser pulses,” J. Phys. D 40(5), 1447–1459 (2007).
[CrossRef]

A. Ben-Yakar, R. L. Byer, A. Harkin, J. Ashmore, H. A. Stone, M. Shen, and E. Mazur, “Morphology of femtosecond-laser-ablated borosilicate glass surfaces,” Appl. Phys. Lett. 83(15), 3030–3032 (2003).
[CrossRef]

Brodeur, A.

A. Brodeur and S. Chin, “Band-gap dependence of the ultrafast white-light continuum,” Phys. Rev. Lett. 80(20), 4406–4409 (1998).
[CrossRef]

Byer, R. L.

A. Ben-Yakar, A. Harkin, J. Ashmore, R. L. Byer, and H. A. Stone, “Thermal and fluid processes of a thin melt zone during femtosecond laser ablation of glass: The formation of rims by single laser pulses,” J. Phys. D 40(5), 1447–1459 (2007).
[CrossRef]

A. Ben-Yakar, R. L. Byer, A. Harkin, J. Ashmore, H. A. Stone, M. Shen, and E. Mazur, “Morphology of femtosecond-laser-ablated borosilicate glass surfaces,” Appl. Phys. Lett. 83(15), 3030–3032 (2003).
[CrossRef]

Chichkov, B.

F. Korte, J. Koch, and B. Chichkov, “Formation of microbumps and nanojets on gold targets by femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 79(4-6), 879–881 (2004).
[CrossRef]

Chin, S.

V. Koubassov, J. Laprise, F. Théberge, E. Förster, R. Sauerbrey, B. Müller, U. Glatzel, and S. Chin, “Ultrafast laser-induced melting of glass,” Appl. Phys., A Mater. Sci. Process. 79, 499–505 (2004).
[CrossRef]

A. Brodeur and S. Chin, “Band-gap dependence of the ultrafast white-light continuum,” Phys. Rev. Lett. 80(20), 4406–4409 (1998).
[CrossRef]

Chin, S. L.

M. R. Kasaai, V. Kacham, F. Theberge, and S. L. Chin, “The interaction of femtosecond and nanosecond laser pulses with the surface of glass,” J. Non-Cryst. Solids 319(1-2), 129–135 (2003).
[CrossRef]

Choi, S. S.

S. S. Choi, S. G. Lee, S. S. Im, S. H. Kim, and Y. L. Joo, “Silica nanofibers from electrospinning/sol-gel process,” J. Mater. Sci. Lett. 22(12), 891–893 (2003).
[CrossRef]

Connolly, T. J.

K. L. Wray and T. J. Connolly, “Thermal conductivity of clear fused silica at high temperatures,” J. Appl. Phys. 30(11), 1702–1705 (1959).
[CrossRef]

Dai, L.

L. Dai, L. You, X. Duan, W. Lian, and G. Qin, “Growth of silica nanowire arrays by reaction of Si substrate with oxygen using Ga as catalyst,” Phys. Lett. A 335(4), 304–309 (2005).
[CrossRef]

Dai, Z. R.

Z. W. Pan, Z. R. Dai, C. Ma, and Z. L. Wang, “Molten gallium as a catalyst for the large-scale growth of highly aligned silica nanowires,” J. Am. Chem. Soc. 124(8), 1817–1822 (2002).
[CrossRef] [PubMed]

Debarre, D.

V. N. Tokarev, S. Lazare, C. Belin, and D. Debarre, “Viscous flow and ablation pressure phenomena in nanosecond UV laser irradiation of polymers,” Appl. Phys., A Mater. Sci. Process. 79(4-6), 717–720 (2004).
[CrossRef]

Ding, Y.

D. Yu, Q. L. Hang, Y. Ding, H. Zhang, Z. Bai, J. Wang, Y. Zou, W. Qian, G. Xiong, and S. Feng, “Amorphous silica nanowires: Intensive blue light emitters,” Appl. Phys. Lett. 73(21), 3076–3078 (1998).
[CrossRef]

Du, J.

X. Wu, W. Song, K. Wang, T. Hu, B. Zhao, Y. Sun, and J. Du, “Preparation and photoluminescence properties of amorphous silica nanowires,” Chem. Phys. Lett. 336(1-2), 53–56 (2001).
[CrossRef]

Duan, X.

L. Dai, L. You, X. Duan, W. Lian, and G. Qin, “Growth of silica nanowire arrays by reaction of Si substrate with oxygen using Ga as catalyst,” Phys. Lett. A 335(4), 304–309 (2005).
[CrossRef]

Feit, M.

M. Feit, A. Komashko, and A. Rubenchik, “Ultra-short pulse laser interaction with transparent dielectrics,” Appl. Phys., A Mater. Sci. Process. 79(7), 1657–1661 (2004).
[CrossRef]

Feng, S.

D. Yu, Q. L. Hang, Y. Ding, H. Zhang, Z. Bai, J. Wang, Y. Zou, W. Qian, G. Xiong, and S. Feng, “Amorphous silica nanowires: Intensive blue light emitters,” Appl. Phys. Lett. 73(21), 3076–3078 (1998).
[CrossRef]

Förster, E.

V. Koubassov, J. Laprise, F. Théberge, E. Förster, R. Sauerbrey, B. Müller, U. Glatzel, and S. Chin, “Ultrafast laser-induced melting of glass,” Appl. Phys., A Mater. Sci. Process. 79, 499–505 (2004).
[CrossRef]

Gamaly, E.

E. Gamaly, A. Rode, B. Luther-Davies, and V. Tikhonchuk, “Ablation of solids by femtosecond lasers: Ablation mechanism and ablation thresholds for metals and dielectrics,” Phys. Plasmas 9(3), 949 (2002).
[CrossRef]

Gamaly, E. G.

B. Luther-Davies, A. V. Rode, N. R. Madsen, and E. G. Gamaly, “Picosecond high-repetition-rate pulsed laser ablation of dielectrics: The effect of energy accumulation between pulses,” Opt. Eng. 44(5), 051102–051108 (2005).
[CrossRef]

Gao, R.

Z. Wang, R. Gao, J. Gole, and J. Stout, “Silica nanotubes and nanofiber arrays,” Adv. Mater. 12(24), 1938–1940 (2000).
[CrossRef]

Gattass, R. R.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Glatzel, U.

V. Koubassov, J. Laprise, F. Théberge, E. Förster, R. Sauerbrey, B. Müller, U. Glatzel, and S. Chin, “Ultrafast laser-induced melting of glass,” Appl. Phys., A Mater. Sci. Process. 79, 499–505 (2004).
[CrossRef]

Gole, J.

Z. Wang, R. Gao, J. Gole, and J. Stout, “Silica nanotubes and nanofiber arrays,” Adv. Mater. 12(24), 1938–1940 (2000).
[CrossRef]

Gonzalez, J. J.

R. E. Russo, X. Mao, J. J. Gonzalez, and S. S. Mao, “Femtosecond laser ablation ICP-MS,” J. Anal. At. Spectrom. 17, 1072–1075 (2002).
[CrossRef]

Hall, D. R.

Hang, Q. L.

D. Yu, Q. L. Hang, Y. Ding, H. Zhang, Z. Bai, J. Wang, Y. Zou, W. Qian, G. Xiong, and S. Feng, “Amorphous silica nanowires: Intensive blue light emitters,” Appl. Phys. Lett. 73(21), 3076–3078 (1998).
[CrossRef]

Harkin, A.

A. Ben-Yakar, A. Harkin, J. Ashmore, R. L. Byer, and H. A. Stone, “Thermal and fluid processes of a thin melt zone during femtosecond laser ablation of glass: The formation of rims by single laser pulses,” J. Phys. D 40(5), 1447–1459 (2007).
[CrossRef]

A. Ben-Yakar, R. L. Byer, A. Harkin, J. Ashmore, H. A. Stone, M. Shen, and E. Mazur, “Morphology of femtosecond-laser-ablated borosilicate glass surfaces,” Appl. Phys. Lett. 83(15), 3030–3032 (2003).
[CrossRef]

He, S.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Hu, T.

X. Wu, W. Song, K. Wang, T. Hu, B. Zhao, Y. Sun, and J. Du, “Preparation and photoluminescence properties of amorphous silica nanowires,” Chem. Phys. Lett. 336(1-2), 53–56 (2001).
[CrossRef]

Huang, Z. M.

Z. M. Huang, Y. Z. Zhang, M. Kotaki, and S. Ramakrishna, “A review on polymer nanofibers by electrospinning and their applications in nanocomposites,” Compos. Sci. Technol. 63(15), 2223–2253 (2003).
[CrossRef]

Im, S. S.

S. S. Choi, S. G. Lee, S. S. Im, S. H. Kim, and Y. L. Joo, “Silica nanofibers from electrospinning/sol-gel process,” J. Mater. Sci. Lett. 22(12), 891–893 (2003).
[CrossRef]

Itoh, K.

Joo, Y. L.

S. S. Choi, S. G. Lee, S. S. Im, S. H. Kim, and Y. L. Joo, “Silica nanofibers from electrospinning/sol-gel process,” J. Mater. Sci. Lett. 22(12), 891–893 (2003).
[CrossRef]

Juodkazis, S.

S. Juodkazis, H. Misawa, O. A. Louchev, and K. Kitamura, “Femtosecond laser ablation of chalcogenide glass: Explosive formation of nano-fibres against thermo-capillary growth of micro-spheres,” Nanotechnology 17(19), 4802–4805 (2006).
[CrossRef]

Kacham, V.

M. R. Kasaai, V. Kacham, F. Theberge, and S. L. Chin, “The interaction of femtosecond and nanosecond laser pulses with the surface of glass,” J. Non-Cryst. Solids 319(1-2), 129–135 (2003).
[CrossRef]

Kaiser, A.

A. Kaiser, B. Rethfeld, M. Vicanek, and G. Simon, “Microscopic processes in dielectrics under irradiation by subpicosecond laser pulses,” Phys. Rev. B 61(17), 11437–11450 (2000).
[CrossRef]

Kasaai, M. R.

M. R. Kasaai, V. Kacham, F. Theberge, and S. L. Chin, “The interaction of femtosecond and nanosecond laser pulses with the surface of glass,” J. Non-Cryst. Solids 319(1-2), 129–135 (2003).
[CrossRef]

Kim, S. H.

S. S. Choi, S. G. Lee, S. S. Im, S. H. Kim, and Y. L. Joo, “Silica nanofibers from electrospinning/sol-gel process,” J. Mater. Sci. Lett. 22(12), 891–893 (2003).
[CrossRef]

Kitamura, K.

S. Juodkazis, H. Misawa, O. A. Louchev, and K. Kitamura, “Femtosecond laser ablation of chalcogenide glass: Explosive formation of nano-fibres against thermo-capillary growth of micro-spheres,” Nanotechnology 17(19), 4802–4805 (2006).
[CrossRef]

Koch, J.

F. Korte, J. Koch, and B. Chichkov, “Formation of microbumps and nanojets on gold targets by femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 79(4-6), 879–881 (2004).
[CrossRef]

Komashko, A.

M. Feit, A. Komashko, and A. Rubenchik, “Ultra-short pulse laser interaction with transparent dielectrics,” Appl. Phys., A Mater. Sci. Process. 79(7), 1657–1661 (2004).
[CrossRef]

Korte, F.

F. Korte, J. Koch, and B. Chichkov, “Formation of microbumps and nanojets on gold targets by femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 79(4-6), 879–881 (2004).
[CrossRef]

Kotaki, M.

Z. M. Huang, Y. Z. Zhang, M. Kotaki, and S. Ramakrishna, “A review on polymer nanofibers by electrospinning and their applications in nanocomposites,” Compos. Sci. Technol. 63(15), 2223–2253 (2003).
[CrossRef]

Koubassov, V.

V. Koubassov, J. Laprise, F. Théberge, E. Förster, R. Sauerbrey, B. Müller, U. Glatzel, and S. Chin, “Ultrafast laser-induced melting of glass,” Appl. Phys., A Mater. Sci. Process. 79, 499–505 (2004).
[CrossRef]

Laprise, J.

V. Koubassov, J. Laprise, F. Théberge, E. Förster, R. Sauerbrey, B. Müller, U. Glatzel, and S. Chin, “Ultrafast laser-induced melting of glass,” Appl. Phys., A Mater. Sci. Process. 79, 499–505 (2004).
[CrossRef]

Lazare, S.

V. N. Tokarev, S. Lazare, C. Belin, and D. Debarre, “Viscous flow and ablation pressure phenomena in nanosecond UV laser irradiation of polymers,” Appl. Phys., A Mater. Sci. Process. 79(4-6), 717–720 (2004).
[CrossRef]

Lee, P. S.

C. Yan, T. Zhang, and P. S. Lee, “Flow assisted synthesis of highly ordered silica nanowire arrays,” Appl. Phys., A Mater. Sci. Process. 94(4), 763–766 (2009).
[CrossRef]

Lee, S. G.

S. S. Choi, S. G. Lee, S. S. Im, S. H. Kim, and Y. L. Joo, “Silica nanofibers from electrospinning/sol-gel process,” J. Mater. Sci. Lett. 22(12), 891–893 (2003).
[CrossRef]

Lian, W.

L. Dai, L. You, X. Duan, W. Lian, and G. Qin, “Growth of silica nanowire arrays by reaction of Si substrate with oxygen using Ga as catalyst,” Phys. Lett. A 335(4), 304–309 (2005).
[CrossRef]

Lou, J.

L. Tong, J. Lou, Z. Ye, G. T. Svacha, and E. Mazur, “Self-modulated taper drawing of silica nanowires,” Nanotechnology 16(9), 1445–1448 (2005).
[CrossRef]

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Louchev, O. A.

S. Juodkazis, H. Misawa, O. A. Louchev, and K. Kitamura, “Femtosecond laser ablation of chalcogenide glass: Explosive formation of nano-fibres against thermo-capillary growth of micro-spheres,” Nanotechnology 17(19), 4802–4805 (2006).
[CrossRef]

Luther-Davies, B.

B. Luther-Davies, A. V. Rode, N. R. Madsen, and E. G. Gamaly, “Picosecond high-repetition-rate pulsed laser ablation of dielectrics: The effect of energy accumulation between pulses,” Opt. Eng. 44(5), 051102–051108 (2005).
[CrossRef]

E. Gamaly, A. Rode, B. Luther-Davies, and V. Tikhonchuk, “Ablation of solids by femtosecond lasers: Ablation mechanism and ablation thresholds for metals and dielectrics,” Phys. Plasmas 9(3), 949 (2002).
[CrossRef]

Ma, C.

Z. W. Pan, Z. R. Dai, C. Ma, and Z. L. Wang, “Molten gallium as a catalyst for the large-scale growth of highly aligned silica nanowires,” J. Am. Chem. Soc. 124(8), 1817–1822 (2002).
[CrossRef] [PubMed]

Madsen, N. R.

B. Luther-Davies, A. V. Rode, N. R. Madsen, and E. G. Gamaly, “Picosecond high-repetition-rate pulsed laser ablation of dielectrics: The effect of energy accumulation between pulses,” Opt. Eng. 44(5), 051102–051108 (2005).
[CrossRef]

Mao, S. S.

R. E. Russo, X. Mao, J. J. Gonzalez, and S. S. Mao, “Femtosecond laser ablation ICP-MS,” J. Anal. At. Spectrom. 17, 1072–1075 (2002).
[CrossRef]

Mao, X.

R. E. Russo, X. Mao, J. J. Gonzalez, and S. S. Mao, “Femtosecond laser ablation ICP-MS,” J. Anal. At. Spectrom. 17, 1072–1075 (2002).
[CrossRef]

Markillie, G. A. J.

Maxwell, I.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Mazur, E.

L. Tong and E. Mazur, “Glass nanofibers for micro- and nano-scale photonic devices,” J. Non-Cryst. Solids 354(12-13), 1240–1244 (2008).
[CrossRef]

L. Tong, J. Lou, Z. Ye, G. T. Svacha, and E. Mazur, “Self-modulated taper drawing of silica nanowires,” Nanotechnology 16(9), 1445–1448 (2005).
[CrossRef]

A. Ben-Yakar, R. L. Byer, A. Harkin, J. Ashmore, H. A. Stone, M. Shen, and E. Mazur, “Morphology of femtosecond-laser-ablated borosilicate glass surfaces,” Appl. Phys. Lett. 83(15), 3030–3032 (2003).
[CrossRef]

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Misawa, H.

S. Juodkazis, H. Misawa, O. A. Louchev, and K. Kitamura, “Femtosecond laser ablation of chalcogenide glass: Explosive formation of nano-fibres against thermo-capillary growth of micro-spheres,” Nanotechnology 17(19), 4802–4805 (2006).
[CrossRef]

Müller, B.

V. Koubassov, J. Laprise, F. Théberge, E. Förster, R. Sauerbrey, B. Müller, U. Glatzel, and S. Chin, “Ultrafast laser-induced melting of glass,” Appl. Phys., A Mater. Sci. Process. 79, 499–505 (2004).
[CrossRef]

Pan, Z. W.

Z. W. Pan, Z. R. Dai, C. Ma, and Z. L. Wang, “Molten gallium as a catalyst for the large-scale growth of highly aligned silica nanowires,” J. Am. Chem. Soc. 124(8), 1817–1822 (2002).
[CrossRef] [PubMed]

Qian, W.

D. Yu, Q. L. Hang, Y. Ding, H. Zhang, Z. Bai, J. Wang, Y. Zou, W. Qian, G. Xiong, and S. Feng, “Amorphous silica nanowires: Intensive blue light emitters,” Appl. Phys. Lett. 73(21), 3076–3078 (1998).
[CrossRef]

Qin, G.

L. Dai, L. You, X. Duan, W. Lian, and G. Qin, “Growth of silica nanowire arrays by reaction of Si substrate with oxygen using Ga as catalyst,” Phys. Lett. A 335(4), 304–309 (2005).
[CrossRef]

Ramakrishna, S.

Z. M. Huang, Y. Z. Zhang, M. Kotaki, and S. Ramakrishna, “A review on polymer nanofibers by electrospinning and their applications in nanocomposites,” Compos. Sci. Technol. 63(15), 2223–2253 (2003).
[CrossRef]

Rethfeld, B.

A. Kaiser, B. Rethfeld, M. Vicanek, and G. Simon, “Microscopic processes in dielectrics under irradiation by subpicosecond laser pulses,” Phys. Rev. B 61(17), 11437–11450 (2000).
[CrossRef]

Richardson, K.

A. Zoubir, L. Shah, K. Richardson, and M. Richardson, “Practical uses of femtosecond laser micro-materials processing,” Appl. Phys., A Mater. Sci. Process. 77, 311–315 (2003).

Richardson, M.

A. Zoubir, L. Shah, K. Richardson, and M. Richardson, “Practical uses of femtosecond laser micro-materials processing,” Appl. Phys., A Mater. Sci. Process. 77, 311–315 (2003).

Rode, A.

E. Gamaly, A. Rode, B. Luther-Davies, and V. Tikhonchuk, “Ablation of solids by femtosecond lasers: Ablation mechanism and ablation thresholds for metals and dielectrics,” Phys. Plasmas 9(3), 949 (2002).
[CrossRef]

Rode, A. V.

B. Luther-Davies, A. V. Rode, N. R. Madsen, and E. G. Gamaly, “Picosecond high-repetition-rate pulsed laser ablation of dielectrics: The effect of energy accumulation between pulses,” Opt. Eng. 44(5), 051102–051108 (2005).
[CrossRef]

Rubenchik, A.

M. Feit, A. Komashko, and A. Rubenchik, “Ultra-short pulse laser interaction with transparent dielectrics,” Appl. Phys., A Mater. Sci. Process. 79(7), 1657–1661 (2004).
[CrossRef]

Russo, R. E.

R. E. Russo, X. Mao, J. J. Gonzalez, and S. S. Mao, “Femtosecond laser ablation ICP-MS,” J. Anal. At. Spectrom. 17, 1072–1075 (2002).
[CrossRef]

Sauerbrey, R.

V. Koubassov, J. Laprise, F. Théberge, E. Förster, R. Sauerbrey, B. Müller, U. Glatzel, and S. Chin, “Ultrafast laser-induced melting of glass,” Appl. Phys., A Mater. Sci. Process. 79, 499–505 (2004).
[CrossRef]

Shah, L.

A. Zoubir, L. Shah, K. Richardson, and M. Richardson, “Practical uses of femtosecond laser micro-materials processing,” Appl. Phys., A Mater. Sci. Process. 77, 311–315 (2003).

Shen, M.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

A. Ben-Yakar, R. L. Byer, A. Harkin, J. Ashmore, H. A. Stone, M. Shen, and E. Mazur, “Morphology of femtosecond-laser-ablated borosilicate glass surfaces,” Appl. Phys. Lett. 83(15), 3030–3032 (2003).
[CrossRef]

Simon, G.

A. Kaiser, B. Rethfeld, M. Vicanek, and G. Simon, “Microscopic processes in dielectrics under irradiation by subpicosecond laser pulses,” Phys. Rev. B 61(17), 11437–11450 (2000).
[CrossRef]

Song, W.

X. Wu, W. Song, K. Wang, T. Hu, B. Zhao, Y. Sun, and J. Du, “Preparation and photoluminescence properties of amorphous silica nanowires,” Chem. Phys. Lett. 336(1-2), 53–56 (2001).
[CrossRef]

Stone, H. A.

A. Ben-Yakar, A. Harkin, J. Ashmore, R. L. Byer, and H. A. Stone, “Thermal and fluid processes of a thin melt zone during femtosecond laser ablation of glass: The formation of rims by single laser pulses,” J. Phys. D 40(5), 1447–1459 (2007).
[CrossRef]

A. Ben-Yakar, R. L. Byer, A. Harkin, J. Ashmore, H. A. Stone, M. Shen, and E. Mazur, “Morphology of femtosecond-laser-ablated borosilicate glass surfaces,” Appl. Phys. Lett. 83(15), 3030–3032 (2003).
[CrossRef]

Stout, J.

Z. Wang, R. Gao, J. Gole, and J. Stout, “Silica nanotubes and nanofiber arrays,” Adv. Mater. 12(24), 1938–1940 (2000).
[CrossRef]

Sun, Y.

X. Wu, W. Song, K. Wang, T. Hu, B. Zhao, Y. Sun, and J. Du, “Preparation and photoluminescence properties of amorphous silica nanowires,” Chem. Phys. Lett. 336(1-2), 53–56 (2001).
[CrossRef]

Svacha, G. T.

L. Tong, J. Lou, Z. Ye, G. T. Svacha, and E. Mazur, “Self-modulated taper drawing of silica nanowires,” Nanotechnology 16(9), 1445–1448 (2005).
[CrossRef]

Tamaki, T.

Tan, B.

Theberge, F.

M. R. Kasaai, V. Kacham, F. Theberge, and S. L. Chin, “The interaction of femtosecond and nanosecond laser pulses with the surface of glass,” J. Non-Cryst. Solids 319(1-2), 129–135 (2003).
[CrossRef]

Théberge, F.

V. Koubassov, J. Laprise, F. Théberge, E. Förster, R. Sauerbrey, B. Müller, U. Glatzel, and S. Chin, “Ultrafast laser-induced melting of glass,” Appl. Phys., A Mater. Sci. Process. 79, 499–505 (2004).
[CrossRef]

Tikhonchuk, V.

E. Gamaly, A. Rode, B. Luther-Davies, and V. Tikhonchuk, “Ablation of solids by femtosecond lasers: Ablation mechanism and ablation thresholds for metals and dielectrics,” Phys. Plasmas 9(3), 949 (2002).
[CrossRef]

Tokarev, V. N.

V. N. Tokarev, S. Lazare, C. Belin, and D. Debarre, “Viscous flow and ablation pressure phenomena in nanosecond UV laser irradiation of polymers,” Appl. Phys., A Mater. Sci. Process. 79(4-6), 717–720 (2004).
[CrossRef]

Tong, L.

L. Tong and E. Mazur, “Glass nanofibers for micro- and nano-scale photonic devices,” J. Non-Cryst. Solids 354(12-13), 1240–1244 (2008).
[CrossRef]

L. Tong, J. Lou, Z. Ye, G. T. Svacha, and E. Mazur, “Self-modulated taper drawing of silica nanowires,” Nanotechnology 16(9), 1445–1448 (2005).
[CrossRef]

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Venkatakrishnan, K.

Vicanek, M.

A. Kaiser, B. Rethfeld, M. Vicanek, and G. Simon, “Microscopic processes in dielectrics under irradiation by subpicosecond laser pulses,” Phys. Rev. B 61(17), 11437–11450 (2000).
[CrossRef]

Villarreal, F. J.

Wang, J.

D. Yu, Q. L. Hang, Y. Ding, H. Zhang, Z. Bai, J. Wang, Y. Zou, W. Qian, G. Xiong, and S. Feng, “Amorphous silica nanowires: Intensive blue light emitters,” Appl. Phys. Lett. 73(21), 3076–3078 (1998).
[CrossRef]

Wang, K.

X. Wu, W. Song, K. Wang, T. Hu, B. Zhao, Y. Sun, and J. Du, “Preparation and photoluminescence properties of amorphous silica nanowires,” Chem. Phys. Lett. 336(1-2), 53–56 (2001).
[CrossRef]

Wang, Z.

Z. Wang, R. Gao, J. Gole, and J. Stout, “Silica nanotubes and nanofiber arrays,” Adv. Mater. 12(24), 1938–1940 (2000).
[CrossRef]

Wang, Z. L.

Z. W. Pan, Z. R. Dai, C. Ma, and Z. L. Wang, “Molten gallium as a catalyst for the large-scale growth of highly aligned silica nanowires,” J. Am. Chem. Soc. 124(8), 1817–1822 (2002).
[CrossRef] [PubMed]

Watanabe, W.

Wray, K. L.

K. L. Wray and T. J. Connolly, “Thermal conductivity of clear fused silica at high temperatures,” J. Appl. Phys. 30(11), 1702–1705 (1959).
[CrossRef]

Wu, X.

X. Wu, W. Song, K. Wang, T. Hu, B. Zhao, Y. Sun, and J. Du, “Preparation and photoluminescence properties of amorphous silica nanowires,” Chem. Phys. Lett. 336(1-2), 53–56 (2001).
[CrossRef]

Xiong, G.

D. Yu, Q. L. Hang, Y. Ding, H. Zhang, Z. Bai, J. Wang, Y. Zou, W. Qian, G. Xiong, and S. Feng, “Amorphous silica nanowires: Intensive blue light emitters,” Appl. Phys. Lett. 73(21), 3076–3078 (1998).
[CrossRef]

Yan, C.

C. Yan, T. Zhang, and P. S. Lee, “Flow assisted synthesis of highly ordered silica nanowire arrays,” Appl. Phys., A Mater. Sci. Process. 94(4), 763–766 (2009).
[CrossRef]

Ye, Z.

L. Tong, J. Lou, Z. Ye, G. T. Svacha, and E. Mazur, “Self-modulated taper drawing of silica nanowires,” Nanotechnology 16(9), 1445–1448 (2005).
[CrossRef]

You, L.

L. Dai, L. You, X. Duan, W. Lian, and G. Qin, “Growth of silica nanowire arrays by reaction of Si substrate with oxygen using Ga as catalyst,” Phys. Lett. A 335(4), 304–309 (2005).
[CrossRef]

Yu, D.

D. Yu, Q. L. Hang, Y. Ding, H. Zhang, Z. Bai, J. Wang, Y. Zou, W. Qian, G. Xiong, and S. Feng, “Amorphous silica nanowires: Intensive blue light emitters,” Appl. Phys. Lett. 73(21), 3076–3078 (1998).
[CrossRef]

Zhang, H.

D. Yu, Q. L. Hang, Y. Ding, H. Zhang, Z. Bai, J. Wang, Y. Zou, W. Qian, G. Xiong, and S. Feng, “Amorphous silica nanowires: Intensive blue light emitters,” Appl. Phys. Lett. 73(21), 3076–3078 (1998).
[CrossRef]

Zhang, T.

C. Yan, T. Zhang, and P. S. Lee, “Flow assisted synthesis of highly ordered silica nanowire arrays,” Appl. Phys., A Mater. Sci. Process. 94(4), 763–766 (2009).
[CrossRef]

Zhang, Y. Z.

Z. M. Huang, Y. Z. Zhang, M. Kotaki, and S. Ramakrishna, “A review on polymer nanofibers by electrospinning and their applications in nanocomposites,” Compos. Sci. Technol. 63(15), 2223–2253 (2003).
[CrossRef]

Zhao, B.

X. Wu, W. Song, K. Wang, T. Hu, B. Zhao, Y. Sun, and J. Du, “Preparation and photoluminescence properties of amorphous silica nanowires,” Chem. Phys. Lett. 336(1-2), 53–56 (2001).
[CrossRef]

Zou, Y.

D. Yu, Q. L. Hang, Y. Ding, H. Zhang, Z. Bai, J. Wang, Y. Zou, W. Qian, G. Xiong, and S. Feng, “Amorphous silica nanowires: Intensive blue light emitters,” Appl. Phys. Lett. 73(21), 3076–3078 (1998).
[CrossRef]

Zoubir, A.

A. Zoubir, L. Shah, K. Richardson, and M. Richardson, “Practical uses of femtosecond laser micro-materials processing,” Appl. Phys., A Mater. Sci. Process. 77, 311–315 (2003).

Adv. Mater.

Z. Wang, R. Gao, J. Gole, and J. Stout, “Silica nanotubes and nanofiber arrays,” Adv. Mater. 12(24), 1938–1940 (2000).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

A. Ben-Yakar, R. L. Byer, A. Harkin, J. Ashmore, H. A. Stone, M. Shen, and E. Mazur, “Morphology of femtosecond-laser-ablated borosilicate glass surfaces,” Appl. Phys. Lett. 83(15), 3030–3032 (2003).
[CrossRef]

D. Yu, Q. L. Hang, Y. Ding, H. Zhang, Z. Bai, J. Wang, Y. Zou, W. Qian, G. Xiong, and S. Feng, “Amorphous silica nanowires: Intensive blue light emitters,” Appl. Phys. Lett. 73(21), 3076–3078 (1998).
[CrossRef]

Appl. Phys., A Mater. Sci. Process.

V. N. Tokarev, S. Lazare, C. Belin, and D. Debarre, “Viscous flow and ablation pressure phenomena in nanosecond UV laser irradiation of polymers,” Appl. Phys., A Mater. Sci. Process. 79(4-6), 717–720 (2004).
[CrossRef]

A. Zoubir, L. Shah, K. Richardson, and M. Richardson, “Practical uses of femtosecond laser micro-materials processing,” Appl. Phys., A Mater. Sci. Process. 77, 311–315 (2003).

V. Koubassov, J. Laprise, F. Théberge, E. Förster, R. Sauerbrey, B. Müller, U. Glatzel, and S. Chin, “Ultrafast laser-induced melting of glass,” Appl. Phys., A Mater. Sci. Process. 79, 499–505 (2004).
[CrossRef]

C. Yan, T. Zhang, and P. S. Lee, “Flow assisted synthesis of highly ordered silica nanowire arrays,” Appl. Phys., A Mater. Sci. Process. 94(4), 763–766 (2009).
[CrossRef]

F. Korte, J. Koch, and B. Chichkov, “Formation of microbumps and nanojets on gold targets by femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 79(4-6), 879–881 (2004).
[CrossRef]

M. Feit, A. Komashko, and A. Rubenchik, “Ultra-short pulse laser interaction with transparent dielectrics,” Appl. Phys., A Mater. Sci. Process. 79(7), 1657–1661 (2004).
[CrossRef]

Chem. Phys. Lett.

X. Wu, W. Song, K. Wang, T. Hu, B. Zhao, Y. Sun, and J. Du, “Preparation and photoluminescence properties of amorphous silica nanowires,” Chem. Phys. Lett. 336(1-2), 53–56 (2001).
[CrossRef]

Compos. Sci. Technol.

Z. M. Huang, Y. Z. Zhang, M. Kotaki, and S. Ramakrishna, “A review on polymer nanofibers by electrospinning and their applications in nanocomposites,” Compos. Sci. Technol. 63(15), 2223–2253 (2003).
[CrossRef]

J. Am. Chem. Soc.

Z. W. Pan, Z. R. Dai, C. Ma, and Z. L. Wang, “Molten gallium as a catalyst for the large-scale growth of highly aligned silica nanowires,” J. Am. Chem. Soc. 124(8), 1817–1822 (2002).
[CrossRef] [PubMed]

J. Anal. At. Spectrom.

R. E. Russo, X. Mao, J. J. Gonzalez, and S. S. Mao, “Femtosecond laser ablation ICP-MS,” J. Anal. At. Spectrom. 17, 1072–1075 (2002).
[CrossRef]

J. Appl. Phys.

K. L. Wray and T. J. Connolly, “Thermal conductivity of clear fused silica at high temperatures,” J. Appl. Phys. 30(11), 1702–1705 (1959).
[CrossRef]

J. Mater. Sci. Lett.

S. S. Choi, S. G. Lee, S. S. Im, S. H. Kim, and Y. L. Joo, “Silica nanofibers from electrospinning/sol-gel process,” J. Mater. Sci. Lett. 22(12), 891–893 (2003).
[CrossRef]

J. Non-Cryst. Solids

L. Tong and E. Mazur, “Glass nanofibers for micro- and nano-scale photonic devices,” J. Non-Cryst. Solids 354(12-13), 1240–1244 (2008).
[CrossRef]

M. R. Kasaai, V. Kacham, F. Theberge, and S. L. Chin, “The interaction of femtosecond and nanosecond laser pulses with the surface of glass,” J. Non-Cryst. Solids 319(1-2), 129–135 (2003).
[CrossRef]

J. Phys. D

A. Ben-Yakar, A. Harkin, J. Ashmore, R. L. Byer, and H. A. Stone, “Thermal and fluid processes of a thin melt zone during femtosecond laser ablation of glass: The formation of rims by single laser pulses,” J. Phys. D 40(5), 1447–1459 (2007).
[CrossRef]

Nanotechnology

S. Juodkazis, H. Misawa, O. A. Louchev, and K. Kitamura, “Femtosecond laser ablation of chalcogenide glass: Explosive formation of nano-fibres against thermo-capillary growth of micro-spheres,” Nanotechnology 17(19), 4802–4805 (2006).
[CrossRef]

L. Tong, J. Lou, Z. Ye, G. T. Svacha, and E. Mazur, “Self-modulated taper drawing of silica nanowires,” Nanotechnology 16(9), 1445–1448 (2005).
[CrossRef]

Nature

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Opt. Eng.

B. Luther-Davies, A. V. Rode, N. R. Madsen, and E. G. Gamaly, “Picosecond high-repetition-rate pulsed laser ablation of dielectrics: The effect of energy accumulation between pulses,” Opt. Eng. 44(5), 051102–051108 (2005).
[CrossRef]

Opt. Express

Phys. Lett. A

L. Dai, L. You, X. Duan, W. Lian, and G. Qin, “Growth of silica nanowire arrays by reaction of Si substrate with oxygen using Ga as catalyst,” Phys. Lett. A 335(4), 304–309 (2005).
[CrossRef]

Phys. Plasmas

E. Gamaly, A. Rode, B. Luther-Davies, and V. Tikhonchuk, “Ablation of solids by femtosecond lasers: Ablation mechanism and ablation thresholds for metals and dielectrics,” Phys. Plasmas 9(3), 949 (2002).
[CrossRef]

Phys. Rev. B

A. Kaiser, B. Rethfeld, M. Vicanek, and G. Simon, “Microscopic processes in dielectrics under irradiation by subpicosecond laser pulses,” Phys. Rev. B 61(17), 11437–11450 (2000).
[CrossRef]

Phys. Rev. Lett.

A. Brodeur and S. Chin, “Band-gap dependence of the ultrafast white-light continuum,” Phys. Rev. Lett. 80(20), 4406–4409 (1998).
[CrossRef]

Other

S. Chin, “From multiphoton to tunnel ionization,” Advances in multi-photon processes and spectroscopy, S. H. Lin, A. A. Villaeys and Y. Fujimura, eds. World Scientific, Singapore, 16, 249–272 (2004).

S. Ramakrishna, An introduction to electrospinning and nanofibers (World Scientific Pub Co Inc, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup. AOM—Acousto-optic modulator

Fig. 2
Fig. 2

a) SEM images of Silica Nanofibres generated at 12.4 MHz and dwell time 5 ms; b) Densely populated nanofibres emerging out around the microholes produced by femtosecond laser.

Fig. 3
Fig. 3

Nanofibres of different morphologies a) SEM image of nanofibres with varying diameters and lengths; b) Nanofiber with spherical beads attached; c) TEM image illustrating an expelled droplet transformed into a fibre; d) TEM images silica fibres with nanometer dimensions

Fig. 4
Fig. 4

TEM image of a nanofibre with diameter less than: a) 50 nm; b) 100 nm

Fig. 5
Fig. 5

a) Optical Breakdown of laser irradiated surface, b) Nanofibre formation process, inset image shows the rim created as result of melt expulsion. Fiber formation during laser ablation is predominantly via melt expulsion followed by generation of molten jets.

Metrics