Abstract

We report the experimentally observed abnormal refraction in metamaterials (MMs) consisting of ferrite rods and metallic wires with two kinds of configurations. Negative refraction (NR) and positive refraction (PR) are demonstrated in an MM constructed with parallel-arranged rods and wires. The frequencies of both NR and PR can be adjusted dynamically and together by an applied magnetic field and the PR occurs at frequencies slightly lower than that of the NR. The NR is attributed to simultaneously negative effective permittivity and permeability, and the PR is resulted from positive effective permittivity and permeability with the positive effective permittivity originating from electromagnetic coupling between the closest rod and wire. By making the rod cross the wire to reduce the coupling, we observed sole NR in an MM consisting of the cross-arranged rods and wires. Theoretical analysis explained qualitatively the abnormal refraction behaviors of microwave for the two kinds of MMs and it is supported by the retrieved effective parameters and field distributions.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of permittivity and permeability,” Sov. Phys. Usp. 10(4), 509–514 (1968).
    [CrossRef]
  2. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
    [CrossRef] [PubMed]
  3. C. G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, “Experimental verification and simulation of negative index of refraction using Snell’s law,” Phys. Rev. Lett. 90(10), 107401 (2003).
    [CrossRef] [PubMed]
  4. J. T. Huangfu, L. X. Ran, H. S. Chen, X. M. Zhang, K. S. Chen, T. M. Grzegorczyk, and J. A. Kong, “Experimental confirmation of negative refractive index of a metamaterial composed of Omega-like metallic patterns,” Appl. Phys. Lett. 84(9), 1537–1539 (2004).
    [CrossRef]
  5. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
    [CrossRef] [PubMed]
  6. A. A. Houck, J. B. Brock, and I. L. Chuang, “Experimental observations of a left-handed material that obeys Snell’s law,” Phys. Rev. Lett. 90(13), 137401 (2003).
    [CrossRef] [PubMed]
  7. C. G. Parazzoli, R. B. Greegor, J. A. Nielsen, M. A. Thompson, K. Li, A. M. Vetter, M. H. Tanielian, and D. C. Vier, “Performance of a negative index of refraction lens,” Appl. Phys. Lett. 84(17), 3232–3234 (2004).
    [CrossRef]
  8. I. Bulu, H. Caglayan, and E. Ozbay, “Experimental demonstration of subwavelength focusing of electromagnetic waves by labyrinth-based two-dimensional metamaterials,” Opt. Lett. 31(6), 814–816 (2006).
    [CrossRef] [PubMed]
  9. W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96(10), 107401 (2006).
    [CrossRef] [PubMed]
  10. H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
    [CrossRef] [PubMed]
  11. H. Chen, B -I. Wu, L. Ran, T. M. Grzegorczyk, and J. A. Kong, “Controllable left-handed metamaterial and its application to a steerable antenna,” Appl. Phys. Lett. 89(5), 053509 (2006).
    [CrossRef]
  12. I. V. Shadrivov, S. K. Morrison, and Y. S. Kivshar, “Tunable split-ring resonators for nonlinear negative-index metamaterials,” Opt. Express 14(20), 9344–9349 (2006).
    [CrossRef] [PubMed]
  13. Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, and B. Zhang, “Electrically tunable negative permeability metamaterials based on nematic liquid crystals,” Appl. Phys. Lett. 90(1), 011112 (2007).
    [CrossRef]
  14. A. Degiron, J. J. Mock, and D. R. Smith, “Modulating and tuning the response of metamaterials at the unit cell level,” Opt. Express 15(3), 1115–1127 (2007).
    [CrossRef] [PubMed]
  15. F. Zhang, Q. Zhao, L. Kang, D. P. Gaillot, X. P. Zhao, J. Zhou, and D. Lippens, “Magnetic control of negative permeability metamaterials based on liquid crystals,” Appl. Phys. Lett. 92(19), 193104 (2008).
    [CrossRef]
  16. L. Kang, Q. Zhao, H. J. Zhao, and J. Zhou, “Magnetically tunable negative permeability metamaterial composed by split ring resonators and ferrite rods,” Opt. Express 16(12), 8825–8834 (2008).
    [CrossRef] [PubMed]
  17. L. Kang, Q. Zhao, H. J. Zhao, and J. Zhou, “Ferrite-based magnetically tunable left-handed metamaterial composed of SRRs and wires,” Opt. Express 16(22), 17269–17275 (2008).
    [CrossRef] [PubMed]
  18. J. N. Gollub, J. Y. Chin, T. J. Cui, and D. R. Smith, “Hybrid resonant phenomena in a SRR/YIG metamaterial structure,” Opt. Express 17(4), 2122–2131 (2009).
    [CrossRef] [PubMed]
  19. G. Dewar, “Candidates for μ<0, ε<0 nanostructures,” Int. J. Mod. Phys. B 15(24 & 25), 3258–3265 (2001).
    [CrossRef]
  20. Y. He, P. He, V. G. Harris, and C. Vittoria, “Role of ferrites in negative index metamaterials,” IEEE Trans. Magn. 42(10), 2852–2854 (2006).
    [CrossRef]
  21. F. J. Rachford, D. Armstead, V. G. Harris, and C. Vittoria, “Simulations of ferrite-dielectric-wire composite negative index materials,” Phys. Rev. Lett. 99(5), 057202 (2007).
    [CrossRef] [PubMed]
  22. Y. He, P. He, S. Daeyoon Yoon, P. V. Parimi, F. J. Rachford, V. G. Harris, and C. Vittoria, “Tunable negative index metamaterial using yttrium iron garnet,” J. Magn. Magn. Mater. 313(1), 187–191 (2007).
    [CrossRef]
  23. H. Zhao, J. Zhou, Q. Zhao, B. Li, L. Kang, and Y. Bai, “Magnetotunable left-handed material consisting of yttrium iron garnet slab and metallic wires,” Appl. Phys. Lett. 91(13), 131107 (2007).
    [CrossRef]
  24. H. Zhao, J. Zhou, L. Kang, and Q. Zhao, “Tunable two-dimensional left-handed material consisting of ferrite rods and metallic wires,” Opt. Express 17(16), 13373–13380 (2009).
    [CrossRef] [PubMed]
  25. Y. Poo, R. X. Wu, G. H. He, P. Chen, J. Xu, and R. F. Chen, “Experimental verification of a tunable left-handed material by bias magnetic fields,” Appl. Phys. Lett. 96(16), 161902 (2010).
    [CrossRef]
  26. B. Lax and K. J. Button, Microwave ferrites and ferrimagnetics, (McGraw-Hill, New York, 1962).
  27. J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
    [CrossRef] [PubMed]
  28. D. R. Smith, D. C. Vier, Th. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(33 Pt 2B), 036617 (2005).
    [CrossRef] [PubMed]

2010

Y. Poo, R. X. Wu, G. H. He, P. Chen, J. Xu, and R. F. Chen, “Experimental verification of a tunable left-handed material by bias magnetic fields,” Appl. Phys. Lett. 96(16), 161902 (2010).
[CrossRef]

2009

2008

2007

F. J. Rachford, D. Armstead, V. G. Harris, and C. Vittoria, “Simulations of ferrite-dielectric-wire composite negative index materials,” Phys. Rev. Lett. 99(5), 057202 (2007).
[CrossRef] [PubMed]

Y. He, P. He, S. Daeyoon Yoon, P. V. Parimi, F. J. Rachford, V. G. Harris, and C. Vittoria, “Tunable negative index metamaterial using yttrium iron garnet,” J. Magn. Magn. Mater. 313(1), 187–191 (2007).
[CrossRef]

H. Zhao, J. Zhou, Q. Zhao, B. Li, L. Kang, and Y. Bai, “Magnetotunable left-handed material consisting of yttrium iron garnet slab and metallic wires,” Appl. Phys. Lett. 91(13), 131107 (2007).
[CrossRef]

Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, and B. Zhang, “Electrically tunable negative permeability metamaterials based on nematic liquid crystals,” Appl. Phys. Lett. 90(1), 011112 (2007).
[CrossRef]

A. Degiron, J. J. Mock, and D. R. Smith, “Modulating and tuning the response of metamaterials at the unit cell level,” Opt. Express 15(3), 1115–1127 (2007).
[CrossRef] [PubMed]

2006

I. Bulu, H. Caglayan, and E. Ozbay, “Experimental demonstration of subwavelength focusing of electromagnetic waves by labyrinth-based two-dimensional metamaterials,” Opt. Lett. 31(6), 814–816 (2006).
[CrossRef] [PubMed]

I. V. Shadrivov, S. K. Morrison, and Y. S. Kivshar, “Tunable split-ring resonators for nonlinear negative-index metamaterials,” Opt. Express 14(20), 9344–9349 (2006).
[CrossRef] [PubMed]

Y. He, P. He, V. G. Harris, and C. Vittoria, “Role of ferrites in negative index metamaterials,” IEEE Trans. Magn. 42(10), 2852–2854 (2006).
[CrossRef]

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96(10), 107401 (2006).
[CrossRef] [PubMed]

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[CrossRef] [PubMed]

H. Chen, B -I. Wu, L. Ran, T. M. Grzegorczyk, and J. A. Kong, “Controllable left-handed metamaterial and its application to a steerable antenna,” Appl. Phys. Lett. 89(5), 053509 (2006).
[CrossRef]

2005

D. R. Smith, D. C. Vier, Th. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(33 Pt 2B), 036617 (2005).
[CrossRef] [PubMed]

2004

J. T. Huangfu, L. X. Ran, H. S. Chen, X. M. Zhang, K. S. Chen, T. M. Grzegorczyk, and J. A. Kong, “Experimental confirmation of negative refractive index of a metamaterial composed of Omega-like metallic patterns,” Appl. Phys. Lett. 84(9), 1537–1539 (2004).
[CrossRef]

C. G. Parazzoli, R. B. Greegor, J. A. Nielsen, M. A. Thompson, K. Li, A. M. Vetter, M. H. Tanielian, and D. C. Vier, “Performance of a negative index of refraction lens,” Appl. Phys. Lett. 84(17), 3232–3234 (2004).
[CrossRef]

2003

C. G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, “Experimental verification and simulation of negative index of refraction using Snell’s law,” Phys. Rev. Lett. 90(10), 107401 (2003).
[CrossRef] [PubMed]

A. A. Houck, J. B. Brock, and I. L. Chuang, “Experimental observations of a left-handed material that obeys Snell’s law,” Phys. Rev. Lett. 90(13), 137401 (2003).
[CrossRef] [PubMed]

2001

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[CrossRef] [PubMed]

G. Dewar, “Candidates for μ<0, ε<0 nanostructures,” Int. J. Mod. Phys. B 15(24 & 25), 3258–3265 (2001).
[CrossRef]

2000

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

1996

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[CrossRef] [PubMed]

1968

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of permittivity and permeability,” Sov. Phys. Usp. 10(4), 509–514 (1968).
[CrossRef]

Armstead, D.

F. J. Rachford, D. Armstead, V. G. Harris, and C. Vittoria, “Simulations of ferrite-dielectric-wire composite negative index materials,” Phys. Rev. Lett. 99(5), 057202 (2007).
[CrossRef] [PubMed]

Averitt, R. D.

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[CrossRef] [PubMed]

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96(10), 107401 (2006).
[CrossRef] [PubMed]

Bai, Y.

H. Zhao, J. Zhou, Q. Zhao, B. Li, L. Kang, and Y. Bai, “Magnetotunable left-handed material consisting of yttrium iron garnet slab and metallic wires,” Appl. Phys. Lett. 91(13), 131107 (2007).
[CrossRef]

Brock, J. B.

A. A. Houck, J. B. Brock, and I. L. Chuang, “Experimental observations of a left-handed material that obeys Snell’s law,” Phys. Rev. Lett. 90(13), 137401 (2003).
[CrossRef] [PubMed]

Bulu, I.

Caglayan, H.

Chen, H.

H. Chen, B -I. Wu, L. Ran, T. M. Grzegorczyk, and J. A. Kong, “Controllable left-handed metamaterial and its application to a steerable antenna,” Appl. Phys. Lett. 89(5), 053509 (2006).
[CrossRef]

Chen, H. S.

J. T. Huangfu, L. X. Ran, H. S. Chen, X. M. Zhang, K. S. Chen, T. M. Grzegorczyk, and J. A. Kong, “Experimental confirmation of negative refractive index of a metamaterial composed of Omega-like metallic patterns,” Appl. Phys. Lett. 84(9), 1537–1539 (2004).
[CrossRef]

Chen, H. T.

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[CrossRef] [PubMed]

Chen, K. S.

J. T. Huangfu, L. X. Ran, H. S. Chen, X. M. Zhang, K. S. Chen, T. M. Grzegorczyk, and J. A. Kong, “Experimental confirmation of negative refractive index of a metamaterial composed of Omega-like metallic patterns,” Appl. Phys. Lett. 84(9), 1537–1539 (2004).
[CrossRef]

Chen, P.

Y. Poo, R. X. Wu, G. H. He, P. Chen, J. Xu, and R. F. Chen, “Experimental verification of a tunable left-handed material by bias magnetic fields,” Appl. Phys. Lett. 96(16), 161902 (2010).
[CrossRef]

Chen, R. F.

Y. Poo, R. X. Wu, G. H. He, P. Chen, J. Xu, and R. F. Chen, “Experimental verification of a tunable left-handed material by bias magnetic fields,” Appl. Phys. Lett. 96(16), 161902 (2010).
[CrossRef]

Chin, J. Y.

Chuang, I. L.

A. A. Houck, J. B. Brock, and I. L. Chuang, “Experimental observations of a left-handed material that obeys Snell’s law,” Phys. Rev. Lett. 90(13), 137401 (2003).
[CrossRef] [PubMed]

Cui, T. J.

Daeyoon Yoon, S.

Y. He, P. He, S. Daeyoon Yoon, P. V. Parimi, F. J. Rachford, V. G. Harris, and C. Vittoria, “Tunable negative index metamaterial using yttrium iron garnet,” J. Magn. Magn. Mater. 313(1), 187–191 (2007).
[CrossRef]

Degiron, A.

Dewar, G.

G. Dewar, “Candidates for μ<0, ε<0 nanostructures,” Int. J. Mod. Phys. B 15(24 & 25), 3258–3265 (2001).
[CrossRef]

Du, B.

Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, and B. Zhang, “Electrically tunable negative permeability metamaterials based on nematic liquid crystals,” Appl. Phys. Lett. 90(1), 011112 (2007).
[CrossRef]

Gaillot, D. P.

F. Zhang, Q. Zhao, L. Kang, D. P. Gaillot, X. P. Zhao, J. Zhou, and D. Lippens, “Magnetic control of negative permeability metamaterials based on liquid crystals,” Appl. Phys. Lett. 92(19), 193104 (2008).
[CrossRef]

Gollub, J. N.

Gossard, A. C.

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[CrossRef] [PubMed]

Greegor, R. B.

C. G. Parazzoli, R. B. Greegor, J. A. Nielsen, M. A. Thompson, K. Li, A. M. Vetter, M. H. Tanielian, and D. C. Vier, “Performance of a negative index of refraction lens,” Appl. Phys. Lett. 84(17), 3232–3234 (2004).
[CrossRef]

C. G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, “Experimental verification and simulation of negative index of refraction using Snell’s law,” Phys. Rev. Lett. 90(10), 107401 (2003).
[CrossRef] [PubMed]

Grzegorczyk, T. M.

H. Chen, B -I. Wu, L. Ran, T. M. Grzegorczyk, and J. A. Kong, “Controllable left-handed metamaterial and its application to a steerable antenna,” Appl. Phys. Lett. 89(5), 053509 (2006).
[CrossRef]

J. T. Huangfu, L. X. Ran, H. S. Chen, X. M. Zhang, K. S. Chen, T. M. Grzegorczyk, and J. A. Kong, “Experimental confirmation of negative refractive index of a metamaterial composed of Omega-like metallic patterns,” Appl. Phys. Lett. 84(9), 1537–1539 (2004).
[CrossRef]

Harris, V. G.

F. J. Rachford, D. Armstead, V. G. Harris, and C. Vittoria, “Simulations of ferrite-dielectric-wire composite negative index materials,” Phys. Rev. Lett. 99(5), 057202 (2007).
[CrossRef] [PubMed]

Y. He, P. He, S. Daeyoon Yoon, P. V. Parimi, F. J. Rachford, V. G. Harris, and C. Vittoria, “Tunable negative index metamaterial using yttrium iron garnet,” J. Magn. Magn. Mater. 313(1), 187–191 (2007).
[CrossRef]

Y. He, P. He, V. G. Harris, and C. Vittoria, “Role of ferrites in negative index metamaterials,” IEEE Trans. Magn. 42(10), 2852–2854 (2006).
[CrossRef]

He, G. H.

Y. Poo, R. X. Wu, G. H. He, P. Chen, J. Xu, and R. F. Chen, “Experimental verification of a tunable left-handed material by bias magnetic fields,” Appl. Phys. Lett. 96(16), 161902 (2010).
[CrossRef]

He, P.

Y. He, P. He, S. Daeyoon Yoon, P. V. Parimi, F. J. Rachford, V. G. Harris, and C. Vittoria, “Tunable negative index metamaterial using yttrium iron garnet,” J. Magn. Magn. Mater. 313(1), 187–191 (2007).
[CrossRef]

Y. He, P. He, V. G. Harris, and C. Vittoria, “Role of ferrites in negative index metamaterials,” IEEE Trans. Magn. 42(10), 2852–2854 (2006).
[CrossRef]

He, Y.

Y. He, P. He, S. Daeyoon Yoon, P. V. Parimi, F. J. Rachford, V. G. Harris, and C. Vittoria, “Tunable negative index metamaterial using yttrium iron garnet,” J. Magn. Magn. Mater. 313(1), 187–191 (2007).
[CrossRef]

Y. He, P. He, V. G. Harris, and C. Vittoria, “Role of ferrites in negative index metamaterials,” IEEE Trans. Magn. 42(10), 2852–2854 (2006).
[CrossRef]

Highstrete, C.

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96(10), 107401 (2006).
[CrossRef] [PubMed]

Holden, A. J.

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[CrossRef] [PubMed]

Houck, A. A.

A. A. Houck, J. B. Brock, and I. L. Chuang, “Experimental observations of a left-handed material that obeys Snell’s law,” Phys. Rev. Lett. 90(13), 137401 (2003).
[CrossRef] [PubMed]

Huangfu, J. T.

J. T. Huangfu, L. X. Ran, H. S. Chen, X. M. Zhang, K. S. Chen, T. M. Grzegorczyk, and J. A. Kong, “Experimental confirmation of negative refractive index of a metamaterial composed of Omega-like metallic patterns,” Appl. Phys. Lett. 84(9), 1537–1539 (2004).
[CrossRef]

Kang, L.

H. Zhao, J. Zhou, L. Kang, and Q. Zhao, “Tunable two-dimensional left-handed material consisting of ferrite rods and metallic wires,” Opt. Express 17(16), 13373–13380 (2009).
[CrossRef] [PubMed]

F. Zhang, Q. Zhao, L. Kang, D. P. Gaillot, X. P. Zhao, J. Zhou, and D. Lippens, “Magnetic control of negative permeability metamaterials based on liquid crystals,” Appl. Phys. Lett. 92(19), 193104 (2008).
[CrossRef]

L. Kang, Q. Zhao, H. J. Zhao, and J. Zhou, “Ferrite-based magnetically tunable left-handed metamaterial composed of SRRs and wires,” Opt. Express 16(22), 17269–17275 (2008).
[CrossRef] [PubMed]

L. Kang, Q. Zhao, H. J. Zhao, and J. Zhou, “Magnetically tunable negative permeability metamaterial composed by split ring resonators and ferrite rods,” Opt. Express 16(12), 8825–8834 (2008).
[CrossRef] [PubMed]

Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, and B. Zhang, “Electrically tunable negative permeability metamaterials based on nematic liquid crystals,” Appl. Phys. Lett. 90(1), 011112 (2007).
[CrossRef]

H. Zhao, J. Zhou, Q. Zhao, B. Li, L. Kang, and Y. Bai, “Magnetotunable left-handed material consisting of yttrium iron garnet slab and metallic wires,” Appl. Phys. Lett. 91(13), 131107 (2007).
[CrossRef]

Kivshar, Y. S.

Koltenbah, B. E. C.

C. G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, “Experimental verification and simulation of negative index of refraction using Snell’s law,” Phys. Rev. Lett. 90(10), 107401 (2003).
[CrossRef] [PubMed]

Kong, J. A.

H. Chen, B -I. Wu, L. Ran, T. M. Grzegorczyk, and J. A. Kong, “Controllable left-handed metamaterial and its application to a steerable antenna,” Appl. Phys. Lett. 89(5), 053509 (2006).
[CrossRef]

J. T. Huangfu, L. X. Ran, H. S. Chen, X. M. Zhang, K. S. Chen, T. M. Grzegorczyk, and J. A. Kong, “Experimental confirmation of negative refractive index of a metamaterial composed of Omega-like metallic patterns,” Appl. Phys. Lett. 84(9), 1537–1539 (2004).
[CrossRef]

Koschny, Th.

D. R. Smith, D. C. Vier, Th. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(33 Pt 2B), 036617 (2005).
[CrossRef] [PubMed]

Lee, M.

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96(10), 107401 (2006).
[CrossRef] [PubMed]

Li, B.

H. Zhao, J. Zhou, Q. Zhao, B. Li, L. Kang, and Y. Bai, “Magnetotunable left-handed material consisting of yttrium iron garnet slab and metallic wires,” Appl. Phys. Lett. 91(13), 131107 (2007).
[CrossRef]

Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, and B. Zhang, “Electrically tunable negative permeability metamaterials based on nematic liquid crystals,” Appl. Phys. Lett. 90(1), 011112 (2007).
[CrossRef]

Li, K.

C. G. Parazzoli, R. B. Greegor, J. A. Nielsen, M. A. Thompson, K. Li, A. M. Vetter, M. H. Tanielian, and D. C. Vier, “Performance of a negative index of refraction lens,” Appl. Phys. Lett. 84(17), 3232–3234 (2004).
[CrossRef]

C. G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, “Experimental verification and simulation of negative index of refraction using Snell’s law,” Phys. Rev. Lett. 90(10), 107401 (2003).
[CrossRef] [PubMed]

Liang, X.

Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, and B. Zhang, “Electrically tunable negative permeability metamaterials based on nematic liquid crystals,” Appl. Phys. Lett. 90(1), 011112 (2007).
[CrossRef]

Lippens, D.

F. Zhang, Q. Zhao, L. Kang, D. P. Gaillot, X. P. Zhao, J. Zhou, and D. Lippens, “Magnetic control of negative permeability metamaterials based on liquid crystals,” Appl. Phys. Lett. 92(19), 193104 (2008).
[CrossRef]

Mock, J. J.

Morrison, S. K.

Nielsen, J. A.

C. G. Parazzoli, R. B. Greegor, J. A. Nielsen, M. A. Thompson, K. Li, A. M. Vetter, M. H. Tanielian, and D. C. Vier, “Performance of a negative index of refraction lens,” Appl. Phys. Lett. 84(17), 3232–3234 (2004).
[CrossRef]

Ozbay, E.

Padilla, W. J.

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[CrossRef] [PubMed]

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96(10), 107401 (2006).
[CrossRef] [PubMed]

Parazzoli, C. G.

C. G. Parazzoli, R. B. Greegor, J. A. Nielsen, M. A. Thompson, K. Li, A. M. Vetter, M. H. Tanielian, and D. C. Vier, “Performance of a negative index of refraction lens,” Appl. Phys. Lett. 84(17), 3232–3234 (2004).
[CrossRef]

C. G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, “Experimental verification and simulation of negative index of refraction using Snell’s law,” Phys. Rev. Lett. 90(10), 107401 (2003).
[CrossRef] [PubMed]

Parimi, P. V.

Y. He, P. He, S. Daeyoon Yoon, P. V. Parimi, F. J. Rachford, V. G. Harris, and C. Vittoria, “Tunable negative index metamaterial using yttrium iron garnet,” J. Magn. Magn. Mater. 313(1), 187–191 (2007).
[CrossRef]

Pendry, J. B.

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[CrossRef] [PubMed]

Poo, Y.

Y. Poo, R. X. Wu, G. H. He, P. Chen, J. Xu, and R. F. Chen, “Experimental verification of a tunable left-handed material by bias magnetic fields,” Appl. Phys. Lett. 96(16), 161902 (2010).
[CrossRef]

Rachford, F. J.

Y. He, P. He, S. Daeyoon Yoon, P. V. Parimi, F. J. Rachford, V. G. Harris, and C. Vittoria, “Tunable negative index metamaterial using yttrium iron garnet,” J. Magn. Magn. Mater. 313(1), 187–191 (2007).
[CrossRef]

F. J. Rachford, D. Armstead, V. G. Harris, and C. Vittoria, “Simulations of ferrite-dielectric-wire composite negative index materials,” Phys. Rev. Lett. 99(5), 057202 (2007).
[CrossRef] [PubMed]

Ran, L.

H. Chen, B -I. Wu, L. Ran, T. M. Grzegorczyk, and J. A. Kong, “Controllable left-handed metamaterial and its application to a steerable antenna,” Appl. Phys. Lett. 89(5), 053509 (2006).
[CrossRef]

Ran, L. X.

J. T. Huangfu, L. X. Ran, H. S. Chen, X. M. Zhang, K. S. Chen, T. M. Grzegorczyk, and J. A. Kong, “Experimental confirmation of negative refractive index of a metamaterial composed of Omega-like metallic patterns,” Appl. Phys. Lett. 84(9), 1537–1539 (2004).
[CrossRef]

Schultz, S.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[CrossRef] [PubMed]

Shadrivov, I. V.

Shelby, R. A.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[CrossRef] [PubMed]

Smith, D. R.

J. N. Gollub, J. Y. Chin, T. J. Cui, and D. R. Smith, “Hybrid resonant phenomena in a SRR/YIG metamaterial structure,” Opt. Express 17(4), 2122–2131 (2009).
[CrossRef] [PubMed]

A. Degiron, J. J. Mock, and D. R. Smith, “Modulating and tuning the response of metamaterials at the unit cell level,” Opt. Express 15(3), 1115–1127 (2007).
[CrossRef] [PubMed]

D. R. Smith, D. C. Vier, Th. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(33 Pt 2B), 036617 (2005).
[CrossRef] [PubMed]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[CrossRef] [PubMed]

Soukoulis, C. M.

D. R. Smith, D. C. Vier, Th. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(33 Pt 2B), 036617 (2005).
[CrossRef] [PubMed]

Stewart, W. J.

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[CrossRef] [PubMed]

Tang, H.

Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, and B. Zhang, “Electrically tunable negative permeability metamaterials based on nematic liquid crystals,” Appl. Phys. Lett. 90(1), 011112 (2007).
[CrossRef]

Tanielian, M.

C. G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, “Experimental verification and simulation of negative index of refraction using Snell’s law,” Phys. Rev. Lett. 90(10), 107401 (2003).
[CrossRef] [PubMed]

Tanielian, M. H.

C. G. Parazzoli, R. B. Greegor, J. A. Nielsen, M. A. Thompson, K. Li, A. M. Vetter, M. H. Tanielian, and D. C. Vier, “Performance of a negative index of refraction lens,” Appl. Phys. Lett. 84(17), 3232–3234 (2004).
[CrossRef]

Taylor, A. J.

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[CrossRef] [PubMed]

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96(10), 107401 (2006).
[CrossRef] [PubMed]

Thompson, M. A.

C. G. Parazzoli, R. B. Greegor, J. A. Nielsen, M. A. Thompson, K. Li, A. M. Vetter, M. H. Tanielian, and D. C. Vier, “Performance of a negative index of refraction lens,” Appl. Phys. Lett. 84(17), 3232–3234 (2004).
[CrossRef]

Veselago, V. G.

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of permittivity and permeability,” Sov. Phys. Usp. 10(4), 509–514 (1968).
[CrossRef]

Vetter, A. M.

C. G. Parazzoli, R. B. Greegor, J. A. Nielsen, M. A. Thompson, K. Li, A. M. Vetter, M. H. Tanielian, and D. C. Vier, “Performance of a negative index of refraction lens,” Appl. Phys. Lett. 84(17), 3232–3234 (2004).
[CrossRef]

Vier, D. C.

D. R. Smith, D. C. Vier, Th. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(33 Pt 2B), 036617 (2005).
[CrossRef] [PubMed]

C. G. Parazzoli, R. B. Greegor, J. A. Nielsen, M. A. Thompson, K. Li, A. M. Vetter, M. H. Tanielian, and D. C. Vier, “Performance of a negative index of refraction lens,” Appl. Phys. Lett. 84(17), 3232–3234 (2004).
[CrossRef]

Vittoria, C.

F. J. Rachford, D. Armstead, V. G. Harris, and C. Vittoria, “Simulations of ferrite-dielectric-wire composite negative index materials,” Phys. Rev. Lett. 99(5), 057202 (2007).
[CrossRef] [PubMed]

Y. He, P. He, S. Daeyoon Yoon, P. V. Parimi, F. J. Rachford, V. G. Harris, and C. Vittoria, “Tunable negative index metamaterial using yttrium iron garnet,” J. Magn. Magn. Mater. 313(1), 187–191 (2007).
[CrossRef]

Y. He, P. He, V. G. Harris, and C. Vittoria, “Role of ferrites in negative index metamaterials,” IEEE Trans. Magn. 42(10), 2852–2854 (2006).
[CrossRef]

Wu, B -I.

H. Chen, B -I. Wu, L. Ran, T. M. Grzegorczyk, and J. A. Kong, “Controllable left-handed metamaterial and its application to a steerable antenna,” Appl. Phys. Lett. 89(5), 053509 (2006).
[CrossRef]

Wu, R. X.

Y. Poo, R. X. Wu, G. H. He, P. Chen, J. Xu, and R. F. Chen, “Experimental verification of a tunable left-handed material by bias magnetic fields,” Appl. Phys. Lett. 96(16), 161902 (2010).
[CrossRef]

Xu, J.

Y. Poo, R. X. Wu, G. H. He, P. Chen, J. Xu, and R. F. Chen, “Experimental verification of a tunable left-handed material by bias magnetic fields,” Appl. Phys. Lett. 96(16), 161902 (2010).
[CrossRef]

Youngs, I.

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[CrossRef] [PubMed]

Zhang, B.

Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, and B. Zhang, “Electrically tunable negative permeability metamaterials based on nematic liquid crystals,” Appl. Phys. Lett. 90(1), 011112 (2007).
[CrossRef]

Zhang, F.

F. Zhang, Q. Zhao, L. Kang, D. P. Gaillot, X. P. Zhao, J. Zhou, and D. Lippens, “Magnetic control of negative permeability metamaterials based on liquid crystals,” Appl. Phys. Lett. 92(19), 193104 (2008).
[CrossRef]

Zhang, X. M.

J. T. Huangfu, L. X. Ran, H. S. Chen, X. M. Zhang, K. S. Chen, T. M. Grzegorczyk, and J. A. Kong, “Experimental confirmation of negative refractive index of a metamaterial composed of Omega-like metallic patterns,” Appl. Phys. Lett. 84(9), 1537–1539 (2004).
[CrossRef]

Zhao, H.

H. Zhao, J. Zhou, L. Kang, and Q. Zhao, “Tunable two-dimensional left-handed material consisting of ferrite rods and metallic wires,” Opt. Express 17(16), 13373–13380 (2009).
[CrossRef] [PubMed]

H. Zhao, J. Zhou, Q. Zhao, B. Li, L. Kang, and Y. Bai, “Magnetotunable left-handed material consisting of yttrium iron garnet slab and metallic wires,” Appl. Phys. Lett. 91(13), 131107 (2007).
[CrossRef]

Zhao, H. J.

Zhao, Q.

H. Zhao, J. Zhou, L. Kang, and Q. Zhao, “Tunable two-dimensional left-handed material consisting of ferrite rods and metallic wires,” Opt. Express 17(16), 13373–13380 (2009).
[CrossRef] [PubMed]

L. Kang, Q. Zhao, H. J. Zhao, and J. Zhou, “Ferrite-based magnetically tunable left-handed metamaterial composed of SRRs and wires,” Opt. Express 16(22), 17269–17275 (2008).
[CrossRef] [PubMed]

F. Zhang, Q. Zhao, L. Kang, D. P. Gaillot, X. P. Zhao, J. Zhou, and D. Lippens, “Magnetic control of negative permeability metamaterials based on liquid crystals,” Appl. Phys. Lett. 92(19), 193104 (2008).
[CrossRef]

L. Kang, Q. Zhao, H. J. Zhao, and J. Zhou, “Magnetically tunable negative permeability metamaterial composed by split ring resonators and ferrite rods,” Opt. Express 16(12), 8825–8834 (2008).
[CrossRef] [PubMed]

Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, and B. Zhang, “Electrically tunable negative permeability metamaterials based on nematic liquid crystals,” Appl. Phys. Lett. 90(1), 011112 (2007).
[CrossRef]

H. Zhao, J. Zhou, Q. Zhao, B. Li, L. Kang, and Y. Bai, “Magnetotunable left-handed material consisting of yttrium iron garnet slab and metallic wires,” Appl. Phys. Lett. 91(13), 131107 (2007).
[CrossRef]

Zhao, X. P.

F. Zhang, Q. Zhao, L. Kang, D. P. Gaillot, X. P. Zhao, J. Zhou, and D. Lippens, “Magnetic control of negative permeability metamaterials based on liquid crystals,” Appl. Phys. Lett. 92(19), 193104 (2008).
[CrossRef]

Zhou, J.

H. Zhao, J. Zhou, L. Kang, and Q. Zhao, “Tunable two-dimensional left-handed material consisting of ferrite rods and metallic wires,” Opt. Express 17(16), 13373–13380 (2009).
[CrossRef] [PubMed]

F. Zhang, Q. Zhao, L. Kang, D. P. Gaillot, X. P. Zhao, J. Zhou, and D. Lippens, “Magnetic control of negative permeability metamaterials based on liquid crystals,” Appl. Phys. Lett. 92(19), 193104 (2008).
[CrossRef]

L. Kang, Q. Zhao, H. J. Zhao, and J. Zhou, “Ferrite-based magnetically tunable left-handed metamaterial composed of SRRs and wires,” Opt. Express 16(22), 17269–17275 (2008).
[CrossRef] [PubMed]

L. Kang, Q. Zhao, H. J. Zhao, and J. Zhou, “Magnetically tunable negative permeability metamaterial composed by split ring resonators and ferrite rods,” Opt. Express 16(12), 8825–8834 (2008).
[CrossRef] [PubMed]

Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, and B. Zhang, “Electrically tunable negative permeability metamaterials based on nematic liquid crystals,” Appl. Phys. Lett. 90(1), 011112 (2007).
[CrossRef]

H. Zhao, J. Zhou, Q. Zhao, B. Li, L. Kang, and Y. Bai, “Magnetotunable left-handed material consisting of yttrium iron garnet slab and metallic wires,” Appl. Phys. Lett. 91(13), 131107 (2007).
[CrossRef]

Zide, J. M. O.

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[CrossRef] [PubMed]

Appl. Phys. Lett.

J. T. Huangfu, L. X. Ran, H. S. Chen, X. M. Zhang, K. S. Chen, T. M. Grzegorczyk, and J. A. Kong, “Experimental confirmation of negative refractive index of a metamaterial composed of Omega-like metallic patterns,” Appl. Phys. Lett. 84(9), 1537–1539 (2004).
[CrossRef]

C. G. Parazzoli, R. B. Greegor, J. A. Nielsen, M. A. Thompson, K. Li, A. M. Vetter, M. H. Tanielian, and D. C. Vier, “Performance of a negative index of refraction lens,” Appl. Phys. Lett. 84(17), 3232–3234 (2004).
[CrossRef]

H. Chen, B -I. Wu, L. Ran, T. M. Grzegorczyk, and J. A. Kong, “Controllable left-handed metamaterial and its application to a steerable antenna,” Appl. Phys. Lett. 89(5), 053509 (2006).
[CrossRef]

F. Zhang, Q. Zhao, L. Kang, D. P. Gaillot, X. P. Zhao, J. Zhou, and D. Lippens, “Magnetic control of negative permeability metamaterials based on liquid crystals,” Appl. Phys. Lett. 92(19), 193104 (2008).
[CrossRef]

H. Zhao, J. Zhou, Q. Zhao, B. Li, L. Kang, and Y. Bai, “Magnetotunable left-handed material consisting of yttrium iron garnet slab and metallic wires,” Appl. Phys. Lett. 91(13), 131107 (2007).
[CrossRef]

Y. Poo, R. X. Wu, G. H. He, P. Chen, J. Xu, and R. F. Chen, “Experimental verification of a tunable left-handed material by bias magnetic fields,” Appl. Phys. Lett. 96(16), 161902 (2010).
[CrossRef]

Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, and B. Zhang, “Electrically tunable negative permeability metamaterials based on nematic liquid crystals,” Appl. Phys. Lett. 90(1), 011112 (2007).
[CrossRef]

IEEE Trans. Magn.

Y. He, P. He, V. G. Harris, and C. Vittoria, “Role of ferrites in negative index metamaterials,” IEEE Trans. Magn. 42(10), 2852–2854 (2006).
[CrossRef]

Int. J. Mod. Phys. B

G. Dewar, “Candidates for μ<0, ε<0 nanostructures,” Int. J. Mod. Phys. B 15(24 & 25), 3258–3265 (2001).
[CrossRef]

J. Magn. Magn. Mater.

Y. He, P. He, S. Daeyoon Yoon, P. V. Parimi, F. J. Rachford, V. G. Harris, and C. Vittoria, “Tunable negative index metamaterial using yttrium iron garnet,” J. Magn. Magn. Mater. 313(1), 187–191 (2007).
[CrossRef]

Nature

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Rev. E Stat. Nonlin. Soft Matter Phys.

D. R. Smith, D. C. Vier, Th. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(33 Pt 2B), 036617 (2005).
[CrossRef] [PubMed]

Phys. Rev. Lett.

C. G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, “Experimental verification and simulation of negative index of refraction using Snell’s law,” Phys. Rev. Lett. 90(10), 107401 (2003).
[CrossRef] [PubMed]

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96(10), 107401 (2006).
[CrossRef] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

A. A. Houck, J. B. Brock, and I. L. Chuang, “Experimental observations of a left-handed material that obeys Snell’s law,” Phys. Rev. Lett. 90(13), 137401 (2003).
[CrossRef] [PubMed]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[CrossRef] [PubMed]

F. J. Rachford, D. Armstead, V. G. Harris, and C. Vittoria, “Simulations of ferrite-dielectric-wire composite negative index materials,” Phys. Rev. Lett. 99(5), 057202 (2007).
[CrossRef] [PubMed]

Science

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[CrossRef] [PubMed]

Sov. Phys. Usp.

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of permittivity and permeability,” Sov. Phys. Usp. 10(4), 509–514 (1968).
[CrossRef]

Other

B. Lax and K. J. Button, Microwave ferrites and ferrimagnetics, (McGraw-Hill, New York, 1962).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematics of (a) a unit cell consisting of a YIG rod and a copper wire with parallel arrangement, (b) a prism consisting of the parallel-arranged rods and wires, (c) a unit cell consisting of 3 YIG rods and 2 copper wires with cross arrangement, and (d) a prism consisting of the cross-arranged rods and wires.

Fig. 2
Fig. 2

Schematics of setup for the measurement of microwave refraction.

Fig. 3
Fig. 3

Transmitting power as functions of frequency and angle from the normal measured under (a) (H)0 = 1800 Oe and (b) (H)0 = 2400 Oe for the prism shown in Fig. 1(b).

Fig. 4
Fig. 4

Angular cross sections of the transmitting powers for the prism shown in Fig. 1(b) at (a) 9.44 and 9.50 GHz for (H)0 = 1800 Oe, and at (b) 10.80 and 10.86 GHz for (H)0 = 2400 Oe.

Fig. 5
Fig. 5

Transmitting powers as functions of frequency and angle from the normal measured under (a) (H)0 = 2800 Oe and (b) (H)0 = 3400 Oe respectively for the prism shown in Fig. 1(d).

Fig. 6
Fig. 6

Angular cross sections of the transmitting powers for the prism shown in Fig. 1(d) at (a) 9.14 GHz for (H)0 = 2800 Oe and (b) 10.82 GHz for (H)0 = 3400 Oe respectively.

Fig. 7
Fig. 7

Calculated dispersive permeability for YIG rod under (H)0 = 2000 Oe.

Fig. 8
Fig. 8

Distributions of magnetic energy density of (a) the sole wire at 10.08 GHz, (b) the parallel-arranged MM at 10.08 GHz and (c) the cross-arranged MM at 10.08 GHz.

Fig. 9
Fig. 9

Retrieved effective permeability, permittivity and index. (a), (b) and (c) refer to the parallel-arranged rod/wire, while (d), (e) and (f) refer to the cross-arranged one.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

μ lin ( ω ) = 1 F ω mp 2 ω 2 ω mp 2 i Γ ( ω ) ω ,

Metrics