R. Takigawa, E. Higurashi, T. Suga, and T. Kawanishi, “Passive alignment and mounting of LiNbO3 waveguide chips on Si substrates by low-temperature solid-state bonding of Au,” IEEE J. Sel. Top. Quantum Electron. 17(3), 652–658 (2011).
[Crossref]
K. Ohira, K. Kobayashi, N. Iizuka, H. Yoshida, M. Ezaki, H. Uemura, A. Kojima, K. Nakamura, H. Furuyama, and H. Shibata, “On-chip optical interconnection by using integrated III-V laser diode and photodetector with silicon waveguide,” Opt. Express 18(15), 15440–15447 (2010).
[Crossref]
[PubMed]
S. Manipatruni, L. Chen, and M. Lipson, “Ultra high bandwidth WDM using silicon microring modulators,” Opt. Express 18(16), 16858–16867 (2010).
[Crossref]
[PubMed]
H. L. Hsiao, H. C. Lan, C. C. Chang, C. Y. Lee, S. P. Chen, C. H. Hsu, S. F. Chang, Y. S. Lin, F. M. Kuo, J. W. Shi, and M. L. Wu, “Compact and passive-alignment 4-channel × 25-Gbps optical interconnect modules based on silicon optical benches with 45° micro-reflectors,” Opt. Express 17(26), 24250–24260 (2009).
[Crossref]
[PubMed]
E. Higurashi, R. Sawada, and T. Suga, “Optical microsensors integration technologies for biomedical applications,” IEICE Trans. Electron. E E92(C), 231–238 (2009).
[Crossref]
E. Higurashi, D. Chino, T. Suga, and R. Sawada, “Au-Au surface-activated bonding and its application to optical microsensors with three dimensional structure,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1500–1505 (2009).
[Crossref]
R. Takigawa, E. Higurashi, T. Suga, and R. Sawada, “Room-temperature bonding of vertical cavity surface emission laser diode chips on silicon substrates using Au microbumps,” Appl. Phys. Express 1(24), 112201 (2008).
[Crossref]
R. Takigawa, E. Higurashi, T. Suga, S. Shinada, and T. Kawanishi, “Low-temperature Au-to-Au bonding for LiNbO3/Si structure achieved in ambient,” IEICE Trans. Electron. E E90(C), 145–146 (2007).
[Crossref]
E. Higurashi, T. Imamura, T. Suga, and R. Sawada, “Low-temperature bonding of laser diode chips on silicon substrates using plasma activation of Au films,” IEEE Photon. Technol. Lett. 19(24), 1994–1996 (2007).
[Crossref]
Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators,” Opt. Express 15(2), 430–436 (2007).
[Crossref]
[PubMed]
W. M. J. Green, M. J. Rooks, L. Sekaric, and Y. A. Vlasov, “Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator,” Opt. Express 15(25), 17106–17113 (2007).
[Crossref]
[PubMed]
Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[Crossref]
[PubMed]
E. Higurashi and R. Sawada, “Micro-encoder based on higher-order diffracted light interference,” J. Micromech. Microeng. 15(8), 1459–1465 (2005).
[Crossref]
A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[Crossref]
[PubMed]
E. Higurashi, R. Sawada, and T. Ito, “An integrated laser blood flowmeter,” J. Lightwave Technol. 21(3), 591–595 (2003).
[Crossref]
R. Sawada, E. Higurashi, and Y. Jin, “Hybrid microlaser encoder,” J. Lightwave Technol. 21(3), 815–820 (2003).
[Crossref]
S. Oikawa, T. Kawanishi, K. Higuma, Y. Matsuo, and M. Izutsu, “Double-stub structure for resonant-type optical modulators using 20 –thick electrode,” IEEE Photon. Technol. Lett. 15(2), 221–223 (2003).
[Crossref]
T. Kawanishi, S. Oikawa, K. Higuma, Y. Matsuo, and M. Izutsu, “LiNbO3 resonant-type optical modulator with double-stub structure,” Electron. Lett. 37(20), 1244–1246 (2001).
[Crossref]
H. Takagi, R. Maeda, and T. Suga, “Room-temperature wafer bonding of Si to LiNbO3, LiTaO3 and Gd3Ga5O12 by Ar-beam surface activation,” J. Micromech. Microeng. 11(4), 348–352 (2001).
[Crossref]
T. Hashimoto, Y. Nakasuga, Y. Yamada, H. Terui, M. Yanagisawa, Y. Akahori, Y. Tohmori, K. Kato, and Y. Suzuki, “Multichip optical hybrid integration technique with planar lightwave circuit platform,” J. Lightwave Technol. 16(7), 1249–1258 (1998).
[Crossref]
E. L. Friedrich, M. G. Oberg, B. Broberg, S. Nilsson, and S. Valette, “Hybrid integration of Semiconductor Lasers with Si-based single-mode ridge waveguides,” J. Lightwave Technol. 10(3), 336–340 (1992).
[Crossref]
Test Methods and Procedures For Microelectronics, “MIL-STD-883E,” Method 2027, 2 (1989).
E. J. Murphy, T. C. Rice, L. Mccaughan, G. T. Harvey, and P. H. Read, “Permanent attachment of single-mode fiber arrays to waveguides,” J. Lightwave Technol. 3(4), 795–799 (1985).
[Crossref]
T. Hashimoto, Y. Nakasuga, Y. Yamada, H. Terui, M. Yanagisawa, Y. Akahori, Y. Tohmori, K. Kato, and Y. Suzuki, “Multichip optical hybrid integration technique with planar lightwave circuit platform,” J. Lightwave Technol. 16(7), 1249–1258 (1998).
[Crossref]
E. L. Friedrich, M. G. Oberg, B. Broberg, S. Nilsson, and S. Valette, “Hybrid integration of Semiconductor Lasers with Si-based single-mode ridge waveguides,” J. Lightwave Technol. 10(3), 336–340 (1992).
[Crossref]
H. L. Hsiao, H. C. Lan, C. C. Chang, C. Y. Lee, S. P. Chen, C. H. Hsu, S. F. Chang, Y. S. Lin, F. M. Kuo, J. W. Shi, and M. L. Wu, “Compact and passive-alignment 4-channel × 25-Gbps optical interconnect modules based on silicon optical benches with 45° micro-reflectors,” Opt. Express 17(26), 24250–24260 (2009).
[Crossref]
[PubMed]
H. L. Hsiao, H. C. Lan, C. C. Chang, C. Y. Lee, S. P. Chen, C. H. Hsu, S. F. Chang, Y. S. Lin, F. M. Kuo, J. W. Shi, and M. L. Wu, “Compact and passive-alignment 4-channel × 25-Gbps optical interconnect modules based on silicon optical benches with 45° micro-reflectors,” Opt. Express 17(26), 24250–24260 (2009).
[Crossref]
[PubMed]
H. L. Hsiao, H. C. Lan, C. C. Chang, C. Y. Lee, S. P. Chen, C. H. Hsu, S. F. Chang, Y. S. Lin, F. M. Kuo, J. W. Shi, and M. L. Wu, “Compact and passive-alignment 4-channel × 25-Gbps optical interconnect modules based on silicon optical benches with 45° micro-reflectors,” Opt. Express 17(26), 24250–24260 (2009).
[Crossref]
[PubMed]
E. Higurashi, D. Chino, T. Suga, and R. Sawada, “Au-Au surface-activated bonding and its application to optical microsensors with three dimensional structure,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1500–1505 (2009).
[Crossref]
A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[Crossref]
[PubMed]
K. Ohira, K. Kobayashi, N. Iizuka, H. Yoshida, M. Ezaki, H. Uemura, A. Kojima, K. Nakamura, H. Furuyama, and H. Shibata, “On-chip optical interconnection by using integrated III-V laser diode and photodetector with silicon waveguide,” Opt. Express 18(15), 15440–15447 (2010).
[Crossref]
[PubMed]
E. L. Friedrich, M. G. Oberg, B. Broberg, S. Nilsson, and S. Valette, “Hybrid integration of Semiconductor Lasers with Si-based single-mode ridge waveguides,” J. Lightwave Technol. 10(3), 336–340 (1992).
[Crossref]
K. Ohira, K. Kobayashi, N. Iizuka, H. Yoshida, M. Ezaki, H. Uemura, A. Kojima, K. Nakamura, H. Furuyama, and H. Shibata, “On-chip optical interconnection by using integrated III-V laser diode and photodetector with silicon waveguide,” Opt. Express 18(15), 15440–15447 (2010).
[Crossref]
[PubMed]
E. J. Murphy, T. C. Rice, L. Mccaughan, G. T. Harvey, and P. H. Read, “Permanent attachment of single-mode fiber arrays to waveguides,” J. Lightwave Technol. 3(4), 795–799 (1985).
[Crossref]
T. Hashimoto, Y. Nakasuga, Y. Yamada, H. Terui, M. Yanagisawa, Y. Akahori, Y. Tohmori, K. Kato, and Y. Suzuki, “Multichip optical hybrid integration technique with planar lightwave circuit platform,” J. Lightwave Technol. 16(7), 1249–1258 (1998).
[Crossref]
S. Oikawa, T. Kawanishi, K. Higuma, Y. Matsuo, and M. Izutsu, “Double-stub structure for resonant-type optical modulators using 20 –thick electrode,” IEEE Photon. Technol. Lett. 15(2), 221–223 (2003).
[Crossref]
T. Kawanishi, S. Oikawa, K. Higuma, Y. Matsuo, and M. Izutsu, “LiNbO3 resonant-type optical modulator with double-stub structure,” Electron. Lett. 37(20), 1244–1246 (2001).
[Crossref]
R. Takigawa, E. Higurashi, T. Suga, and T. Kawanishi, “Passive alignment and mounting of LiNbO3 waveguide chips on Si substrates by low-temperature solid-state bonding of Au,” IEEE J. Sel. Top. Quantum Electron. 17(3), 652–658 (2011).
[Crossref]
E. Higurashi, D. Chino, T. Suga, and R. Sawada, “Au-Au surface-activated bonding and its application to optical microsensors with three dimensional structure,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1500–1505 (2009).
[Crossref]
E. Higurashi, R. Sawada, and T. Suga, “Optical microsensors integration technologies for biomedical applications,” IEICE Trans. Electron. E E92(C), 231–238 (2009).
[Crossref]
R. Takigawa, E. Higurashi, T. Suga, and R. Sawada, “Room-temperature bonding of vertical cavity surface emission laser diode chips on silicon substrates using Au microbumps,” Appl. Phys. Express 1(24), 112201 (2008).
[Crossref]
R. Takigawa, E. Higurashi, T. Suga, S. Shinada, and T. Kawanishi, “Low-temperature Au-to-Au bonding for LiNbO3/Si structure achieved in ambient,” IEICE Trans. Electron. E E90(C), 145–146 (2007).
[Crossref]
E. Higurashi, T. Imamura, T. Suga, and R. Sawada, “Low-temperature bonding of laser diode chips on silicon substrates using plasma activation of Au films,” IEEE Photon. Technol. Lett. 19(24), 1994–1996 (2007).
[Crossref]
E. Higurashi and R. Sawada, “Micro-encoder based on higher-order diffracted light interference,” J. Micromech. Microeng. 15(8), 1459–1465 (2005).
[Crossref]
E. Higurashi, R. Sawada, and T. Ito, “An integrated laser blood flowmeter,” J. Lightwave Technol. 21(3), 591–595 (2003).
[Crossref]
R. Sawada, E. Higurashi, and Y. Jin, “Hybrid microlaser encoder,” J. Lightwave Technol. 21(3), 815–820 (2003).
[Crossref]
H. L. Hsiao, H. C. Lan, C. C. Chang, C. Y. Lee, S. P. Chen, C. H. Hsu, S. F. Chang, Y. S. Lin, F. M. Kuo, J. W. Shi, and M. L. Wu, “Compact and passive-alignment 4-channel × 25-Gbps optical interconnect modules based on silicon optical benches with 45° micro-reflectors,” Opt. Express 17(26), 24250–24260 (2009).
[Crossref]
[PubMed]
H. L. Hsiao, H. C. Lan, C. C. Chang, C. Y. Lee, S. P. Chen, C. H. Hsu, S. F. Chang, Y. S. Lin, F. M. Kuo, J. W. Shi, and M. L. Wu, “Compact and passive-alignment 4-channel × 25-Gbps optical interconnect modules based on silicon optical benches with 45° micro-reflectors,” Opt. Express 17(26), 24250–24260 (2009).
[Crossref]
[PubMed]
K. Ohira, K. Kobayashi, N. Iizuka, H. Yoshida, M. Ezaki, H. Uemura, A. Kojima, K. Nakamura, H. Furuyama, and H. Shibata, “On-chip optical interconnection by using integrated III-V laser diode and photodetector with silicon waveguide,” Opt. Express 18(15), 15440–15447 (2010).
[Crossref]
[PubMed]
E. Higurashi, T. Imamura, T. Suga, and R. Sawada, “Low-temperature bonding of laser diode chips on silicon substrates using plasma activation of Au films,” IEEE Photon. Technol. Lett. 19(24), 1994–1996 (2007).
[Crossref]
S. Oikawa, T. Kawanishi, K. Higuma, Y. Matsuo, and M. Izutsu, “Double-stub structure for resonant-type optical modulators using 20 –thick electrode,” IEEE Photon. Technol. Lett. 15(2), 221–223 (2003).
[Crossref]
T. Kawanishi, S. Oikawa, K. Higuma, Y. Matsuo, and M. Izutsu, “LiNbO3 resonant-type optical modulator with double-stub structure,” Electron. Lett. 37(20), 1244–1246 (2001).
[Crossref]
A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[Crossref]
[PubMed]
T. Hashimoto, Y. Nakasuga, Y. Yamada, H. Terui, M. Yanagisawa, Y. Akahori, Y. Tohmori, K. Kato, and Y. Suzuki, “Multichip optical hybrid integration technique with planar lightwave circuit platform,” J. Lightwave Technol. 16(7), 1249–1258 (1998).
[Crossref]
R. Takigawa, E. Higurashi, T. Suga, and T. Kawanishi, “Passive alignment and mounting of LiNbO3 waveguide chips on Si substrates by low-temperature solid-state bonding of Au,” IEEE J. Sel. Top. Quantum Electron. 17(3), 652–658 (2011).
[Crossref]
R. Takigawa, E. Higurashi, T. Suga, S. Shinada, and T. Kawanishi, “Low-temperature Au-to-Au bonding for LiNbO3/Si structure achieved in ambient,” IEICE Trans. Electron. E E90(C), 145–146 (2007).
[Crossref]
S. Oikawa, T. Kawanishi, K. Higuma, Y. Matsuo, and M. Izutsu, “Double-stub structure for resonant-type optical modulators using 20 –thick electrode,” IEEE Photon. Technol. Lett. 15(2), 221–223 (2003).
[Crossref]
T. Kawanishi, S. Oikawa, K. Higuma, Y. Matsuo, and M. Izutsu, “LiNbO3 resonant-type optical modulator with double-stub structure,” Electron. Lett. 37(20), 1244–1246 (2001).
[Crossref]
K. Ohira, K. Kobayashi, N. Iizuka, H. Yoshida, M. Ezaki, H. Uemura, A. Kojima, K. Nakamura, H. Furuyama, and H. Shibata, “On-chip optical interconnection by using integrated III-V laser diode and photodetector with silicon waveguide,” Opt. Express 18(15), 15440–15447 (2010).
[Crossref]
[PubMed]
K. Ohira, K. Kobayashi, N. Iizuka, H. Yoshida, M. Ezaki, H. Uemura, A. Kojima, K. Nakamura, H. Furuyama, and H. Shibata, “On-chip optical interconnection by using integrated III-V laser diode and photodetector with silicon waveguide,” Opt. Express 18(15), 15440–15447 (2010).
[Crossref]
[PubMed]
H. L. Hsiao, H. C. Lan, C. C. Chang, C. Y. Lee, S. P. Chen, C. H. Hsu, S. F. Chang, Y. S. Lin, F. M. Kuo, J. W. Shi, and M. L. Wu, “Compact and passive-alignment 4-channel × 25-Gbps optical interconnect modules based on silicon optical benches with 45° micro-reflectors,” Opt. Express 17(26), 24250–24260 (2009).
[Crossref]
[PubMed]
H. L. Hsiao, H. C. Lan, C. C. Chang, C. Y. Lee, S. P. Chen, C. H. Hsu, S. F. Chang, Y. S. Lin, F. M. Kuo, J. W. Shi, and M. L. Wu, “Compact and passive-alignment 4-channel × 25-Gbps optical interconnect modules based on silicon optical benches with 45° micro-reflectors,” Opt. Express 17(26), 24250–24260 (2009).
[Crossref]
[PubMed]
H. L. Hsiao, H. C. Lan, C. C. Chang, C. Y. Lee, S. P. Chen, C. H. Hsu, S. F. Chang, Y. S. Lin, F. M. Kuo, J. W. Shi, and M. L. Wu, “Compact and passive-alignment 4-channel × 25-Gbps optical interconnect modules based on silicon optical benches with 45° micro-reflectors,” Opt. Express 17(26), 24250–24260 (2009).
[Crossref]
[PubMed]
A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[Crossref]
[PubMed]
H. L. Hsiao, H. C. Lan, C. C. Chang, C. Y. Lee, S. P. Chen, C. H. Hsu, S. F. Chang, Y. S. Lin, F. M. Kuo, J. W. Shi, and M. L. Wu, “Compact and passive-alignment 4-channel × 25-Gbps optical interconnect modules based on silicon optical benches with 45° micro-reflectors,” Opt. Express 17(26), 24250–24260 (2009).
[Crossref]
[PubMed]
S. Manipatruni, L. Chen, and M. Lipson, “Ultra high bandwidth WDM using silicon microring modulators,” Opt. Express 18(16), 16858–16867 (2010).
[Crossref]
[PubMed]
Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators,” Opt. Express 15(2), 430–436 (2007).
[Crossref]
[PubMed]
Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[Crossref]
[PubMed]
A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[Crossref]
[PubMed]
H. Takagi, R. Maeda, and T. Suga, “Room-temperature wafer bonding of Si to LiNbO3, LiTaO3 and Gd3Ga5O12 by Ar-beam surface activation,” J. Micromech. Microeng. 11(4), 348–352 (2001).
[Crossref]
S. Manipatruni, L. Chen, and M. Lipson, “Ultra high bandwidth WDM using silicon microring modulators,” Opt. Express 18(16), 16858–16867 (2010).
[Crossref]
[PubMed]
Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators,” Opt. Express 15(2), 430–436 (2007).
[Crossref]
[PubMed]
S. Oikawa, T. Kawanishi, K. Higuma, Y. Matsuo, and M. Izutsu, “Double-stub structure for resonant-type optical modulators using 20 –thick electrode,” IEEE Photon. Technol. Lett. 15(2), 221–223 (2003).
[Crossref]
T. Kawanishi, S. Oikawa, K. Higuma, Y. Matsuo, and M. Izutsu, “LiNbO3 resonant-type optical modulator with double-stub structure,” Electron. Lett. 37(20), 1244–1246 (2001).
[Crossref]
E. J. Murphy, T. C. Rice, L. Mccaughan, G. T. Harvey, and P. H. Read, “Permanent attachment of single-mode fiber arrays to waveguides,” J. Lightwave Technol. 3(4), 795–799 (1985).
[Crossref]
E. J. Murphy, T. C. Rice, L. Mccaughan, G. T. Harvey, and P. H. Read, “Permanent attachment of single-mode fiber arrays to waveguides,” J. Lightwave Technol. 3(4), 795–799 (1985).
[Crossref]
K. Ohira, K. Kobayashi, N. Iizuka, H. Yoshida, M. Ezaki, H. Uemura, A. Kojima, K. Nakamura, H. Furuyama, and H. Shibata, “On-chip optical interconnection by using integrated III-V laser diode and photodetector with silicon waveguide,” Opt. Express 18(15), 15440–15447 (2010).
[Crossref]
[PubMed]
T. Hashimoto, Y. Nakasuga, Y. Yamada, H. Terui, M. Yanagisawa, Y. Akahori, Y. Tohmori, K. Kato, and Y. Suzuki, “Multichip optical hybrid integration technique with planar lightwave circuit platform,” J. Lightwave Technol. 16(7), 1249–1258 (1998).
[Crossref]
A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[Crossref]
[PubMed]
E. L. Friedrich, M. G. Oberg, B. Broberg, S. Nilsson, and S. Valette, “Hybrid integration of Semiconductor Lasers with Si-based single-mode ridge waveguides,” J. Lightwave Technol. 10(3), 336–340 (1992).
[Crossref]
E. L. Friedrich, M. G. Oberg, B. Broberg, S. Nilsson, and S. Valette, “Hybrid integration of Semiconductor Lasers with Si-based single-mode ridge waveguides,” J. Lightwave Technol. 10(3), 336–340 (1992).
[Crossref]
K. Ohira, K. Kobayashi, N. Iizuka, H. Yoshida, M. Ezaki, H. Uemura, A. Kojima, K. Nakamura, H. Furuyama, and H. Shibata, “On-chip optical interconnection by using integrated III-V laser diode and photodetector with silicon waveguide,” Opt. Express 18(15), 15440–15447 (2010).
[Crossref]
[PubMed]
S. Oikawa, T. Kawanishi, K. Higuma, Y. Matsuo, and M. Izutsu, “Double-stub structure for resonant-type optical modulators using 20 –thick electrode,” IEEE Photon. Technol. Lett. 15(2), 221–223 (2003).
[Crossref]
T. Kawanishi, S. Oikawa, K. Higuma, Y. Matsuo, and M. Izutsu, “LiNbO3 resonant-type optical modulator with double-stub structure,” Electron. Lett. 37(20), 1244–1246 (2001).
[Crossref]
A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[Crossref]
[PubMed]
Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[Crossref]
[PubMed]
E. J. Murphy, T. C. Rice, L. Mccaughan, G. T. Harvey, and P. H. Read, “Permanent attachment of single-mode fiber arrays to waveguides,” J. Lightwave Technol. 3(4), 795–799 (1985).
[Crossref]
E. J. Murphy, T. C. Rice, L. Mccaughan, G. T. Harvey, and P. H. Read, “Permanent attachment of single-mode fiber arrays to waveguides,” J. Lightwave Technol. 3(4), 795–799 (1985).
[Crossref]
A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[Crossref]
[PubMed]
A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[Crossref]
[PubMed]
E. Higurashi, R. Sawada, and T. Suga, “Optical microsensors integration technologies for biomedical applications,” IEICE Trans. Electron. E E92(C), 231–238 (2009).
[Crossref]
E. Higurashi, D. Chino, T. Suga, and R. Sawada, “Au-Au surface-activated bonding and its application to optical microsensors with three dimensional structure,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1500–1505 (2009).
[Crossref]
R. Takigawa, E. Higurashi, T. Suga, and R. Sawada, “Room-temperature bonding of vertical cavity surface emission laser diode chips on silicon substrates using Au microbumps,” Appl. Phys. Express 1(24), 112201 (2008).
[Crossref]
E. Higurashi, T. Imamura, T. Suga, and R. Sawada, “Low-temperature bonding of laser diode chips on silicon substrates using plasma activation of Au films,” IEEE Photon. Technol. Lett. 19(24), 1994–1996 (2007).
[Crossref]
E. Higurashi and R. Sawada, “Micro-encoder based on higher-order diffracted light interference,” J. Micromech. Microeng. 15(8), 1459–1465 (2005).
[Crossref]
E. Higurashi, R. Sawada, and T. Ito, “An integrated laser blood flowmeter,” J. Lightwave Technol. 21(3), 591–595 (2003).
[Crossref]
R. Sawada, E. Higurashi, and Y. Jin, “Hybrid microlaser encoder,” J. Lightwave Technol. 21(3), 815–820 (2003).
[Crossref]
Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators,” Opt. Express 15(2), 430–436 (2007).
[Crossref]
[PubMed]
Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[Crossref]
[PubMed]
H. L. Hsiao, H. C. Lan, C. C. Chang, C. Y. Lee, S. P. Chen, C. H. Hsu, S. F. Chang, Y. S. Lin, F. M. Kuo, J. W. Shi, and M. L. Wu, “Compact and passive-alignment 4-channel × 25-Gbps optical interconnect modules based on silicon optical benches with 45° micro-reflectors,” Opt. Express 17(26), 24250–24260 (2009).
[Crossref]
[PubMed]
K. Ohira, K. Kobayashi, N. Iizuka, H. Yoshida, M. Ezaki, H. Uemura, A. Kojima, K. Nakamura, H. Furuyama, and H. Shibata, “On-chip optical interconnection by using integrated III-V laser diode and photodetector with silicon waveguide,” Opt. Express 18(15), 15440–15447 (2010).
[Crossref]
[PubMed]
R. Takigawa, E. Higurashi, T. Suga, S. Shinada, and T. Kawanishi, “Low-temperature Au-to-Au bonding for LiNbO3/Si structure achieved in ambient,” IEICE Trans. Electron. E E90(C), 145–146 (2007).
[Crossref]
R. Takigawa, E. Higurashi, T. Suga, and T. Kawanishi, “Passive alignment and mounting of LiNbO3 waveguide chips on Si substrates by low-temperature solid-state bonding of Au,” IEEE J. Sel. Top. Quantum Electron. 17(3), 652–658 (2011).
[Crossref]
E. Higurashi, D. Chino, T. Suga, and R. Sawada, “Au-Au surface-activated bonding and its application to optical microsensors with three dimensional structure,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1500–1505 (2009).
[Crossref]
E. Higurashi, R. Sawada, and T. Suga, “Optical microsensors integration technologies for biomedical applications,” IEICE Trans. Electron. E E92(C), 231–238 (2009).
[Crossref]
R. Takigawa, E. Higurashi, T. Suga, and R. Sawada, “Room-temperature bonding of vertical cavity surface emission laser diode chips on silicon substrates using Au microbumps,” Appl. Phys. Express 1(24), 112201 (2008).
[Crossref]
R. Takigawa, E. Higurashi, T. Suga, S. Shinada, and T. Kawanishi, “Low-temperature Au-to-Au bonding for LiNbO3/Si structure achieved in ambient,” IEICE Trans. Electron. E E90(C), 145–146 (2007).
[Crossref]
E. Higurashi, T. Imamura, T. Suga, and R. Sawada, “Low-temperature bonding of laser diode chips on silicon substrates using plasma activation of Au films,” IEEE Photon. Technol. Lett. 19(24), 1994–1996 (2007).
[Crossref]
H. Takagi, R. Maeda, and T. Suga, “Room-temperature wafer bonding of Si to LiNbO3, LiTaO3 and Gd3Ga5O12 by Ar-beam surface activation,” J. Micromech. Microeng. 11(4), 348–352 (2001).
[Crossref]
T. Hashimoto, Y. Nakasuga, Y. Yamada, H. Terui, M. Yanagisawa, Y. Akahori, Y. Tohmori, K. Kato, and Y. Suzuki, “Multichip optical hybrid integration technique with planar lightwave circuit platform,” J. Lightwave Technol. 16(7), 1249–1258 (1998).
[Crossref]
H. Takagi, R. Maeda, and T. Suga, “Room-temperature wafer bonding of Si to LiNbO3, LiTaO3 and Gd3Ga5O12 by Ar-beam surface activation,” J. Micromech. Microeng. 11(4), 348–352 (2001).
[Crossref]
R. Takigawa, E. Higurashi, T. Suga, and T. Kawanishi, “Passive alignment and mounting of LiNbO3 waveguide chips on Si substrates by low-temperature solid-state bonding of Au,” IEEE J. Sel. Top. Quantum Electron. 17(3), 652–658 (2011).
[Crossref]
R. Takigawa, E. Higurashi, T. Suga, and R. Sawada, “Room-temperature bonding of vertical cavity surface emission laser diode chips on silicon substrates using Au microbumps,” Appl. Phys. Express 1(24), 112201 (2008).
[Crossref]
R. Takigawa, E. Higurashi, T. Suga, S. Shinada, and T. Kawanishi, “Low-temperature Au-to-Au bonding for LiNbO3/Si structure achieved in ambient,” IEICE Trans. Electron. E E90(C), 145–146 (2007).
[Crossref]
T. Hashimoto, Y. Nakasuga, Y. Yamada, H. Terui, M. Yanagisawa, Y. Akahori, Y. Tohmori, K. Kato, and Y. Suzuki, “Multichip optical hybrid integration technique with planar lightwave circuit platform,” J. Lightwave Technol. 16(7), 1249–1258 (1998).
[Crossref]
T. Hashimoto, Y. Nakasuga, Y. Yamada, H. Terui, M. Yanagisawa, Y. Akahori, Y. Tohmori, K. Kato, and Y. Suzuki, “Multichip optical hybrid integration technique with planar lightwave circuit platform,” J. Lightwave Technol. 16(7), 1249–1258 (1998).
[Crossref]
K. Ohira, K. Kobayashi, N. Iizuka, H. Yoshida, M. Ezaki, H. Uemura, A. Kojima, K. Nakamura, H. Furuyama, and H. Shibata, “On-chip optical interconnection by using integrated III-V laser diode and photodetector with silicon waveguide,” Opt. Express 18(15), 15440–15447 (2010).
[Crossref]
[PubMed]
E. L. Friedrich, M. G. Oberg, B. Broberg, S. Nilsson, and S. Valette, “Hybrid integration of Semiconductor Lasers with Si-based single-mode ridge waveguides,” J. Lightwave Technol. 10(3), 336–340 (1992).
[Crossref]
H. L. Hsiao, H. C. Lan, C. C. Chang, C. Y. Lee, S. P. Chen, C. H. Hsu, S. F. Chang, Y. S. Lin, F. M. Kuo, J. W. Shi, and M. L. Wu, “Compact and passive-alignment 4-channel × 25-Gbps optical interconnect modules based on silicon optical benches with 45° micro-reflectors,” Opt. Express 17(26), 24250–24260 (2009).
[Crossref]
[PubMed]
Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators,” Opt. Express 15(2), 430–436 (2007).
[Crossref]
[PubMed]
Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[Crossref]
[PubMed]
T. Hashimoto, Y. Nakasuga, Y. Yamada, H. Terui, M. Yanagisawa, Y. Akahori, Y. Tohmori, K. Kato, and Y. Suzuki, “Multichip optical hybrid integration technique with planar lightwave circuit platform,” J. Lightwave Technol. 16(7), 1249–1258 (1998).
[Crossref]
T. Hashimoto, Y. Nakasuga, Y. Yamada, H. Terui, M. Yanagisawa, Y. Akahori, Y. Tohmori, K. Kato, and Y. Suzuki, “Multichip optical hybrid integration technique with planar lightwave circuit platform,” J. Lightwave Technol. 16(7), 1249–1258 (1998).
[Crossref]
K. Ohira, K. Kobayashi, N. Iizuka, H. Yoshida, M. Ezaki, H. Uemura, A. Kojima, K. Nakamura, H. Furuyama, and H. Shibata, “On-chip optical interconnection by using integrated III-V laser diode and photodetector with silicon waveguide,” Opt. Express 18(15), 15440–15447 (2010).
[Crossref]
[PubMed]
R. Takigawa, E. Higurashi, T. Suga, and R. Sawada, “Room-temperature bonding of vertical cavity surface emission laser diode chips on silicon substrates using Au microbumps,” Appl. Phys. Express 1(24), 112201 (2008).
[Crossref]
T. Kawanishi, S. Oikawa, K. Higuma, Y. Matsuo, and M. Izutsu, “LiNbO3 resonant-type optical modulator with double-stub structure,” Electron. Lett. 37(20), 1244–1246 (2001).
[Crossref]
E. Higurashi, D. Chino, T. Suga, and R. Sawada, “Au-Au surface-activated bonding and its application to optical microsensors with three dimensional structure,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1500–1505 (2009).
[Crossref]
R. Takigawa, E. Higurashi, T. Suga, and T. Kawanishi, “Passive alignment and mounting of LiNbO3 waveguide chips on Si substrates by low-temperature solid-state bonding of Au,” IEEE J. Sel. Top. Quantum Electron. 17(3), 652–658 (2011).
[Crossref]
S. Oikawa, T. Kawanishi, K. Higuma, Y. Matsuo, and M. Izutsu, “Double-stub structure for resonant-type optical modulators using 20 –thick electrode,” IEEE Photon. Technol. Lett. 15(2), 221–223 (2003).
[Crossref]
E. Higurashi, T. Imamura, T. Suga, and R. Sawada, “Low-temperature bonding of laser diode chips on silicon substrates using plasma activation of Au films,” IEEE Photon. Technol. Lett. 19(24), 1994–1996 (2007).
[Crossref]
R. Takigawa, E. Higurashi, T. Suga, S. Shinada, and T. Kawanishi, “Low-temperature Au-to-Au bonding for LiNbO3/Si structure achieved in ambient,” IEICE Trans. Electron. E E90(C), 145–146 (2007).
[Crossref]
E. Higurashi, R. Sawada, and T. Suga, “Optical microsensors integration technologies for biomedical applications,” IEICE Trans. Electron. E E92(C), 231–238 (2009).
[Crossref]
E. L. Friedrich, M. G. Oberg, B. Broberg, S. Nilsson, and S. Valette, “Hybrid integration of Semiconductor Lasers with Si-based single-mode ridge waveguides,” J. Lightwave Technol. 10(3), 336–340 (1992).
[Crossref]
E. J. Murphy, T. C. Rice, L. Mccaughan, G. T. Harvey, and P. H. Read, “Permanent attachment of single-mode fiber arrays to waveguides,” J. Lightwave Technol. 3(4), 795–799 (1985).
[Crossref]
T. Hashimoto, Y. Nakasuga, Y. Yamada, H. Terui, M. Yanagisawa, Y. Akahori, Y. Tohmori, K. Kato, and Y. Suzuki, “Multichip optical hybrid integration technique with planar lightwave circuit platform,” J. Lightwave Technol. 16(7), 1249–1258 (1998).
[Crossref]
E. Higurashi, R. Sawada, and T. Ito, “An integrated laser blood flowmeter,” J. Lightwave Technol. 21(3), 591–595 (2003).
[Crossref]
R. Sawada, E. Higurashi, and Y. Jin, “Hybrid microlaser encoder,” J. Lightwave Technol. 21(3), 815–820 (2003).
[Crossref]
E. Higurashi and R. Sawada, “Micro-encoder based on higher-order diffracted light interference,” J. Micromech. Microeng. 15(8), 1459–1465 (2005).
[Crossref]
H. Takagi, R. Maeda, and T. Suga, “Room-temperature wafer bonding of Si to LiNbO3, LiTaO3 and Gd3Ga5O12 by Ar-beam surface activation,” J. Micromech. Microeng. 11(4), 348–352 (2001).
[Crossref]
Test Methods and Procedures For Microelectronics, “MIL-STD-883E,” Method 2027, 2 (1989).
A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[Crossref]
[PubMed]
Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[Crossref]
[PubMed]
Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators,” Opt. Express 15(2), 430–436 (2007).
[Crossref]
[PubMed]
W. M. J. Green, M. J. Rooks, L. Sekaric, and Y. A. Vlasov, “Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator,” Opt. Express 15(25), 17106–17113 (2007).
[Crossref]
[PubMed]
H. L. Hsiao, H. C. Lan, C. C. Chang, C. Y. Lee, S. P. Chen, C. H. Hsu, S. F. Chang, Y. S. Lin, F. M. Kuo, J. W. Shi, and M. L. Wu, “Compact and passive-alignment 4-channel × 25-Gbps optical interconnect modules based on silicon optical benches with 45° micro-reflectors,” Opt. Express 17(26), 24250–24260 (2009).
[Crossref]
[PubMed]
K. Ohira, K. Kobayashi, N. Iizuka, H. Yoshida, M. Ezaki, H. Uemura, A. Kojima, K. Nakamura, H. Furuyama, and H. Shibata, “On-chip optical interconnection by using integrated III-V laser diode and photodetector with silicon waveguide,” Opt. Express 18(15), 15440–15447 (2010).
[Crossref]
[PubMed]
S. Manipatruni, L. Chen, and M. Lipson, “Ultra high bandwidth WDM using silicon microring modulators,” Opt. Express 18(16), 16858–16867 (2010).
[Crossref]
[PubMed]
T. Suga, T. Itoh, Z. Xu, M. Tomita, and A. Yamauchi, “Surface activated bonding for new flip chip and bumpless interconnect systems,” in Proc. 52nd Electron. Components Technol. Conf. San Diego CA 105–111, 2002.