Abstract

We propose an approach for tuning a gain spectrum of semiconductor lasers under temperature fluctuations, where the heat-induced effect is dynamically compensated using a mechanical stressing. By stressing GaAs/Ge/Si microbeams, emission wavelength tuning is experimentally demonstrated for the overlying GaAs layers as a proof-of-concept, and the results are followed by theoretical calculations. It is discussed that this approach is effective to cancel the gain spectrum shift and will be indispensable to the integration of light sources toward WDM systems on a chip.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. A. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006).
    [CrossRef]
  2. K. Wada, J. F. Liu, S. Jongthammanurak, D. D. Cannon, D. T. Danielson, D. H. Ahn, S. Akiyama, M. Popovic, D. R. Lim, K. K. Lee, H. -C. Luan, Y. Ishikawa, J. Michel, H. A. Haus, and L. C. Kimerling, Si Microphotonics for Optical Interconnection (Springer Verlag, Berlin, 2006), Chap. 11.
  3. A. Fang, H. Park, O. Cohen, R. Jones, M. Paniccia, and J. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14(20) 9203–9210 (2006).
    [CrossRef] [PubMed]
  4. J. Liu, X. Sun, R. Camacho-Aguilera, L. C. Kimerling, and J. Michel, “Ge-on-Si laser operating at room temperature,” Opt. Lett. 35(5) 679–681 (2010).
    [CrossRef] [PubMed]
  5. H. F. Hamann, A. Weger, J. A. Lacey, Z. Hu, P. Bose, E. Cohen, and J. Wakil, “Hotspot-limited microprocessors: direct temperature and power distribution measurements,” IEEE J. Solid-State Circuits 42(1), 56–65 (2007).
    [CrossRef]
  6. D. A. Cohen, B. Mason, J. Dolan, C. Burns, and L. A. Coldren, “Enhanced wavelength tuning of an InGaAsP-InP laser with a thermal-strain-magnifying trench,” Appl. Phys. Lett. 77(17), 2629–2671 (2000).
    [CrossRef]
  7. P. Kozodoy, T. A. Strand, Y. A. Akulova, G. Fish, C. Schow, P. -C. Koh, Z. Bian, J. Christofferson, and A. Shakouri, “Thermal effects in monolithically integrated tunable laser transmitters,” IEEE Trans. Comp. Pack. Manuf. Tech. 28(4), 651–657 (2005).
    [CrossRef]
  8. A. McCaulley, V. M. Donnelly, M. Vernon, and I. Taha, “Temperature dependence of the near-infrared refractive index of silicon, gallium arsenide, and indium phosphide,” Phys. Rev. B 49(11), 7408–7417 (1994).
    [CrossRef]
  9. K. Yoshimoto, R. Suzuki, Y. Ishikawa, and K. Wada, “Bandgap control using strained beam structures for Si photonic devices,” Opt. Express. 18 (25) 26492–26498 (2010).
    [CrossRef] [PubMed]
  10. S. L. Chuang, Physics of Photonic Devices (Wiley, New York, 2009).
  11. Ioffe Physico-Technical Institute, “New semiconductor materials, characters and properties,” http://www.ioffe.rssi.ru/SVA/NSM/Semicond/ .
  12. C. G. Van de Walle, “Band lineups and deformation potentials in the model-solid theory,” Phys. Rev. B 39(3), 1871–1883 (1989).
    [CrossRef]
  13. Y. Bolkhovityanov and O. Pchelyakov, “GaAs epitaxy on Si substrates: modern status of research and engineering,” UFN 178(5), 437–456 (2008).
  14. M. E. Groenert, C. W. Leitz, A. J. Pitera, V. Yang, H. Lee, R. J. Ram, and E. A. Fitzgerald, “Monolithic integration of room-temperature cw GaAs/AlGaAs lasers on Si substrates via relaxed graded GeSi buffer layers,” J. Appl. Phys. 93(1), 362–367 (2003).
    [CrossRef]
  15. M. E. Groenert, A. J. Pitera, R. J. Ram, and E. A. Fitzgerald, “Improved room-temperature continuous wave GaAs/AlGaAs and InGaAs/GaAs/AlGaAs lasers fabricated on Si substrates via relaxed graded GeSi buffer layers,” J. Vac. Sci. Technol. B 21(3), 1064–1069 (2003).
    [CrossRef]
  16. H. -C. Luan, D. R. Lim, K. K. Lee, K. M. Chen, J. G. Sandland, K. Wada, and L. C. Kimerling, “High-quality Ge epilayers on Si with low threading-dislocation densities,” Appl. Phys. Lett. 75(19), 2909–2911 (1999).
    [CrossRef]
  17. Y. Ishikawa, K. Wada, D. D. Cannon, J. F. Liu, H. C. Luan, and L. C. Kimerling, “Strain-induced band gap shrinkage in Ge grown on Si substrate,” Appl. Phys. Lett. 82(13), 2044–2046 (2003).
    [CrossRef]
  18. N. Bottka, D. K. Gaskill, R. J. M. Griffiths, R. R. Bradley, T. B. Joyce, C. Ito, and D. McIntyre, “Photoreflectance characterization of OMVPE GaAs on Si,” J. Cryst. Growth 93481–486 (1988).
    [CrossRef]
  19. W. N. Ye, J. Michel, and L. C. Kimerling, “Athermal high-index-contrast waveguide design,” IEEE Photon. Technol. Lett. 20(11), 885–887 (2008).
    [CrossRef]
  20. V. Raghunathan, W. N. Ye, J. Hu, T. Izuhara, J. Michel, and L. C. Kmerling, “Athermal operation of Silicon waveguides: spectral, second order and footprint dependencies,” Opt. Express 18(17), 17631–17639 (2010).
    [CrossRef] [PubMed]
  21. P. Kirkby, P. Selway, and L. Westbrook, “Photoelastic waveguides and their effect on stripe-geometry GaAs/Ga1–xAlxAs lasers,” J. Appl. Phys. 50(7), 4567–4579 (1979).
    [CrossRef]

2010 (3)

2009 (1)

S. L. Chuang, Physics of Photonic Devices (Wiley, New York, 2009).

2008 (2)

Y. Bolkhovityanov and O. Pchelyakov, “GaAs epitaxy on Si substrates: modern status of research and engineering,” UFN 178(5), 437–456 (2008).

W. N. Ye, J. Michel, and L. C. Kimerling, “Athermal high-index-contrast waveguide design,” IEEE Photon. Technol. Lett. 20(11), 885–887 (2008).
[CrossRef]

2007 (1)

H. F. Hamann, A. Weger, J. A. Lacey, Z. Hu, P. Bose, E. Cohen, and J. Wakil, “Hotspot-limited microprocessors: direct temperature and power distribution measurements,” IEEE J. Solid-State Circuits 42(1), 56–65 (2007).
[CrossRef]

2006 (3)

R. A. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006).
[CrossRef]

K. Wada, J. F. Liu, S. Jongthammanurak, D. D. Cannon, D. T. Danielson, D. H. Ahn, S. Akiyama, M. Popovic, D. R. Lim, K. K. Lee, H. -C. Luan, Y. Ishikawa, J. Michel, H. A. Haus, and L. C. Kimerling, Si Microphotonics for Optical Interconnection (Springer Verlag, Berlin, 2006), Chap. 11.

A. Fang, H. Park, O. Cohen, R. Jones, M. Paniccia, and J. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14(20) 9203–9210 (2006).
[CrossRef] [PubMed]

2005 (1)

P. Kozodoy, T. A. Strand, Y. A. Akulova, G. Fish, C. Schow, P. -C. Koh, Z. Bian, J. Christofferson, and A. Shakouri, “Thermal effects in monolithically integrated tunable laser transmitters,” IEEE Trans. Comp. Pack. Manuf. Tech. 28(4), 651–657 (2005).
[CrossRef]

2003 (3)

M. E. Groenert, C. W. Leitz, A. J. Pitera, V. Yang, H. Lee, R. J. Ram, and E. A. Fitzgerald, “Monolithic integration of room-temperature cw GaAs/AlGaAs lasers on Si substrates via relaxed graded GeSi buffer layers,” J. Appl. Phys. 93(1), 362–367 (2003).
[CrossRef]

M. E. Groenert, A. J. Pitera, R. J. Ram, and E. A. Fitzgerald, “Improved room-temperature continuous wave GaAs/AlGaAs and InGaAs/GaAs/AlGaAs lasers fabricated on Si substrates via relaxed graded GeSi buffer layers,” J. Vac. Sci. Technol. B 21(3), 1064–1069 (2003).
[CrossRef]

Y. Ishikawa, K. Wada, D. D. Cannon, J. F. Liu, H. C. Luan, and L. C. Kimerling, “Strain-induced band gap shrinkage in Ge grown on Si substrate,” Appl. Phys. Lett. 82(13), 2044–2046 (2003).
[CrossRef]

2000 (1)

D. A. Cohen, B. Mason, J. Dolan, C. Burns, and L. A. Coldren, “Enhanced wavelength tuning of an InGaAsP-InP laser with a thermal-strain-magnifying trench,” Appl. Phys. Lett. 77(17), 2629–2671 (2000).
[CrossRef]

1999 (1)

H. -C. Luan, D. R. Lim, K. K. Lee, K. M. Chen, J. G. Sandland, K. Wada, and L. C. Kimerling, “High-quality Ge epilayers on Si with low threading-dislocation densities,” Appl. Phys. Lett. 75(19), 2909–2911 (1999).
[CrossRef]

1994 (1)

A. McCaulley, V. M. Donnelly, M. Vernon, and I. Taha, “Temperature dependence of the near-infrared refractive index of silicon, gallium arsenide, and indium phosphide,” Phys. Rev. B 49(11), 7408–7417 (1994).
[CrossRef]

1989 (1)

C. G. Van de Walle, “Band lineups and deformation potentials in the model-solid theory,” Phys. Rev. B 39(3), 1871–1883 (1989).
[CrossRef]

1988 (1)

N. Bottka, D. K. Gaskill, R. J. M. Griffiths, R. R. Bradley, T. B. Joyce, C. Ito, and D. McIntyre, “Photoreflectance characterization of OMVPE GaAs on Si,” J. Cryst. Growth 93481–486 (1988).
[CrossRef]

1979 (1)

P. Kirkby, P. Selway, and L. Westbrook, “Photoelastic waveguides and their effect on stripe-geometry GaAs/Ga1–xAlxAs lasers,” J. Appl. Phys. 50(7), 4567–4579 (1979).
[CrossRef]

Ahn, D. H.

K. Wada, J. F. Liu, S. Jongthammanurak, D. D. Cannon, D. T. Danielson, D. H. Ahn, S. Akiyama, M. Popovic, D. R. Lim, K. K. Lee, H. -C. Luan, Y. Ishikawa, J. Michel, H. A. Haus, and L. C. Kimerling, Si Microphotonics for Optical Interconnection (Springer Verlag, Berlin, 2006), Chap. 11.

Akiyama, S.

K. Wada, J. F. Liu, S. Jongthammanurak, D. D. Cannon, D. T. Danielson, D. H. Ahn, S. Akiyama, M. Popovic, D. R. Lim, K. K. Lee, H. -C. Luan, Y. Ishikawa, J. Michel, H. A. Haus, and L. C. Kimerling, Si Microphotonics for Optical Interconnection (Springer Verlag, Berlin, 2006), Chap. 11.

Akulova, Y. A.

P. Kozodoy, T. A. Strand, Y. A. Akulova, G. Fish, C. Schow, P. -C. Koh, Z. Bian, J. Christofferson, and A. Shakouri, “Thermal effects in monolithically integrated tunable laser transmitters,” IEEE Trans. Comp. Pack. Manuf. Tech. 28(4), 651–657 (2005).
[CrossRef]

Bian, Z.

P. Kozodoy, T. A. Strand, Y. A. Akulova, G. Fish, C. Schow, P. -C. Koh, Z. Bian, J. Christofferson, and A. Shakouri, “Thermal effects in monolithically integrated tunable laser transmitters,” IEEE Trans. Comp. Pack. Manuf. Tech. 28(4), 651–657 (2005).
[CrossRef]

Bolkhovityanov, Y.

Y. Bolkhovityanov and O. Pchelyakov, “GaAs epitaxy on Si substrates: modern status of research and engineering,” UFN 178(5), 437–456 (2008).

Bose, P.

H. F. Hamann, A. Weger, J. A. Lacey, Z. Hu, P. Bose, E. Cohen, and J. Wakil, “Hotspot-limited microprocessors: direct temperature and power distribution measurements,” IEEE J. Solid-State Circuits 42(1), 56–65 (2007).
[CrossRef]

Bottka, N.

N. Bottka, D. K. Gaskill, R. J. M. Griffiths, R. R. Bradley, T. B. Joyce, C. Ito, and D. McIntyre, “Photoreflectance characterization of OMVPE GaAs on Si,” J. Cryst. Growth 93481–486 (1988).
[CrossRef]

Bowers, J.

Bradley, R. R.

N. Bottka, D. K. Gaskill, R. J. M. Griffiths, R. R. Bradley, T. B. Joyce, C. Ito, and D. McIntyre, “Photoreflectance characterization of OMVPE GaAs on Si,” J. Cryst. Growth 93481–486 (1988).
[CrossRef]

Burns, C.

D. A. Cohen, B. Mason, J. Dolan, C. Burns, and L. A. Coldren, “Enhanced wavelength tuning of an InGaAsP-InP laser with a thermal-strain-magnifying trench,” Appl. Phys. Lett. 77(17), 2629–2671 (2000).
[CrossRef]

Camacho-Aguilera, R.

Cannon, D. D.

K. Wada, J. F. Liu, S. Jongthammanurak, D. D. Cannon, D. T. Danielson, D. H. Ahn, S. Akiyama, M. Popovic, D. R. Lim, K. K. Lee, H. -C. Luan, Y. Ishikawa, J. Michel, H. A. Haus, and L. C. Kimerling, Si Microphotonics for Optical Interconnection (Springer Verlag, Berlin, 2006), Chap. 11.

Y. Ishikawa, K. Wada, D. D. Cannon, J. F. Liu, H. C. Luan, and L. C. Kimerling, “Strain-induced band gap shrinkage in Ge grown on Si substrate,” Appl. Phys. Lett. 82(13), 2044–2046 (2003).
[CrossRef]

Chen, K. M.

H. -C. Luan, D. R. Lim, K. K. Lee, K. M. Chen, J. G. Sandland, K. Wada, and L. C. Kimerling, “High-quality Ge epilayers on Si with low threading-dislocation densities,” Appl. Phys. Lett. 75(19), 2909–2911 (1999).
[CrossRef]

Christofferson, J.

P. Kozodoy, T. A. Strand, Y. A. Akulova, G. Fish, C. Schow, P. -C. Koh, Z. Bian, J. Christofferson, and A. Shakouri, “Thermal effects in monolithically integrated tunable laser transmitters,” IEEE Trans. Comp. Pack. Manuf. Tech. 28(4), 651–657 (2005).
[CrossRef]

Chuang, S. L.

S. L. Chuang, Physics of Photonic Devices (Wiley, New York, 2009).

Cohen, D. A.

D. A. Cohen, B. Mason, J. Dolan, C. Burns, and L. A. Coldren, “Enhanced wavelength tuning of an InGaAsP-InP laser with a thermal-strain-magnifying trench,” Appl. Phys. Lett. 77(17), 2629–2671 (2000).
[CrossRef]

Cohen, E.

H. F. Hamann, A. Weger, J. A. Lacey, Z. Hu, P. Bose, E. Cohen, and J. Wakil, “Hotspot-limited microprocessors: direct temperature and power distribution measurements,” IEEE J. Solid-State Circuits 42(1), 56–65 (2007).
[CrossRef]

Cohen, O.

Coldren, L. A.

D. A. Cohen, B. Mason, J. Dolan, C. Burns, and L. A. Coldren, “Enhanced wavelength tuning of an InGaAsP-InP laser with a thermal-strain-magnifying trench,” Appl. Phys. Lett. 77(17), 2629–2671 (2000).
[CrossRef]

Danielson, D. T.

K. Wada, J. F. Liu, S. Jongthammanurak, D. D. Cannon, D. T. Danielson, D. H. Ahn, S. Akiyama, M. Popovic, D. R. Lim, K. K. Lee, H. -C. Luan, Y. Ishikawa, J. Michel, H. A. Haus, and L. C. Kimerling, Si Microphotonics for Optical Interconnection (Springer Verlag, Berlin, 2006), Chap. 11.

Dolan, J.

D. A. Cohen, B. Mason, J. Dolan, C. Burns, and L. A. Coldren, “Enhanced wavelength tuning of an InGaAsP-InP laser with a thermal-strain-magnifying trench,” Appl. Phys. Lett. 77(17), 2629–2671 (2000).
[CrossRef]

Donnelly, V. M.

A. McCaulley, V. M. Donnelly, M. Vernon, and I. Taha, “Temperature dependence of the near-infrared refractive index of silicon, gallium arsenide, and indium phosphide,” Phys. Rev. B 49(11), 7408–7417 (1994).
[CrossRef]

Fang, A.

Fish, G.

P. Kozodoy, T. A. Strand, Y. A. Akulova, G. Fish, C. Schow, P. -C. Koh, Z. Bian, J. Christofferson, and A. Shakouri, “Thermal effects in monolithically integrated tunable laser transmitters,” IEEE Trans. Comp. Pack. Manuf. Tech. 28(4), 651–657 (2005).
[CrossRef]

Fitzgerald, E. A.

M. E. Groenert, A. J. Pitera, R. J. Ram, and E. A. Fitzgerald, “Improved room-temperature continuous wave GaAs/AlGaAs and InGaAs/GaAs/AlGaAs lasers fabricated on Si substrates via relaxed graded GeSi buffer layers,” J. Vac. Sci. Technol. B 21(3), 1064–1069 (2003).
[CrossRef]

M. E. Groenert, C. W. Leitz, A. J. Pitera, V. Yang, H. Lee, R. J. Ram, and E. A. Fitzgerald, “Monolithic integration of room-temperature cw GaAs/AlGaAs lasers on Si substrates via relaxed graded GeSi buffer layers,” J. Appl. Phys. 93(1), 362–367 (2003).
[CrossRef]

Gaskill, D. K.

N. Bottka, D. K. Gaskill, R. J. M. Griffiths, R. R. Bradley, T. B. Joyce, C. Ito, and D. McIntyre, “Photoreflectance characterization of OMVPE GaAs on Si,” J. Cryst. Growth 93481–486 (1988).
[CrossRef]

Griffiths, R. J. M.

N. Bottka, D. K. Gaskill, R. J. M. Griffiths, R. R. Bradley, T. B. Joyce, C. Ito, and D. McIntyre, “Photoreflectance characterization of OMVPE GaAs on Si,” J. Cryst. Growth 93481–486 (1988).
[CrossRef]

Groenert, M. E.

M. E. Groenert, A. J. Pitera, R. J. Ram, and E. A. Fitzgerald, “Improved room-temperature continuous wave GaAs/AlGaAs and InGaAs/GaAs/AlGaAs lasers fabricated on Si substrates via relaxed graded GeSi buffer layers,” J. Vac. Sci. Technol. B 21(3), 1064–1069 (2003).
[CrossRef]

M. E. Groenert, C. W. Leitz, A. J. Pitera, V. Yang, H. Lee, R. J. Ram, and E. A. Fitzgerald, “Monolithic integration of room-temperature cw GaAs/AlGaAs lasers on Si substrates via relaxed graded GeSi buffer layers,” J. Appl. Phys. 93(1), 362–367 (2003).
[CrossRef]

Hamann, H. F.

H. F. Hamann, A. Weger, J. A. Lacey, Z. Hu, P. Bose, E. Cohen, and J. Wakil, “Hotspot-limited microprocessors: direct temperature and power distribution measurements,” IEEE J. Solid-State Circuits 42(1), 56–65 (2007).
[CrossRef]

Haus, H. A.

K. Wada, J. F. Liu, S. Jongthammanurak, D. D. Cannon, D. T. Danielson, D. H. Ahn, S. Akiyama, M. Popovic, D. R. Lim, K. K. Lee, H. -C. Luan, Y. Ishikawa, J. Michel, H. A. Haus, and L. C. Kimerling, Si Microphotonics for Optical Interconnection (Springer Verlag, Berlin, 2006), Chap. 11.

Hu, J.

Hu, Z.

H. F. Hamann, A. Weger, J. A. Lacey, Z. Hu, P. Bose, E. Cohen, and J. Wakil, “Hotspot-limited microprocessors: direct temperature and power distribution measurements,” IEEE J. Solid-State Circuits 42(1), 56–65 (2007).
[CrossRef]

Ishikawa, Y.

K. Yoshimoto, R. Suzuki, Y. Ishikawa, and K. Wada, “Bandgap control using strained beam structures for Si photonic devices,” Opt. Express. 18 (25) 26492–26498 (2010).
[CrossRef] [PubMed]

K. Wada, J. F. Liu, S. Jongthammanurak, D. D. Cannon, D. T. Danielson, D. H. Ahn, S. Akiyama, M. Popovic, D. R. Lim, K. K. Lee, H. -C. Luan, Y. Ishikawa, J. Michel, H. A. Haus, and L. C. Kimerling, Si Microphotonics for Optical Interconnection (Springer Verlag, Berlin, 2006), Chap. 11.

Y. Ishikawa, K. Wada, D. D. Cannon, J. F. Liu, H. C. Luan, and L. C. Kimerling, “Strain-induced band gap shrinkage in Ge grown on Si substrate,” Appl. Phys. Lett. 82(13), 2044–2046 (2003).
[CrossRef]

Ito, C.

N. Bottka, D. K. Gaskill, R. J. M. Griffiths, R. R. Bradley, T. B. Joyce, C. Ito, and D. McIntyre, “Photoreflectance characterization of OMVPE GaAs on Si,” J. Cryst. Growth 93481–486 (1988).
[CrossRef]

Izuhara, T.

Jones, R.

Jongthammanurak, S.

K. Wada, J. F. Liu, S. Jongthammanurak, D. D. Cannon, D. T. Danielson, D. H. Ahn, S. Akiyama, M. Popovic, D. R. Lim, K. K. Lee, H. -C. Luan, Y. Ishikawa, J. Michel, H. A. Haus, and L. C. Kimerling, Si Microphotonics for Optical Interconnection (Springer Verlag, Berlin, 2006), Chap. 11.

Joyce, T. B.

N. Bottka, D. K. Gaskill, R. J. M. Griffiths, R. R. Bradley, T. B. Joyce, C. Ito, and D. McIntyre, “Photoreflectance characterization of OMVPE GaAs on Si,” J. Cryst. Growth 93481–486 (1988).
[CrossRef]

Kimerling, L. C.

J. Liu, X. Sun, R. Camacho-Aguilera, L. C. Kimerling, and J. Michel, “Ge-on-Si laser operating at room temperature,” Opt. Lett. 35(5) 679–681 (2010).
[CrossRef] [PubMed]

W. N. Ye, J. Michel, and L. C. Kimerling, “Athermal high-index-contrast waveguide design,” IEEE Photon. Technol. Lett. 20(11), 885–887 (2008).
[CrossRef]

K. Wada, J. F. Liu, S. Jongthammanurak, D. D. Cannon, D. T. Danielson, D. H. Ahn, S. Akiyama, M. Popovic, D. R. Lim, K. K. Lee, H. -C. Luan, Y. Ishikawa, J. Michel, H. A. Haus, and L. C. Kimerling, Si Microphotonics for Optical Interconnection (Springer Verlag, Berlin, 2006), Chap. 11.

Y. Ishikawa, K. Wada, D. D. Cannon, J. F. Liu, H. C. Luan, and L. C. Kimerling, “Strain-induced band gap shrinkage in Ge grown on Si substrate,” Appl. Phys. Lett. 82(13), 2044–2046 (2003).
[CrossRef]

H. -C. Luan, D. R. Lim, K. K. Lee, K. M. Chen, J. G. Sandland, K. Wada, and L. C. Kimerling, “High-quality Ge epilayers on Si with low threading-dislocation densities,” Appl. Phys. Lett. 75(19), 2909–2911 (1999).
[CrossRef]

Kirkby, P.

P. Kirkby, P. Selway, and L. Westbrook, “Photoelastic waveguides and their effect on stripe-geometry GaAs/Ga1–xAlxAs lasers,” J. Appl. Phys. 50(7), 4567–4579 (1979).
[CrossRef]

Kmerling, L. C.

Koh, P. -C.

P. Kozodoy, T. A. Strand, Y. A. Akulova, G. Fish, C. Schow, P. -C. Koh, Z. Bian, J. Christofferson, and A. Shakouri, “Thermal effects in monolithically integrated tunable laser transmitters,” IEEE Trans. Comp. Pack. Manuf. Tech. 28(4), 651–657 (2005).
[CrossRef]

Kozodoy, P.

P. Kozodoy, T. A. Strand, Y. A. Akulova, G. Fish, C. Schow, P. -C. Koh, Z. Bian, J. Christofferson, and A. Shakouri, “Thermal effects in monolithically integrated tunable laser transmitters,” IEEE Trans. Comp. Pack. Manuf. Tech. 28(4), 651–657 (2005).
[CrossRef]

Lacey, J. A.

H. F. Hamann, A. Weger, J. A. Lacey, Z. Hu, P. Bose, E. Cohen, and J. Wakil, “Hotspot-limited microprocessors: direct temperature and power distribution measurements,” IEEE J. Solid-State Circuits 42(1), 56–65 (2007).
[CrossRef]

Lee, H.

M. E. Groenert, C. W. Leitz, A. J. Pitera, V. Yang, H. Lee, R. J. Ram, and E. A. Fitzgerald, “Monolithic integration of room-temperature cw GaAs/AlGaAs lasers on Si substrates via relaxed graded GeSi buffer layers,” J. Appl. Phys. 93(1), 362–367 (2003).
[CrossRef]

Lee, K. K.

K. Wada, J. F. Liu, S. Jongthammanurak, D. D. Cannon, D. T. Danielson, D. H. Ahn, S. Akiyama, M. Popovic, D. R. Lim, K. K. Lee, H. -C. Luan, Y. Ishikawa, J. Michel, H. A. Haus, and L. C. Kimerling, Si Microphotonics for Optical Interconnection (Springer Verlag, Berlin, 2006), Chap. 11.

H. -C. Luan, D. R. Lim, K. K. Lee, K. M. Chen, J. G. Sandland, K. Wada, and L. C. Kimerling, “High-quality Ge epilayers on Si with low threading-dislocation densities,” Appl. Phys. Lett. 75(19), 2909–2911 (1999).
[CrossRef]

Leitz, C. W.

M. E. Groenert, C. W. Leitz, A. J. Pitera, V. Yang, H. Lee, R. J. Ram, and E. A. Fitzgerald, “Monolithic integration of room-temperature cw GaAs/AlGaAs lasers on Si substrates via relaxed graded GeSi buffer layers,” J. Appl. Phys. 93(1), 362–367 (2003).
[CrossRef]

Lim, D. R.

K. Wada, J. F. Liu, S. Jongthammanurak, D. D. Cannon, D. T. Danielson, D. H. Ahn, S. Akiyama, M. Popovic, D. R. Lim, K. K. Lee, H. -C. Luan, Y. Ishikawa, J. Michel, H. A. Haus, and L. C. Kimerling, Si Microphotonics for Optical Interconnection (Springer Verlag, Berlin, 2006), Chap. 11.

H. -C. Luan, D. R. Lim, K. K. Lee, K. M. Chen, J. G. Sandland, K. Wada, and L. C. Kimerling, “High-quality Ge epilayers on Si with low threading-dislocation densities,” Appl. Phys. Lett. 75(19), 2909–2911 (1999).
[CrossRef]

Liu, J.

Liu, J. F.

K. Wada, J. F. Liu, S. Jongthammanurak, D. D. Cannon, D. T. Danielson, D. H. Ahn, S. Akiyama, M. Popovic, D. R. Lim, K. K. Lee, H. -C. Luan, Y. Ishikawa, J. Michel, H. A. Haus, and L. C. Kimerling, Si Microphotonics for Optical Interconnection (Springer Verlag, Berlin, 2006), Chap. 11.

Y. Ishikawa, K. Wada, D. D. Cannon, J. F. Liu, H. C. Luan, and L. C. Kimerling, “Strain-induced band gap shrinkage in Ge grown on Si substrate,” Appl. Phys. Lett. 82(13), 2044–2046 (2003).
[CrossRef]

Luan, H. C.

Y. Ishikawa, K. Wada, D. D. Cannon, J. F. Liu, H. C. Luan, and L. C. Kimerling, “Strain-induced band gap shrinkage in Ge grown on Si substrate,” Appl. Phys. Lett. 82(13), 2044–2046 (2003).
[CrossRef]

Luan, H. -C.

K. Wada, J. F. Liu, S. Jongthammanurak, D. D. Cannon, D. T. Danielson, D. H. Ahn, S. Akiyama, M. Popovic, D. R. Lim, K. K. Lee, H. -C. Luan, Y. Ishikawa, J. Michel, H. A. Haus, and L. C. Kimerling, Si Microphotonics for Optical Interconnection (Springer Verlag, Berlin, 2006), Chap. 11.

H. -C. Luan, D. R. Lim, K. K. Lee, K. M. Chen, J. G. Sandland, K. Wada, and L. C. Kimerling, “High-quality Ge epilayers on Si with low threading-dislocation densities,” Appl. Phys. Lett. 75(19), 2909–2911 (1999).
[CrossRef]

Mason, B.

D. A. Cohen, B. Mason, J. Dolan, C. Burns, and L. A. Coldren, “Enhanced wavelength tuning of an InGaAsP-InP laser with a thermal-strain-magnifying trench,” Appl. Phys. Lett. 77(17), 2629–2671 (2000).
[CrossRef]

McCaulley, A.

A. McCaulley, V. M. Donnelly, M. Vernon, and I. Taha, “Temperature dependence of the near-infrared refractive index of silicon, gallium arsenide, and indium phosphide,” Phys. Rev. B 49(11), 7408–7417 (1994).
[CrossRef]

McIntyre, D.

N. Bottka, D. K. Gaskill, R. J. M. Griffiths, R. R. Bradley, T. B. Joyce, C. Ito, and D. McIntyre, “Photoreflectance characterization of OMVPE GaAs on Si,” J. Cryst. Growth 93481–486 (1988).
[CrossRef]

Michel, J.

V. Raghunathan, W. N. Ye, J. Hu, T. Izuhara, J. Michel, and L. C. Kmerling, “Athermal operation of Silicon waveguides: spectral, second order and footprint dependencies,” Opt. Express 18(17), 17631–17639 (2010).
[CrossRef] [PubMed]

J. Liu, X. Sun, R. Camacho-Aguilera, L. C. Kimerling, and J. Michel, “Ge-on-Si laser operating at room temperature,” Opt. Lett. 35(5) 679–681 (2010).
[CrossRef] [PubMed]

W. N. Ye, J. Michel, and L. C. Kimerling, “Athermal high-index-contrast waveguide design,” IEEE Photon. Technol. Lett. 20(11), 885–887 (2008).
[CrossRef]

K. Wada, J. F. Liu, S. Jongthammanurak, D. D. Cannon, D. T. Danielson, D. H. Ahn, S. Akiyama, M. Popovic, D. R. Lim, K. K. Lee, H. -C. Luan, Y. Ishikawa, J. Michel, H. A. Haus, and L. C. Kimerling, Si Microphotonics for Optical Interconnection (Springer Verlag, Berlin, 2006), Chap. 11.

Paniccia, M.

Park, H.

Pchelyakov, O.

Y. Bolkhovityanov and O. Pchelyakov, “GaAs epitaxy on Si substrates: modern status of research and engineering,” UFN 178(5), 437–456 (2008).

Pitera, A. J.

M. E. Groenert, A. J. Pitera, R. J. Ram, and E. A. Fitzgerald, “Improved room-temperature continuous wave GaAs/AlGaAs and InGaAs/GaAs/AlGaAs lasers fabricated on Si substrates via relaxed graded GeSi buffer layers,” J. Vac. Sci. Technol. B 21(3), 1064–1069 (2003).
[CrossRef]

M. E. Groenert, C. W. Leitz, A. J. Pitera, V. Yang, H. Lee, R. J. Ram, and E. A. Fitzgerald, “Monolithic integration of room-temperature cw GaAs/AlGaAs lasers on Si substrates via relaxed graded GeSi buffer layers,” J. Appl. Phys. 93(1), 362–367 (2003).
[CrossRef]

Popovic, M.

K. Wada, J. F. Liu, S. Jongthammanurak, D. D. Cannon, D. T. Danielson, D. H. Ahn, S. Akiyama, M. Popovic, D. R. Lim, K. K. Lee, H. -C. Luan, Y. Ishikawa, J. Michel, H. A. Haus, and L. C. Kimerling, Si Microphotonics for Optical Interconnection (Springer Verlag, Berlin, 2006), Chap. 11.

Raghunathan, V.

Ram, R. J.

M. E. Groenert, A. J. Pitera, R. J. Ram, and E. A. Fitzgerald, “Improved room-temperature continuous wave GaAs/AlGaAs and InGaAs/GaAs/AlGaAs lasers fabricated on Si substrates via relaxed graded GeSi buffer layers,” J. Vac. Sci. Technol. B 21(3), 1064–1069 (2003).
[CrossRef]

M. E. Groenert, C. W. Leitz, A. J. Pitera, V. Yang, H. Lee, R. J. Ram, and E. A. Fitzgerald, “Monolithic integration of room-temperature cw GaAs/AlGaAs lasers on Si substrates via relaxed graded GeSi buffer layers,” J. Appl. Phys. 93(1), 362–367 (2003).
[CrossRef]

Sandland, J. G.

H. -C. Luan, D. R. Lim, K. K. Lee, K. M. Chen, J. G. Sandland, K. Wada, and L. C. Kimerling, “High-quality Ge epilayers on Si with low threading-dislocation densities,” Appl. Phys. Lett. 75(19), 2909–2911 (1999).
[CrossRef]

Schow, C.

P. Kozodoy, T. A. Strand, Y. A. Akulova, G. Fish, C. Schow, P. -C. Koh, Z. Bian, J. Christofferson, and A. Shakouri, “Thermal effects in monolithically integrated tunable laser transmitters,” IEEE Trans. Comp. Pack. Manuf. Tech. 28(4), 651–657 (2005).
[CrossRef]

Selway, P.

P. Kirkby, P. Selway, and L. Westbrook, “Photoelastic waveguides and their effect on stripe-geometry GaAs/Ga1–xAlxAs lasers,” J. Appl. Phys. 50(7), 4567–4579 (1979).
[CrossRef]

Shakouri, A.

P. Kozodoy, T. A. Strand, Y. A. Akulova, G. Fish, C. Schow, P. -C. Koh, Z. Bian, J. Christofferson, and A. Shakouri, “Thermal effects in monolithically integrated tunable laser transmitters,” IEEE Trans. Comp. Pack. Manuf. Tech. 28(4), 651–657 (2005).
[CrossRef]

Soref, R. A.

R. A. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006).
[CrossRef]

Strand, T. A.

P. Kozodoy, T. A. Strand, Y. A. Akulova, G. Fish, C. Schow, P. -C. Koh, Z. Bian, J. Christofferson, and A. Shakouri, “Thermal effects in monolithically integrated tunable laser transmitters,” IEEE Trans. Comp. Pack. Manuf. Tech. 28(4), 651–657 (2005).
[CrossRef]

Sun, X.

Suzuki, R.

K. Yoshimoto, R. Suzuki, Y. Ishikawa, and K. Wada, “Bandgap control using strained beam structures for Si photonic devices,” Opt. Express. 18 (25) 26492–26498 (2010).
[CrossRef] [PubMed]

Taha, I.

A. McCaulley, V. M. Donnelly, M. Vernon, and I. Taha, “Temperature dependence of the near-infrared refractive index of silicon, gallium arsenide, and indium phosphide,” Phys. Rev. B 49(11), 7408–7417 (1994).
[CrossRef]

Van de Walle, C. G.

C. G. Van de Walle, “Band lineups and deformation potentials in the model-solid theory,” Phys. Rev. B 39(3), 1871–1883 (1989).
[CrossRef]

Vernon, M.

A. McCaulley, V. M. Donnelly, M. Vernon, and I. Taha, “Temperature dependence of the near-infrared refractive index of silicon, gallium arsenide, and indium phosphide,” Phys. Rev. B 49(11), 7408–7417 (1994).
[CrossRef]

Wada, K.

K. Yoshimoto, R. Suzuki, Y. Ishikawa, and K. Wada, “Bandgap control using strained beam structures for Si photonic devices,” Opt. Express. 18 (25) 26492–26498 (2010).
[CrossRef] [PubMed]

K. Wada, J. F. Liu, S. Jongthammanurak, D. D. Cannon, D. T. Danielson, D. H. Ahn, S. Akiyama, M. Popovic, D. R. Lim, K. K. Lee, H. -C. Luan, Y. Ishikawa, J. Michel, H. A. Haus, and L. C. Kimerling, Si Microphotonics for Optical Interconnection (Springer Verlag, Berlin, 2006), Chap. 11.

Y. Ishikawa, K. Wada, D. D. Cannon, J. F. Liu, H. C. Luan, and L. C. Kimerling, “Strain-induced band gap shrinkage in Ge grown on Si substrate,” Appl. Phys. Lett. 82(13), 2044–2046 (2003).
[CrossRef]

H. -C. Luan, D. R. Lim, K. K. Lee, K. M. Chen, J. G. Sandland, K. Wada, and L. C. Kimerling, “High-quality Ge epilayers on Si with low threading-dislocation densities,” Appl. Phys. Lett. 75(19), 2909–2911 (1999).
[CrossRef]

Wakil, J.

H. F. Hamann, A. Weger, J. A. Lacey, Z. Hu, P. Bose, E. Cohen, and J. Wakil, “Hotspot-limited microprocessors: direct temperature and power distribution measurements,” IEEE J. Solid-State Circuits 42(1), 56–65 (2007).
[CrossRef]

Weger, A.

H. F. Hamann, A. Weger, J. A. Lacey, Z. Hu, P. Bose, E. Cohen, and J. Wakil, “Hotspot-limited microprocessors: direct temperature and power distribution measurements,” IEEE J. Solid-State Circuits 42(1), 56–65 (2007).
[CrossRef]

Westbrook, L.

P. Kirkby, P. Selway, and L. Westbrook, “Photoelastic waveguides and their effect on stripe-geometry GaAs/Ga1–xAlxAs lasers,” J. Appl. Phys. 50(7), 4567–4579 (1979).
[CrossRef]

Yang, V.

M. E. Groenert, C. W. Leitz, A. J. Pitera, V. Yang, H. Lee, R. J. Ram, and E. A. Fitzgerald, “Monolithic integration of room-temperature cw GaAs/AlGaAs lasers on Si substrates via relaxed graded GeSi buffer layers,” J. Appl. Phys. 93(1), 362–367 (2003).
[CrossRef]

Ye, W. N.

Yoshimoto, K.

K. Yoshimoto, R. Suzuki, Y. Ishikawa, and K. Wada, “Bandgap control using strained beam structures for Si photonic devices,” Opt. Express. 18 (25) 26492–26498 (2010).
[CrossRef] [PubMed]

Appl. Phys. Lett. (3)

D. A. Cohen, B. Mason, J. Dolan, C. Burns, and L. A. Coldren, “Enhanced wavelength tuning of an InGaAsP-InP laser with a thermal-strain-magnifying trench,” Appl. Phys. Lett. 77(17), 2629–2671 (2000).
[CrossRef]

H. -C. Luan, D. R. Lim, K. K. Lee, K. M. Chen, J. G. Sandland, K. Wada, and L. C. Kimerling, “High-quality Ge epilayers on Si with low threading-dislocation densities,” Appl. Phys. Lett. 75(19), 2909–2911 (1999).
[CrossRef]

Y. Ishikawa, K. Wada, D. D. Cannon, J. F. Liu, H. C. Luan, and L. C. Kimerling, “Strain-induced band gap shrinkage in Ge grown on Si substrate,” Appl. Phys. Lett. 82(13), 2044–2046 (2003).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

R. A. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006).
[CrossRef]

IEEE J. Solid-State Circuits (1)

H. F. Hamann, A. Weger, J. A. Lacey, Z. Hu, P. Bose, E. Cohen, and J. Wakil, “Hotspot-limited microprocessors: direct temperature and power distribution measurements,” IEEE J. Solid-State Circuits 42(1), 56–65 (2007).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

W. N. Ye, J. Michel, and L. C. Kimerling, “Athermal high-index-contrast waveguide design,” IEEE Photon. Technol. Lett. 20(11), 885–887 (2008).
[CrossRef]

IEEE Trans. Comp. Pack. Manuf. Tech. (1)

P. Kozodoy, T. A. Strand, Y. A. Akulova, G. Fish, C. Schow, P. -C. Koh, Z. Bian, J. Christofferson, and A. Shakouri, “Thermal effects in monolithically integrated tunable laser transmitters,” IEEE Trans. Comp. Pack. Manuf. Tech. 28(4), 651–657 (2005).
[CrossRef]

J. Appl. Phys. (2)

M. E. Groenert, C. W. Leitz, A. J. Pitera, V. Yang, H. Lee, R. J. Ram, and E. A. Fitzgerald, “Monolithic integration of room-temperature cw GaAs/AlGaAs lasers on Si substrates via relaxed graded GeSi buffer layers,” J. Appl. Phys. 93(1), 362–367 (2003).
[CrossRef]

P. Kirkby, P. Selway, and L. Westbrook, “Photoelastic waveguides and their effect on stripe-geometry GaAs/Ga1–xAlxAs lasers,” J. Appl. Phys. 50(7), 4567–4579 (1979).
[CrossRef]

J. Cryst. Growth (1)

N. Bottka, D. K. Gaskill, R. J. M. Griffiths, R. R. Bradley, T. B. Joyce, C. Ito, and D. McIntyre, “Photoreflectance characterization of OMVPE GaAs on Si,” J. Cryst. Growth 93481–486 (1988).
[CrossRef]

J. Vac. Sci. Technol. B (1)

M. E. Groenert, A. J. Pitera, R. J. Ram, and E. A. Fitzgerald, “Improved room-temperature continuous wave GaAs/AlGaAs and InGaAs/GaAs/AlGaAs lasers fabricated on Si substrates via relaxed graded GeSi buffer layers,” J. Vac. Sci. Technol. B 21(3), 1064–1069 (2003).
[CrossRef]

Opt. Express (2)

Opt. Express. (1)

K. Yoshimoto, R. Suzuki, Y. Ishikawa, and K. Wada, “Bandgap control using strained beam structures for Si photonic devices,” Opt. Express. 18 (25) 26492–26498 (2010).
[CrossRef] [PubMed]

Opt. Lett. (1)

Phys. Rev. B (2)

A. McCaulley, V. M. Donnelly, M. Vernon, and I. Taha, “Temperature dependence of the near-infrared refractive index of silicon, gallium arsenide, and indium phosphide,” Phys. Rev. B 49(11), 7408–7417 (1994).
[CrossRef]

C. G. Van de Walle, “Band lineups and deformation potentials in the model-solid theory,” Phys. Rev. B 39(3), 1871–1883 (1989).
[CrossRef]

UFN (1)

Y. Bolkhovityanov and O. Pchelyakov, “GaAs epitaxy on Si substrates: modern status of research and engineering,” UFN 178(5), 437–456 (2008).

Other (3)

S. L. Chuang, Physics of Photonic Devices (Wiley, New York, 2009).

Ioffe Physico-Technical Institute, “New semiconductor materials, characters and properties,” http://www.ioffe.rssi.ru/SVA/NSM/Semicond/ .

K. Wada, J. F. Liu, S. Jongthammanurak, D. D. Cannon, D. T. Danielson, D. H. Ahn, S. Akiyama, M. Popovic, D. R. Lim, K. K. Lee, H. -C. Luan, Y. Ishikawa, J. Michel, H. A. Haus, and L. C. Kimerling, Si Microphotonics for Optical Interconnection (Springer Verlag, Berlin, 2006), Chap. 11.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

The schematic of GaAs/Ge/Si microbeam under the mechanical stressing, depicted with a strain profile along the x-axis. The x-, y-, and z-axes correspond to crystal axes [100], [010] and [001] respectively. The size of the microbeam used in simulation is identical with what we fabricate later. The place pumped in μ-PL measurement is also shown with a closed circle.

Fig. 2
Fig. 2

Calculated band-to-band transition energies for uniaxially strained GaAs under [100] stress. The lh and hh represent the light-hole and the heavy-hole band respectively.

Fig. 3
Fig. 3

SEM image of a typical GaAs/Ge/Si microbeam. The microbeams showed a spontaneous upbending after fabrication. Laser microscopic measurement confirmed that the amount of the bending was about 2.5μm in height at the beam end. The upbending deformation is deduced from the relaxation of the built-in strain accumulated during cooling process in the growth chamber to room temperature due to the thermal expansion mismatch between GaAs and Si [17,18].

Fig. 4
Fig. 4

μ-PL spectra from the GaAs/Ge/Si microbeam without (blue), under (red) and after (green) mechanical stressing. The spot of optical pumping is shown in the Figure 1. The red shift as large as 15meV is ascribed to the effect of the tensile stress. The slight increase of FWHM is observed. When the stress was removed, the PL spectrum restored the original one, indicating the deformation of microbeam was elastic. The intensity difference of these two PL spectra (blue and green) is within the measurement errors of the system.

Metrics