Abstract

The air-gap structure between integrated LiNbO3 optical modulators and micromachined Si substrates is reported for high-speed optoelectronic systems. The calculated and experimental results show that the high permittivity of the Si substrate decreases the resonant modulation frequency to 10 GHz LiNbO3 resonant-type optical modulator chips on the Si substrate. To prevent this substrate effect, an air-gap was formed between the LiNbO3 modulator and the Si substrate. The ability to fabricate the air-gap structure was demonstrated using low-temperature flip-chip bonding (100 °C) and a Si micromachining process, and its performance was experimentally verified.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
    [CrossRef] [PubMed]
  2. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
    [CrossRef] [PubMed]
  3. Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators,” Opt. Express 15(2), 430–436 (2007).
    [CrossRef] [PubMed]
  4. W. M. J. Green, M. J. Rooks, L. Sekaric, and Y. A. Vlasov, “Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator,” Opt. Express 15(25), 17106–17113 (2007).
    [CrossRef] [PubMed]
  5. S. Manipatruni, L. Chen, and M. Lipson, “Ultra high bandwidth WDM using silicon microring modulators,” Opt. Express 18(16), 16858–16867 (2010).
    [CrossRef] [PubMed]
  6. E. L. Friedrich, M. G. Oberg, B. Broberg, S. Nilsson, and S. Valette, “Hybrid integration of Semiconductor Lasers with Si-based single-mode ridge waveguides,” J. Lightwave Technol. 10(3), 336–340 (1992).
    [CrossRef]
  7. T. Hashimoto, Y. Nakasuga, Y. Yamada, H. Terui, M. Yanagisawa, Y. Akahori, Y. Tohmori, K. Kato, and Y. Suzuki, “Multichip optical hybrid integration technique with planar lightwave circuit platform,” J. Lightwave Technol. 16(7), 1249–1258 (1998).
    [CrossRef]
  8. R. Sawada, E. Higurashi, and Y. Jin, “Hybrid microlaser encoder,” J. Lightwave Technol. 21(3), 815–820 (2003).
    [CrossRef]
  9. E. Higurashi, R. Sawada, and T. Ito, “An integrated laser blood flowmeter,” J. Lightwave Technol. 21(3), 591–595 (2003).
    [CrossRef]
  10. E. Higurashi and R. Sawada, “Micro-encoder based on higher-order diffracted light interference,” J. Micromech. Microeng. 15(8), 1459–1465 (2005).
    [CrossRef]
  11. H. L. Hsiao, H. C. Lan, C. C. Chang, C. Y. Lee, S. P. Chen, C. H. Hsu, S. F. Chang, Y. S. Lin, F. M. Kuo, J. W. Shi, and M. L. Wu, “Compact and passive-alignment 4-channel × 25-Gbps optical interconnect modules based on silicon optical benches with 45° micro-reflectors,” Opt. Express 17(26), 24250–24260 (2009).
    [CrossRef] [PubMed]
  12. K. Ohira, K. Kobayashi, N. Iizuka, H. Yoshida, M. Ezaki, H. Uemura, A. Kojima, K. Nakamura, H. Furuyama, and H. Shibata, “On-chip optical interconnection by using integrated III-V laser diode and photodetector with silicon waveguide,” Opt. Express 18(15), 15440–15447 (2010).
    [CrossRef] [PubMed]
  13. H. Takagi, R. Maeda, and T. Suga, “Room-temperature wafer bonding of Si to LiNbO3, LiTaO3 and Gd3Ga5O12 by Ar-beam surface activation,” J. Micromech. Microeng. 11(4), 348–352 (2001).
    [CrossRef]
  14. R. Takigawa, E. Higurashi, T. Suga, S. Shinada, and T. Kawanishi, “Low-temperature Au-to-Au bonding for LiNbO3/Si structure achieved in ambient,” IEICE Trans. Electron. E E90(C), 145–146 (2007).
    [CrossRef]
  15. E. Higurashi, T. Imamura, T. Suga, and R. Sawada, “Low-temperature bonding of laser diode chips on silicon substrates using plasma activation of Au films,” IEEE Photon. Technol. Lett. 19(24), 1994–1996 (2007).
    [CrossRef]
  16. R. Takigawa, E. Higurashi, T. Suga, and R. Sawada, “Room-temperature bonding of vertical cavity surface emission laser diode chips on silicon substrates using Au microbumps,” Appl. Phys. Express 1(24), 112201 (2008).
    [CrossRef]
  17. E. Higurashi, D. Chino, T. Suga, and R. Sawada, “Au-Au surface-activated bonding and its application to optical microsensors with three dimensional structure,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1500–1505 (2009).
    [CrossRef]
  18. R. Takigawa, E. Higurashi, T. Suga, and T. Kawanishi, “Passive alignment and mounting of LiNbO3 waveguide chips on Si substrates by low-temperature solid-state bonding of Au,” IEEE J. Sel. Top. Quantum Electron. 17(3), 652–658 (2011).
    [CrossRef]
  19. E. Higurashi, R. Sawada, and T. Suga, “Optical microsensors integration technologies for biomedical applications,” IEICE Trans. Electron. E E92(C), 231–238 (2009).
    [CrossRef]
  20. T. Suga, T. Itoh, Z. Xu, M. Tomita, and A. Yamauchi, “Surface activated bonding for new flip chip and bumpless interconnect systems,” in Proc. 52nd Electron. Components Technol. Conf. San Diego CA 105–111, 2002.
  21. T. Kawanishi, S. Oikawa, K. Higuma, Y. Matsuo, and M. Izutsu, “LiNbO3 resonant-type optical modulator with double-stub structure,” Electron. Lett. 37(20), 1244–1246 (2001).
    [CrossRef]
  22. S. Oikawa, T. Kawanishi, K. Higuma, Y. Matsuo, and M. Izutsu, “Double-stub structure for resonant-type optical modulators using 20 –thick electrode,” IEEE Photon. Technol. Lett. 15(2), 221–223 (2003).
    [CrossRef]
  23. Test Methods and Procedures For Microelectronics, “MIL-STD-883E,” Method 2027, 2 (1989).
  24. E. J. Murphy, T. C. Rice, L. Mccaughan, G. T. Harvey, and P. H. Read, “Permanent attachment of single-mode fiber arrays to waveguides,” J. Lightwave Technol. 3(4), 795–799 (1985).
    [CrossRef]

2011

R. Takigawa, E. Higurashi, T. Suga, and T. Kawanishi, “Passive alignment and mounting of LiNbO3 waveguide chips on Si substrates by low-temperature solid-state bonding of Au,” IEEE J. Sel. Top. Quantum Electron. 17(3), 652–658 (2011).
[CrossRef]

2010

2009

H. L. Hsiao, H. C. Lan, C. C. Chang, C. Y. Lee, S. P. Chen, C. H. Hsu, S. F. Chang, Y. S. Lin, F. M. Kuo, J. W. Shi, and M. L. Wu, “Compact and passive-alignment 4-channel × 25-Gbps optical interconnect modules based on silicon optical benches with 45° micro-reflectors,” Opt. Express 17(26), 24250–24260 (2009).
[CrossRef] [PubMed]

E. Higurashi, R. Sawada, and T. Suga, “Optical microsensors integration technologies for biomedical applications,” IEICE Trans. Electron. E E92(C), 231–238 (2009).
[CrossRef]

E. Higurashi, D. Chino, T. Suga, and R. Sawada, “Au-Au surface-activated bonding and its application to optical microsensors with three dimensional structure,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1500–1505 (2009).
[CrossRef]

2008

R. Takigawa, E. Higurashi, T. Suga, and R. Sawada, “Room-temperature bonding of vertical cavity surface emission laser diode chips on silicon substrates using Au microbumps,” Appl. Phys. Express 1(24), 112201 (2008).
[CrossRef]

2007

R. Takigawa, E. Higurashi, T. Suga, S. Shinada, and T. Kawanishi, “Low-temperature Au-to-Au bonding for LiNbO3/Si structure achieved in ambient,” IEICE Trans. Electron. E E90(C), 145–146 (2007).
[CrossRef]

E. Higurashi, T. Imamura, T. Suga, and R. Sawada, “Low-temperature bonding of laser diode chips on silicon substrates using plasma activation of Au films,” IEEE Photon. Technol. Lett. 19(24), 1994–1996 (2007).
[CrossRef]

Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators,” Opt. Express 15(2), 430–436 (2007).
[CrossRef] [PubMed]

W. M. J. Green, M. J. Rooks, L. Sekaric, and Y. A. Vlasov, “Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator,” Opt. Express 15(25), 17106–17113 (2007).
[CrossRef] [PubMed]

2005

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[CrossRef] [PubMed]

E. Higurashi and R. Sawada, “Micro-encoder based on higher-order diffracted light interference,” J. Micromech. Microeng. 15(8), 1459–1465 (2005).
[CrossRef]

2004

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[CrossRef] [PubMed]

2003

E. Higurashi, R. Sawada, and T. Ito, “An integrated laser blood flowmeter,” J. Lightwave Technol. 21(3), 591–595 (2003).
[CrossRef]

R. Sawada, E. Higurashi, and Y. Jin, “Hybrid microlaser encoder,” J. Lightwave Technol. 21(3), 815–820 (2003).
[CrossRef]

S. Oikawa, T. Kawanishi, K. Higuma, Y. Matsuo, and M. Izutsu, “Double-stub structure for resonant-type optical modulators using 20 –thick electrode,” IEEE Photon. Technol. Lett. 15(2), 221–223 (2003).
[CrossRef]

2001

T. Kawanishi, S. Oikawa, K. Higuma, Y. Matsuo, and M. Izutsu, “LiNbO3 resonant-type optical modulator with double-stub structure,” Electron. Lett. 37(20), 1244–1246 (2001).
[CrossRef]

H. Takagi, R. Maeda, and T. Suga, “Room-temperature wafer bonding of Si to LiNbO3, LiTaO3 and Gd3Ga5O12 by Ar-beam surface activation,” J. Micromech. Microeng. 11(4), 348–352 (2001).
[CrossRef]

1998

1992

E. L. Friedrich, M. G. Oberg, B. Broberg, S. Nilsson, and S. Valette, “Hybrid integration of Semiconductor Lasers with Si-based single-mode ridge waveguides,” J. Lightwave Technol. 10(3), 336–340 (1992).
[CrossRef]

1989

Test Methods and Procedures For Microelectronics, “MIL-STD-883E,” Method 2027, 2 (1989).

1985

E. J. Murphy, T. C. Rice, L. Mccaughan, G. T. Harvey, and P. H. Read, “Permanent attachment of single-mode fiber arrays to waveguides,” J. Lightwave Technol. 3(4), 795–799 (1985).
[CrossRef]

Akahori, Y.

Broberg, B.

E. L. Friedrich, M. G. Oberg, B. Broberg, S. Nilsson, and S. Valette, “Hybrid integration of Semiconductor Lasers with Si-based single-mode ridge waveguides,” J. Lightwave Technol. 10(3), 336–340 (1992).
[CrossRef]

Chang, C. C.

Chang, S. F.

Chen, L.

Chen, S. P.

Chino, D.

E. Higurashi, D. Chino, T. Suga, and R. Sawada, “Au-Au surface-activated bonding and its application to optical microsensors with three dimensional structure,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1500–1505 (2009).
[CrossRef]

Cohen, O.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Ezaki, M.

Friedrich, E. L.

E. L. Friedrich, M. G. Oberg, B. Broberg, S. Nilsson, and S. Valette, “Hybrid integration of Semiconductor Lasers with Si-based single-mode ridge waveguides,” J. Lightwave Technol. 10(3), 336–340 (1992).
[CrossRef]

Furuyama, H.

Green, W. M. J.

Harvey, G. T.

E. J. Murphy, T. C. Rice, L. Mccaughan, G. T. Harvey, and P. H. Read, “Permanent attachment of single-mode fiber arrays to waveguides,” J. Lightwave Technol. 3(4), 795–799 (1985).
[CrossRef]

Hashimoto, T.

Higuma, K.

S. Oikawa, T. Kawanishi, K. Higuma, Y. Matsuo, and M. Izutsu, “Double-stub structure for resonant-type optical modulators using 20 –thick electrode,” IEEE Photon. Technol. Lett. 15(2), 221–223 (2003).
[CrossRef]

T. Kawanishi, S. Oikawa, K. Higuma, Y. Matsuo, and M. Izutsu, “LiNbO3 resonant-type optical modulator with double-stub structure,” Electron. Lett. 37(20), 1244–1246 (2001).
[CrossRef]

Higurashi, E.

R. Takigawa, E. Higurashi, T. Suga, and T. Kawanishi, “Passive alignment and mounting of LiNbO3 waveguide chips on Si substrates by low-temperature solid-state bonding of Au,” IEEE J. Sel. Top. Quantum Electron. 17(3), 652–658 (2011).
[CrossRef]

E. Higurashi, R. Sawada, and T. Suga, “Optical microsensors integration technologies for biomedical applications,” IEICE Trans. Electron. E E92(C), 231–238 (2009).
[CrossRef]

E. Higurashi, D. Chino, T. Suga, and R. Sawada, “Au-Au surface-activated bonding and its application to optical microsensors with three dimensional structure,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1500–1505 (2009).
[CrossRef]

R. Takigawa, E. Higurashi, T. Suga, and R. Sawada, “Room-temperature bonding of vertical cavity surface emission laser diode chips on silicon substrates using Au microbumps,” Appl. Phys. Express 1(24), 112201 (2008).
[CrossRef]

R. Takigawa, E. Higurashi, T. Suga, S. Shinada, and T. Kawanishi, “Low-temperature Au-to-Au bonding for LiNbO3/Si structure achieved in ambient,” IEICE Trans. Electron. E E90(C), 145–146 (2007).
[CrossRef]

E. Higurashi, T. Imamura, T. Suga, and R. Sawada, “Low-temperature bonding of laser diode chips on silicon substrates using plasma activation of Au films,” IEEE Photon. Technol. Lett. 19(24), 1994–1996 (2007).
[CrossRef]

E. Higurashi and R. Sawada, “Micro-encoder based on higher-order diffracted light interference,” J. Micromech. Microeng. 15(8), 1459–1465 (2005).
[CrossRef]

R. Sawada, E. Higurashi, and Y. Jin, “Hybrid microlaser encoder,” J. Lightwave Technol. 21(3), 815–820 (2003).
[CrossRef]

E. Higurashi, R. Sawada, and T. Ito, “An integrated laser blood flowmeter,” J. Lightwave Technol. 21(3), 591–595 (2003).
[CrossRef]

Hsiao, H. L.

Hsu, C. H.

Iizuka, N.

Imamura, T.

E. Higurashi, T. Imamura, T. Suga, and R. Sawada, “Low-temperature bonding of laser diode chips on silicon substrates using plasma activation of Au films,” IEEE Photon. Technol. Lett. 19(24), 1994–1996 (2007).
[CrossRef]

Ito, T.

Izutsu, M.

S. Oikawa, T. Kawanishi, K. Higuma, Y. Matsuo, and M. Izutsu, “Double-stub structure for resonant-type optical modulators using 20 –thick electrode,” IEEE Photon. Technol. Lett. 15(2), 221–223 (2003).
[CrossRef]

T. Kawanishi, S. Oikawa, K. Higuma, Y. Matsuo, and M. Izutsu, “LiNbO3 resonant-type optical modulator with double-stub structure,” Electron. Lett. 37(20), 1244–1246 (2001).
[CrossRef]

Jin, Y.

Jones, R.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Kato, K.

Kawanishi, T.

R. Takigawa, E. Higurashi, T. Suga, and T. Kawanishi, “Passive alignment and mounting of LiNbO3 waveguide chips on Si substrates by low-temperature solid-state bonding of Au,” IEEE J. Sel. Top. Quantum Electron. 17(3), 652–658 (2011).
[CrossRef]

R. Takigawa, E. Higurashi, T. Suga, S. Shinada, and T. Kawanishi, “Low-temperature Au-to-Au bonding for LiNbO3/Si structure achieved in ambient,” IEICE Trans. Electron. E E90(C), 145–146 (2007).
[CrossRef]

S. Oikawa, T. Kawanishi, K. Higuma, Y. Matsuo, and M. Izutsu, “Double-stub structure for resonant-type optical modulators using 20 –thick electrode,” IEEE Photon. Technol. Lett. 15(2), 221–223 (2003).
[CrossRef]

T. Kawanishi, S. Oikawa, K. Higuma, Y. Matsuo, and M. Izutsu, “LiNbO3 resonant-type optical modulator with double-stub structure,” Electron. Lett. 37(20), 1244–1246 (2001).
[CrossRef]

Kobayashi, K.

Kojima, A.

Kuo, F. M.

Lan, H. C.

Lee, C. Y.

Liao, L.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Lin, Y. S.

Lipson, M.

Liu, A.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Maeda, R.

H. Takagi, R. Maeda, and T. Suga, “Room-temperature wafer bonding of Si to LiNbO3, LiTaO3 and Gd3Ga5O12 by Ar-beam surface activation,” J. Micromech. Microeng. 11(4), 348–352 (2001).
[CrossRef]

Manipatruni, S.

Matsuo, Y.

S. Oikawa, T. Kawanishi, K. Higuma, Y. Matsuo, and M. Izutsu, “Double-stub structure for resonant-type optical modulators using 20 –thick electrode,” IEEE Photon. Technol. Lett. 15(2), 221–223 (2003).
[CrossRef]

T. Kawanishi, S. Oikawa, K. Higuma, Y. Matsuo, and M. Izutsu, “LiNbO3 resonant-type optical modulator with double-stub structure,” Electron. Lett. 37(20), 1244–1246 (2001).
[CrossRef]

Mccaughan, L.

E. J. Murphy, T. C. Rice, L. Mccaughan, G. T. Harvey, and P. H. Read, “Permanent attachment of single-mode fiber arrays to waveguides,” J. Lightwave Technol. 3(4), 795–799 (1985).
[CrossRef]

Murphy, E. J.

E. J. Murphy, T. C. Rice, L. Mccaughan, G. T. Harvey, and P. H. Read, “Permanent attachment of single-mode fiber arrays to waveguides,” J. Lightwave Technol. 3(4), 795–799 (1985).
[CrossRef]

Nakamura, K.

Nakasuga, Y.

Nicolaescu, R.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Nilsson, S.

E. L. Friedrich, M. G. Oberg, B. Broberg, S. Nilsson, and S. Valette, “Hybrid integration of Semiconductor Lasers with Si-based single-mode ridge waveguides,” J. Lightwave Technol. 10(3), 336–340 (1992).
[CrossRef]

Oberg, M. G.

E. L. Friedrich, M. G. Oberg, B. Broberg, S. Nilsson, and S. Valette, “Hybrid integration of Semiconductor Lasers with Si-based single-mode ridge waveguides,” J. Lightwave Technol. 10(3), 336–340 (1992).
[CrossRef]

Ohira, K.

Oikawa, S.

S. Oikawa, T. Kawanishi, K. Higuma, Y. Matsuo, and M. Izutsu, “Double-stub structure for resonant-type optical modulators using 20 –thick electrode,” IEEE Photon. Technol. Lett. 15(2), 221–223 (2003).
[CrossRef]

T. Kawanishi, S. Oikawa, K. Higuma, Y. Matsuo, and M. Izutsu, “LiNbO3 resonant-type optical modulator with double-stub structure,” Electron. Lett. 37(20), 1244–1246 (2001).
[CrossRef]

Paniccia, M.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Pradhan, S.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Read, P. H.

E. J. Murphy, T. C. Rice, L. Mccaughan, G. T. Harvey, and P. H. Read, “Permanent attachment of single-mode fiber arrays to waveguides,” J. Lightwave Technol. 3(4), 795–799 (1985).
[CrossRef]

Rice, T. C.

E. J. Murphy, T. C. Rice, L. Mccaughan, G. T. Harvey, and P. H. Read, “Permanent attachment of single-mode fiber arrays to waveguides,” J. Lightwave Technol. 3(4), 795–799 (1985).
[CrossRef]

Rooks, M. J.

Rubin, D.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Samara-Rubio, D.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Sawada, R.

E. Higurashi, R. Sawada, and T. Suga, “Optical microsensors integration technologies for biomedical applications,” IEICE Trans. Electron. E E92(C), 231–238 (2009).
[CrossRef]

E. Higurashi, D. Chino, T. Suga, and R. Sawada, “Au-Au surface-activated bonding and its application to optical microsensors with three dimensional structure,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1500–1505 (2009).
[CrossRef]

R. Takigawa, E. Higurashi, T. Suga, and R. Sawada, “Room-temperature bonding of vertical cavity surface emission laser diode chips on silicon substrates using Au microbumps,” Appl. Phys. Express 1(24), 112201 (2008).
[CrossRef]

E. Higurashi, T. Imamura, T. Suga, and R. Sawada, “Low-temperature bonding of laser diode chips on silicon substrates using plasma activation of Au films,” IEEE Photon. Technol. Lett. 19(24), 1994–1996 (2007).
[CrossRef]

E. Higurashi and R. Sawada, “Micro-encoder based on higher-order diffracted light interference,” J. Micromech. Microeng. 15(8), 1459–1465 (2005).
[CrossRef]

R. Sawada, E. Higurashi, and Y. Jin, “Hybrid microlaser encoder,” J. Lightwave Technol. 21(3), 815–820 (2003).
[CrossRef]

E. Higurashi, R. Sawada, and T. Ito, “An integrated laser blood flowmeter,” J. Lightwave Technol. 21(3), 591–595 (2003).
[CrossRef]

Schmidt, B.

Sekaric, L.

Shakya, J.

Shi, J. W.

Shibata, H.

Shinada, S.

R. Takigawa, E. Higurashi, T. Suga, S. Shinada, and T. Kawanishi, “Low-temperature Au-to-Au bonding for LiNbO3/Si structure achieved in ambient,” IEICE Trans. Electron. E E90(C), 145–146 (2007).
[CrossRef]

Suga, T.

R. Takigawa, E. Higurashi, T. Suga, and T. Kawanishi, “Passive alignment and mounting of LiNbO3 waveguide chips on Si substrates by low-temperature solid-state bonding of Au,” IEEE J. Sel. Top. Quantum Electron. 17(3), 652–658 (2011).
[CrossRef]

E. Higurashi, R. Sawada, and T. Suga, “Optical microsensors integration technologies for biomedical applications,” IEICE Trans. Electron. E E92(C), 231–238 (2009).
[CrossRef]

E. Higurashi, D. Chino, T. Suga, and R. Sawada, “Au-Au surface-activated bonding and its application to optical microsensors with three dimensional structure,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1500–1505 (2009).
[CrossRef]

R. Takigawa, E. Higurashi, T. Suga, and R. Sawada, “Room-temperature bonding of vertical cavity surface emission laser diode chips on silicon substrates using Au microbumps,” Appl. Phys. Express 1(24), 112201 (2008).
[CrossRef]

R. Takigawa, E. Higurashi, T. Suga, S. Shinada, and T. Kawanishi, “Low-temperature Au-to-Au bonding for LiNbO3/Si structure achieved in ambient,” IEICE Trans. Electron. E E90(C), 145–146 (2007).
[CrossRef]

E. Higurashi, T. Imamura, T. Suga, and R. Sawada, “Low-temperature bonding of laser diode chips on silicon substrates using plasma activation of Au films,” IEEE Photon. Technol. Lett. 19(24), 1994–1996 (2007).
[CrossRef]

H. Takagi, R. Maeda, and T. Suga, “Room-temperature wafer bonding of Si to LiNbO3, LiTaO3 and Gd3Ga5O12 by Ar-beam surface activation,” J. Micromech. Microeng. 11(4), 348–352 (2001).
[CrossRef]

Suzuki, Y.

Takagi, H.

H. Takagi, R. Maeda, and T. Suga, “Room-temperature wafer bonding of Si to LiNbO3, LiTaO3 and Gd3Ga5O12 by Ar-beam surface activation,” J. Micromech. Microeng. 11(4), 348–352 (2001).
[CrossRef]

Takigawa, R.

R. Takigawa, E. Higurashi, T. Suga, and T. Kawanishi, “Passive alignment and mounting of LiNbO3 waveguide chips on Si substrates by low-temperature solid-state bonding of Au,” IEEE J. Sel. Top. Quantum Electron. 17(3), 652–658 (2011).
[CrossRef]

R. Takigawa, E. Higurashi, T. Suga, and R. Sawada, “Room-temperature bonding of vertical cavity surface emission laser diode chips on silicon substrates using Au microbumps,” Appl. Phys. Express 1(24), 112201 (2008).
[CrossRef]

R. Takigawa, E. Higurashi, T. Suga, S. Shinada, and T. Kawanishi, “Low-temperature Au-to-Au bonding for LiNbO3/Si structure achieved in ambient,” IEICE Trans. Electron. E E90(C), 145–146 (2007).
[CrossRef]

Terui, H.

Tohmori, Y.

Uemura, H.

Valette, S.

E. L. Friedrich, M. G. Oberg, B. Broberg, S. Nilsson, and S. Valette, “Hybrid integration of Semiconductor Lasers with Si-based single-mode ridge waveguides,” J. Lightwave Technol. 10(3), 336–340 (1992).
[CrossRef]

Vlasov, Y. A.

Wu, M. L.

Xu, Q.

Yamada, Y.

Yanagisawa, M.

Yoshida, H.

Appl. Phys. Express

R. Takigawa, E. Higurashi, T. Suga, and R. Sawada, “Room-temperature bonding of vertical cavity surface emission laser diode chips on silicon substrates using Au microbumps,” Appl. Phys. Express 1(24), 112201 (2008).
[CrossRef]

Electron. Lett.

T. Kawanishi, S. Oikawa, K. Higuma, Y. Matsuo, and M. Izutsu, “LiNbO3 resonant-type optical modulator with double-stub structure,” Electron. Lett. 37(20), 1244–1246 (2001).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

E. Higurashi, D. Chino, T. Suga, and R. Sawada, “Au-Au surface-activated bonding and its application to optical microsensors with three dimensional structure,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1500–1505 (2009).
[CrossRef]

R. Takigawa, E. Higurashi, T. Suga, and T. Kawanishi, “Passive alignment and mounting of LiNbO3 waveguide chips on Si substrates by low-temperature solid-state bonding of Au,” IEEE J. Sel. Top. Quantum Electron. 17(3), 652–658 (2011).
[CrossRef]

IEEE Photon. Technol. Lett.

S. Oikawa, T. Kawanishi, K. Higuma, Y. Matsuo, and M. Izutsu, “Double-stub structure for resonant-type optical modulators using 20 –thick electrode,” IEEE Photon. Technol. Lett. 15(2), 221–223 (2003).
[CrossRef]

E. Higurashi, T. Imamura, T. Suga, and R. Sawada, “Low-temperature bonding of laser diode chips on silicon substrates using plasma activation of Au films,” IEEE Photon. Technol. Lett. 19(24), 1994–1996 (2007).
[CrossRef]

IEICE Trans. Electron. E

R. Takigawa, E. Higurashi, T. Suga, S. Shinada, and T. Kawanishi, “Low-temperature Au-to-Au bonding for LiNbO3/Si structure achieved in ambient,” IEICE Trans. Electron. E E90(C), 145–146 (2007).
[CrossRef]

E. Higurashi, R. Sawada, and T. Suga, “Optical microsensors integration technologies for biomedical applications,” IEICE Trans. Electron. E E92(C), 231–238 (2009).
[CrossRef]

J. Lightwave Technol.

E. L. Friedrich, M. G. Oberg, B. Broberg, S. Nilsson, and S. Valette, “Hybrid integration of Semiconductor Lasers with Si-based single-mode ridge waveguides,” J. Lightwave Technol. 10(3), 336–340 (1992).
[CrossRef]

T. Hashimoto, Y. Nakasuga, Y. Yamada, H. Terui, M. Yanagisawa, Y. Akahori, Y. Tohmori, K. Kato, and Y. Suzuki, “Multichip optical hybrid integration technique with planar lightwave circuit platform,” J. Lightwave Technol. 16(7), 1249–1258 (1998).
[CrossRef]

R. Sawada, E. Higurashi, and Y. Jin, “Hybrid microlaser encoder,” J. Lightwave Technol. 21(3), 815–820 (2003).
[CrossRef]

E. Higurashi, R. Sawada, and T. Ito, “An integrated laser blood flowmeter,” J. Lightwave Technol. 21(3), 591–595 (2003).
[CrossRef]

E. J. Murphy, T. C. Rice, L. Mccaughan, G. T. Harvey, and P. H. Read, “Permanent attachment of single-mode fiber arrays to waveguides,” J. Lightwave Technol. 3(4), 795–799 (1985).
[CrossRef]

J. Micromech. Microeng.

E. Higurashi and R. Sawada, “Micro-encoder based on higher-order diffracted light interference,” J. Micromech. Microeng. 15(8), 1459–1465 (2005).
[CrossRef]

H. Takagi, R. Maeda, and T. Suga, “Room-temperature wafer bonding of Si to LiNbO3, LiTaO3 and Gd3Ga5O12 by Ar-beam surface activation,” J. Micromech. Microeng. 11(4), 348–352 (2001).
[CrossRef]

Method

Test Methods and Procedures For Microelectronics, “MIL-STD-883E,” Method 2027, 2 (1989).

Nature

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Opt. Express

Other

T. Suga, T. Itoh, Z. Xu, M. Tomita, and A. Yamauchi, “Surface activated bonding for new flip chip and bumpless interconnect systems,” in Proc. 52nd Electron. Components Technol. Conf. San Diego CA 105–111, 2002.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic of the air-gap structure between the integrated LiNbO3 optical modulators and micromachined Si substrates. The (a) cross-sectional view, (b) A-A’ cross section and (c) B-B’ cross section are shown.

Fig. 2
Fig. 2

Schematic view of a LiNbO3 resonant-type optical phase modulator. The (a) top view and (b) A-A’ cross section are represented.

Fig. 3
Fig. 3

Scanning electron microscope (SEM) image of the Au micro-bumps.

Fig. 4
Fig. 4

SEM image of the area around the end face of the integrated LiNbO3 optical modulator chip on a micromachined Si substrate.

Fig. 5
Fig. 5

Schematic cross-sectional view of the simulation model.

Fig. 6
Fig. 6

Calculated results of the resonant frequency as a function of the air-gap height.

Fig. 7
Fig. 7

Measured S11 parameter of the fabricated LiNbO3 optical modulator chip before and after mounting onto the micromachined Si substrate. The following data is shown: (a) air-gap height, 1 µm; (b) air-gap height, 50 µm and (c) air-gap height, 100 µm.

Fig. 8
Fig. 8

Simplified schematic of the experimental setup for measuring the optical modulation characteristics.

Fig. 9
Fig. 9

Measured optical spectra of the LiNbO3 optical modulators before and after mounting onto the micromachined Si substrate (RF signal: 10 GHz, transverse-magnetic polarization).

Metrics