Abstract

This paper presents a high-sensitivity, all-silica, all-fiber Fabry-Perot strain-sensor. The proposed sensor provides a long active length, arbitrary length of Fabry-Perot cavity, and low intrinsic temperature sensitivity. The sensor was micro-machined from purposely-developed sensor-forming fiber that is etched and directly spliced to the lead-in fiber. This manufacturing process has good potential for cost-effective, high-volume production. Its measurement range of over 3000 µε, and strain-resolution better than 1 µε were demonstrated by the application of a commercial, multimode fiber-based signal processor.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. J. Rao, “Recent progress in fiber-optic extrinsic Fabry–Perot interferometric sensors,” Opt. Fiber Technol. 12(3), 227–237 (2006).
    [CrossRef]
  2. É. Pinet, “Fabry–Perot fiber-optics sensors for physical parameters measurements in challenging conditions,” J. Sensors 2009, Article ID 720980, 9 pages, (2009).
    [CrossRef]
  3. J. Sirkis, T. A. Berkoff, R. T. Jones, H. Singh, A. D. Kersey, E. J. Friebele, and M. A. Putnam, “In-line fiber etalon (ILFE) fiber-optic strain sensors,” J. Lightwave Technol. 13(7), 1256–1263 (1995).
    [CrossRef]
  4. E. Cibula and D. Donlagic, “In-line short cavity Fabry–Perot strain sensor for quasi distributed measurement utilizing standard OTDR,” Opt. Express 15(14), 8719–8730 (2007).
    [CrossRef] [PubMed]
  5. T. Wei, Y. K. Han, H. L. Tsai, and H. Xiao, “Miniaturized fiber inline Fabry–Perot interferometer fabricated with a femtosecond laser,” Opt. Lett. 33(6), 536–538 (2008).
    [CrossRef] [PubMed]
  6. Z. L. Ran, Y. J. Rao, H. Y. Deng, and X. Liao, “Miniature in-line photonic crystal fiber etalon fabricated by 157 nm laser micromachining,” Opt. Lett. 32(21), 3071–3073 (2007).
    [CrossRef] [PubMed]
  7. Y. J. Rao, M. Deng, D. W. Duan, X. C. Yang, T. Zhu, and G. H. Cheng, “Micro Fabry–Perot interferometers in silica fibers machined by femtosecond laser,” Opt. Express 15(21), 14123–14128 (2007).
    [CrossRef] [PubMed]
  8. K. A. Murphy, M. F. Gunther, A. M. Vengsarkar, and R. O. Claus, “Quadrature phase-shifted, extrinsic Fabry-Perot optical fiber sensors,” Opt. Lett. 16(4), 273–275 (1991).
    [CrossRef] [PubMed]
  9. T. A. Tran, W. V. Miller, K. A. Murphy, A. M. Vengsarkar, and R. O. Claus, “Stabilized Extrinsic Fiber-Optic Fizeau Sensor for Surface Acoustic Wave Detection,” J. Lightwave Technol. 10(10), 1499–1506 (1992).
    [CrossRef]
  10. J. A. Etches and G. F. Fernando, “Evaluation of embedded optical fiber sensors in composites: EFPI sensor fabrication and quasi-static evaluation,” Polym. Composite. 30(9), 1265–1274 (2009).
    [CrossRef]
  11. J. Zhang, G. D. Peng, L. Yuan, and W. Sun, “Composite-cavity-based Fabry–Perot interferometric strain sensors,” Opt. Lett. 32(13), 1833–1835 (2007).
    [CrossRef] [PubMed]
  12. Y. Zhang, Y. Li, T. Wei, X. Lan, Y. Huang, G. Chen, and H. Xiao, “Fringe visibility enhanced extrinsic Fabry–Perot interferometer using a graded index fiber collimator,” IEEE Photon. J. 2(3), 469–481 (2010).
    [CrossRef]
  13. A. Sakamoto and J. Nishii, “Fiber Fabry–Perot interferometer with precision glass-ceramic jacketing,” IEEE Photon. Technol. Lett. 17(7), 1462–1464 (2005).
    [CrossRef]
  14. Q. Shi, F. Y. Lv, Z. Wang, L. Jin, J. J. Hu, Z. Liu, G. Kai, and X. Dong, “Environmentally stable Fabry–Perot-type strain sensor based on hollow-core photonic bandgap fiber,” IEEE Photon. Technol. Lett. 20(4), 237–239 (2008).
    [CrossRef]
  15. Y. J. Rao, T. Zhu, X. C. Yang, and D. W. Duan, “In-line fiber-optic etalon formed by hollow-core photonic crystal fiber,” Opt. Lett. 32(18), 2662–2664 (2007).
    [CrossRef] [PubMed]
  16. Y. Gong, Y. J. Rao, Y. Guo, Z. L. Ran, and Y. Wu, “Temperature-insensitive micro Fabry–Perot strain sensor fabricated by chemically etching Er-doped fiber,” IEEE Photon. Technol. Lett. 21(22), 1725–1727 (2009).
    [CrossRef]
  17. T. Zhao, Y. Gong, Y. Rao, Y. Wu, Z. Ran, and H. Wu, “Fiber-optic Fabry–Perot strain sensor based on graded-index multimode fiber,” Chin. Opt. Lett. 9(5), 050602–050605 (2011).
    [CrossRef]
  18. C. Belleville and G. Duplain, “White-light interferometric multimode fiber-optic strain sensor,” Opt. Lett. 18(1), 78–80 (1993).
    [CrossRef] [PubMed]
  19. Y. Jiang, “Fourier-transform phase comparator for the measurement of extrinsic Fabry–Perot interferometric sensors,” Microw. Opt. Technol. Lett. 50(10), 2621–2625 (2008).
    [CrossRef]
  20. Y. L. Lo, J. S. Sirkis, and C. C. Chang, “Passive signal processing of in-line fiber etalon sensors for high strain-rate loading,” J. Lightwave Technol. 15(8), 1578–1586 (1997).
    [CrossRef]
  21. A. J. Willshire, P. Niewczas, and J. R. McDonald, “An arrayed waveguide grating based multiplexer and interrogator for Fabry–Perot sensors,” IEEE Sens. J. 5(5), 964–969 (2005).
    [CrossRef]
  22. B. Yu, A. B. Wang, and G. R. Pickrell, “Analysis of fiber Fabry–Perot interferometric sensors using low-coherence light sources,” J. Lightwave Technol. 24(4), 1758–1767 (2006).
    [CrossRef]
  23. M. Schmidt, B. Werther, N. Fuerstenau, M. Matthias, and T. Melz, “Fiber-optic extrinsic Fabry–Perot interferometer strain sensor with <50 pm displacement resolution using three-wavelength digital phase demodulation,” Opt. Express 8(8), 475–480 (2001).
    [CrossRef] [PubMed]
  24. F. B. Shen and A. B. Wang, “Frequency-estimation-based signal-processing algorithm for white-light optical fiber Fabry–Perot interferometers,” Appl. Opt. 44(25), 5206–5214 (2005).
    [CrossRef] [PubMed]
  25. www.fiso.com
  26. Y. Z. Zhu and A. B. Wang, “Miniature fiber-optic pressure sensor,” IEEE Photon. Technol. Lett. 17(2), 447–449 (2005).
    [CrossRef]
  27. E. Cibula, S. Pevec, B. Lenardic, E. Pinet, and D. Donlagic, “Miniature all-glass robust pressure sensor,” Opt. Express 17(7), 5098–5106 (2009).
    [CrossRef] [PubMed]
  28. S. Pevec, E. Cibula, B. Lenardic, and D. Donlagic, “Micromachining of optical fibers using selective etching based on phosphorus pentoxide doping,” IEEE Photon. J. 3(4), 627–632 (2011).
    [CrossRef]
  29. J. Kochan, T. Wintgens, R. Hochstrat, and T. Melin, “Impact of wetting agents on the filtration performance of polymeric ultrafiltration membranes,” Desalination 241(1-3), 34–42 (2009).
    [CrossRef]

2011

S. Pevec, E. Cibula, B. Lenardic, and D. Donlagic, “Micromachining of optical fibers using selective etching based on phosphorus pentoxide doping,” IEEE Photon. J. 3(4), 627–632 (2011).
[CrossRef]

T. Zhao, Y. Gong, Y. Rao, Y. Wu, Z. Ran, and H. Wu, “Fiber-optic Fabry–Perot strain sensor based on graded-index multimode fiber,” Chin. Opt. Lett. 9(5), 050602–050605 (2011).
[CrossRef]

2010

Y. Zhang, Y. Li, T. Wei, X. Lan, Y. Huang, G. Chen, and H. Xiao, “Fringe visibility enhanced extrinsic Fabry–Perot interferometer using a graded index fiber collimator,” IEEE Photon. J. 2(3), 469–481 (2010).
[CrossRef]

2009

Y. Gong, Y. J. Rao, Y. Guo, Z. L. Ran, and Y. Wu, “Temperature-insensitive micro Fabry–Perot strain sensor fabricated by chemically etching Er-doped fiber,” IEEE Photon. Technol. Lett. 21(22), 1725–1727 (2009).
[CrossRef]

É. Pinet, “Fabry–Perot fiber-optics sensors for physical parameters measurements in challenging conditions,” J. Sensors 2009, Article ID 720980, 9 pages, (2009).
[CrossRef]

J. A. Etches and G. F. Fernando, “Evaluation of embedded optical fiber sensors in composites: EFPI sensor fabrication and quasi-static evaluation,” Polym. Composite. 30(9), 1265–1274 (2009).
[CrossRef]

J. Kochan, T. Wintgens, R. Hochstrat, and T. Melin, “Impact of wetting agents on the filtration performance of polymeric ultrafiltration membranes,” Desalination 241(1-3), 34–42 (2009).
[CrossRef]

E. Cibula, S. Pevec, B. Lenardic, E. Pinet, and D. Donlagic, “Miniature all-glass robust pressure sensor,” Opt. Express 17(7), 5098–5106 (2009).
[CrossRef] [PubMed]

2008

T. Wei, Y. K. Han, H. L. Tsai, and H. Xiao, “Miniaturized fiber inline Fabry–Perot interferometer fabricated with a femtosecond laser,” Opt. Lett. 33(6), 536–538 (2008).
[CrossRef] [PubMed]

Q. Shi, F. Y. Lv, Z. Wang, L. Jin, J. J. Hu, Z. Liu, G. Kai, and X. Dong, “Environmentally stable Fabry–Perot-type strain sensor based on hollow-core photonic bandgap fiber,” IEEE Photon. Technol. Lett. 20(4), 237–239 (2008).
[CrossRef]

Y. Jiang, “Fourier-transform phase comparator for the measurement of extrinsic Fabry–Perot interferometric sensors,” Microw. Opt. Technol. Lett. 50(10), 2621–2625 (2008).
[CrossRef]

2007

2006

B. Yu, A. B. Wang, and G. R. Pickrell, “Analysis of fiber Fabry–Perot interferometric sensors using low-coherence light sources,” J. Lightwave Technol. 24(4), 1758–1767 (2006).
[CrossRef]

Y. J. Rao, “Recent progress in fiber-optic extrinsic Fabry–Perot interferometric sensors,” Opt. Fiber Technol. 12(3), 227–237 (2006).
[CrossRef]

2005

A. Sakamoto and J. Nishii, “Fiber Fabry–Perot interferometer with precision glass-ceramic jacketing,” IEEE Photon. Technol. Lett. 17(7), 1462–1464 (2005).
[CrossRef]

F. B. Shen and A. B. Wang, “Frequency-estimation-based signal-processing algorithm for white-light optical fiber Fabry–Perot interferometers,” Appl. Opt. 44(25), 5206–5214 (2005).
[CrossRef] [PubMed]

A. J. Willshire, P. Niewczas, and J. R. McDonald, “An arrayed waveguide grating based multiplexer and interrogator for Fabry–Perot sensors,” IEEE Sens. J. 5(5), 964–969 (2005).
[CrossRef]

Y. Z. Zhu and A. B. Wang, “Miniature fiber-optic pressure sensor,” IEEE Photon. Technol. Lett. 17(2), 447–449 (2005).
[CrossRef]

2001

1997

Y. L. Lo, J. S. Sirkis, and C. C. Chang, “Passive signal processing of in-line fiber etalon sensors for high strain-rate loading,” J. Lightwave Technol. 15(8), 1578–1586 (1997).
[CrossRef]

1995

J. Sirkis, T. A. Berkoff, R. T. Jones, H. Singh, A. D. Kersey, E. J. Friebele, and M. A. Putnam, “In-line fiber etalon (ILFE) fiber-optic strain sensors,” J. Lightwave Technol. 13(7), 1256–1263 (1995).
[CrossRef]

1993

1992

T. A. Tran, W. V. Miller, K. A. Murphy, A. M. Vengsarkar, and R. O. Claus, “Stabilized Extrinsic Fiber-Optic Fizeau Sensor for Surface Acoustic Wave Detection,” J. Lightwave Technol. 10(10), 1499–1506 (1992).
[CrossRef]

1991

Belleville, C.

Berkoff, T. A.

J. Sirkis, T. A. Berkoff, R. T. Jones, H. Singh, A. D. Kersey, E. J. Friebele, and M. A. Putnam, “In-line fiber etalon (ILFE) fiber-optic strain sensors,” J. Lightwave Technol. 13(7), 1256–1263 (1995).
[CrossRef]

Chang, C. C.

Y. L. Lo, J. S. Sirkis, and C. C. Chang, “Passive signal processing of in-line fiber etalon sensors for high strain-rate loading,” J. Lightwave Technol. 15(8), 1578–1586 (1997).
[CrossRef]

Chen, G.

Y. Zhang, Y. Li, T. Wei, X. Lan, Y. Huang, G. Chen, and H. Xiao, “Fringe visibility enhanced extrinsic Fabry–Perot interferometer using a graded index fiber collimator,” IEEE Photon. J. 2(3), 469–481 (2010).
[CrossRef]

Cheng, G. H.

Cibula, E.

Claus, R. O.

T. A. Tran, W. V. Miller, K. A. Murphy, A. M. Vengsarkar, and R. O. Claus, “Stabilized Extrinsic Fiber-Optic Fizeau Sensor for Surface Acoustic Wave Detection,” J. Lightwave Technol. 10(10), 1499–1506 (1992).
[CrossRef]

K. A. Murphy, M. F. Gunther, A. M. Vengsarkar, and R. O. Claus, “Quadrature phase-shifted, extrinsic Fabry-Perot optical fiber sensors,” Opt. Lett. 16(4), 273–275 (1991).
[CrossRef] [PubMed]

Deng, H. Y.

Deng, M.

Dong, X.

Q. Shi, F. Y. Lv, Z. Wang, L. Jin, J. J. Hu, Z. Liu, G. Kai, and X. Dong, “Environmentally stable Fabry–Perot-type strain sensor based on hollow-core photonic bandgap fiber,” IEEE Photon. Technol. Lett. 20(4), 237–239 (2008).
[CrossRef]

Donlagic, D.

Duan, D. W.

Duplain, G.

Etches, J. A.

J. A. Etches and G. F. Fernando, “Evaluation of embedded optical fiber sensors in composites: EFPI sensor fabrication and quasi-static evaluation,” Polym. Composite. 30(9), 1265–1274 (2009).
[CrossRef]

Fernando, G. F.

J. A. Etches and G. F. Fernando, “Evaluation of embedded optical fiber sensors in composites: EFPI sensor fabrication and quasi-static evaluation,” Polym. Composite. 30(9), 1265–1274 (2009).
[CrossRef]

Friebele, E. J.

J. Sirkis, T. A. Berkoff, R. T. Jones, H. Singh, A. D. Kersey, E. J. Friebele, and M. A. Putnam, “In-line fiber etalon (ILFE) fiber-optic strain sensors,” J. Lightwave Technol. 13(7), 1256–1263 (1995).
[CrossRef]

Fuerstenau, N.

Gong, Y.

T. Zhao, Y. Gong, Y. Rao, Y. Wu, Z. Ran, and H. Wu, “Fiber-optic Fabry–Perot strain sensor based on graded-index multimode fiber,” Chin. Opt. Lett. 9(5), 050602–050605 (2011).
[CrossRef]

Y. Gong, Y. J. Rao, Y. Guo, Z. L. Ran, and Y. Wu, “Temperature-insensitive micro Fabry–Perot strain sensor fabricated by chemically etching Er-doped fiber,” IEEE Photon. Technol. Lett. 21(22), 1725–1727 (2009).
[CrossRef]

Gunther, M. F.

Guo, Y.

Y. Gong, Y. J. Rao, Y. Guo, Z. L. Ran, and Y. Wu, “Temperature-insensitive micro Fabry–Perot strain sensor fabricated by chemically etching Er-doped fiber,” IEEE Photon. Technol. Lett. 21(22), 1725–1727 (2009).
[CrossRef]

Han, Y. K.

Hochstrat, R.

J. Kochan, T. Wintgens, R. Hochstrat, and T. Melin, “Impact of wetting agents on the filtration performance of polymeric ultrafiltration membranes,” Desalination 241(1-3), 34–42 (2009).
[CrossRef]

Hu, J. J.

Q. Shi, F. Y. Lv, Z. Wang, L. Jin, J. J. Hu, Z. Liu, G. Kai, and X. Dong, “Environmentally stable Fabry–Perot-type strain sensor based on hollow-core photonic bandgap fiber,” IEEE Photon. Technol. Lett. 20(4), 237–239 (2008).
[CrossRef]

Huang, Y.

Y. Zhang, Y. Li, T. Wei, X. Lan, Y. Huang, G. Chen, and H. Xiao, “Fringe visibility enhanced extrinsic Fabry–Perot interferometer using a graded index fiber collimator,” IEEE Photon. J. 2(3), 469–481 (2010).
[CrossRef]

Jiang, Y.

Y. Jiang, “Fourier-transform phase comparator for the measurement of extrinsic Fabry–Perot interferometric sensors,” Microw. Opt. Technol. Lett. 50(10), 2621–2625 (2008).
[CrossRef]

Jin, L.

Q. Shi, F. Y. Lv, Z. Wang, L. Jin, J. J. Hu, Z. Liu, G. Kai, and X. Dong, “Environmentally stable Fabry–Perot-type strain sensor based on hollow-core photonic bandgap fiber,” IEEE Photon. Technol. Lett. 20(4), 237–239 (2008).
[CrossRef]

Jones, R. T.

J. Sirkis, T. A. Berkoff, R. T. Jones, H. Singh, A. D. Kersey, E. J. Friebele, and M. A. Putnam, “In-line fiber etalon (ILFE) fiber-optic strain sensors,” J. Lightwave Technol. 13(7), 1256–1263 (1995).
[CrossRef]

Kai, G.

Q. Shi, F. Y. Lv, Z. Wang, L. Jin, J. J. Hu, Z. Liu, G. Kai, and X. Dong, “Environmentally stable Fabry–Perot-type strain sensor based on hollow-core photonic bandgap fiber,” IEEE Photon. Technol. Lett. 20(4), 237–239 (2008).
[CrossRef]

Kersey, A. D.

J. Sirkis, T. A. Berkoff, R. T. Jones, H. Singh, A. D. Kersey, E. J. Friebele, and M. A. Putnam, “In-line fiber etalon (ILFE) fiber-optic strain sensors,” J. Lightwave Technol. 13(7), 1256–1263 (1995).
[CrossRef]

Kochan, J.

J. Kochan, T. Wintgens, R. Hochstrat, and T. Melin, “Impact of wetting agents on the filtration performance of polymeric ultrafiltration membranes,” Desalination 241(1-3), 34–42 (2009).
[CrossRef]

Lan, X.

Y. Zhang, Y. Li, T. Wei, X. Lan, Y. Huang, G. Chen, and H. Xiao, “Fringe visibility enhanced extrinsic Fabry–Perot interferometer using a graded index fiber collimator,” IEEE Photon. J. 2(3), 469–481 (2010).
[CrossRef]

Lenardic, B.

S. Pevec, E. Cibula, B. Lenardic, and D. Donlagic, “Micromachining of optical fibers using selective etching based on phosphorus pentoxide doping,” IEEE Photon. J. 3(4), 627–632 (2011).
[CrossRef]

E. Cibula, S. Pevec, B. Lenardic, E. Pinet, and D. Donlagic, “Miniature all-glass robust pressure sensor,” Opt. Express 17(7), 5098–5106 (2009).
[CrossRef] [PubMed]

Li, Y.

Y. Zhang, Y. Li, T. Wei, X. Lan, Y. Huang, G. Chen, and H. Xiao, “Fringe visibility enhanced extrinsic Fabry–Perot interferometer using a graded index fiber collimator,” IEEE Photon. J. 2(3), 469–481 (2010).
[CrossRef]

Liao, X.

Liu, Z.

Q. Shi, F. Y. Lv, Z. Wang, L. Jin, J. J. Hu, Z. Liu, G. Kai, and X. Dong, “Environmentally stable Fabry–Perot-type strain sensor based on hollow-core photonic bandgap fiber,” IEEE Photon. Technol. Lett. 20(4), 237–239 (2008).
[CrossRef]

Lo, Y. L.

Y. L. Lo, J. S. Sirkis, and C. C. Chang, “Passive signal processing of in-line fiber etalon sensors for high strain-rate loading,” J. Lightwave Technol. 15(8), 1578–1586 (1997).
[CrossRef]

Lv, F. Y.

Q. Shi, F. Y. Lv, Z. Wang, L. Jin, J. J. Hu, Z. Liu, G. Kai, and X. Dong, “Environmentally stable Fabry–Perot-type strain sensor based on hollow-core photonic bandgap fiber,” IEEE Photon. Technol. Lett. 20(4), 237–239 (2008).
[CrossRef]

Matthias, M.

McDonald, J. R.

A. J. Willshire, P. Niewczas, and J. R. McDonald, “An arrayed waveguide grating based multiplexer and interrogator for Fabry–Perot sensors,” IEEE Sens. J. 5(5), 964–969 (2005).
[CrossRef]

Melin, T.

J. Kochan, T. Wintgens, R. Hochstrat, and T. Melin, “Impact of wetting agents on the filtration performance of polymeric ultrafiltration membranes,” Desalination 241(1-3), 34–42 (2009).
[CrossRef]

Melz, T.

Miller, W. V.

T. A. Tran, W. V. Miller, K. A. Murphy, A. M. Vengsarkar, and R. O. Claus, “Stabilized Extrinsic Fiber-Optic Fizeau Sensor for Surface Acoustic Wave Detection,” J. Lightwave Technol. 10(10), 1499–1506 (1992).
[CrossRef]

Murphy, K. A.

T. A. Tran, W. V. Miller, K. A. Murphy, A. M. Vengsarkar, and R. O. Claus, “Stabilized Extrinsic Fiber-Optic Fizeau Sensor for Surface Acoustic Wave Detection,” J. Lightwave Technol. 10(10), 1499–1506 (1992).
[CrossRef]

K. A. Murphy, M. F. Gunther, A. M. Vengsarkar, and R. O. Claus, “Quadrature phase-shifted, extrinsic Fabry-Perot optical fiber sensors,” Opt. Lett. 16(4), 273–275 (1991).
[CrossRef] [PubMed]

Niewczas, P.

A. J. Willshire, P. Niewczas, and J. R. McDonald, “An arrayed waveguide grating based multiplexer and interrogator for Fabry–Perot sensors,” IEEE Sens. J. 5(5), 964–969 (2005).
[CrossRef]

Nishii, J.

A. Sakamoto and J. Nishii, “Fiber Fabry–Perot interferometer with precision glass-ceramic jacketing,” IEEE Photon. Technol. Lett. 17(7), 1462–1464 (2005).
[CrossRef]

Peng, G. D.

Pevec, S.

S. Pevec, E. Cibula, B. Lenardic, and D. Donlagic, “Micromachining of optical fibers using selective etching based on phosphorus pentoxide doping,” IEEE Photon. J. 3(4), 627–632 (2011).
[CrossRef]

E. Cibula, S. Pevec, B. Lenardic, E. Pinet, and D. Donlagic, “Miniature all-glass robust pressure sensor,” Opt. Express 17(7), 5098–5106 (2009).
[CrossRef] [PubMed]

Pickrell, G. R.

Pinet, E.

Pinet, É.

É. Pinet, “Fabry–Perot fiber-optics sensors for physical parameters measurements in challenging conditions,” J. Sensors 2009, Article ID 720980, 9 pages, (2009).
[CrossRef]

Putnam, M. A.

J. Sirkis, T. A. Berkoff, R. T. Jones, H. Singh, A. D. Kersey, E. J. Friebele, and M. A. Putnam, “In-line fiber etalon (ILFE) fiber-optic strain sensors,” J. Lightwave Technol. 13(7), 1256–1263 (1995).
[CrossRef]

Ran, Z.

Ran, Z. L.

Y. Gong, Y. J. Rao, Y. Guo, Z. L. Ran, and Y. Wu, “Temperature-insensitive micro Fabry–Perot strain sensor fabricated by chemically etching Er-doped fiber,” IEEE Photon. Technol. Lett. 21(22), 1725–1727 (2009).
[CrossRef]

Z. L. Ran, Y. J. Rao, H. Y. Deng, and X. Liao, “Miniature in-line photonic crystal fiber etalon fabricated by 157 nm laser micromachining,” Opt. Lett. 32(21), 3071–3073 (2007).
[CrossRef] [PubMed]

Rao, Y.

Rao, Y. J.

Sakamoto, A.

A. Sakamoto and J. Nishii, “Fiber Fabry–Perot interferometer with precision glass-ceramic jacketing,” IEEE Photon. Technol. Lett. 17(7), 1462–1464 (2005).
[CrossRef]

Schmidt, M.

Shen, F. B.

Shi, Q.

Q. Shi, F. Y. Lv, Z. Wang, L. Jin, J. J. Hu, Z. Liu, G. Kai, and X. Dong, “Environmentally stable Fabry–Perot-type strain sensor based on hollow-core photonic bandgap fiber,” IEEE Photon. Technol. Lett. 20(4), 237–239 (2008).
[CrossRef]

Singh, H.

J. Sirkis, T. A. Berkoff, R. T. Jones, H. Singh, A. D. Kersey, E. J. Friebele, and M. A. Putnam, “In-line fiber etalon (ILFE) fiber-optic strain sensors,” J. Lightwave Technol. 13(7), 1256–1263 (1995).
[CrossRef]

Sirkis, J.

J. Sirkis, T. A. Berkoff, R. T. Jones, H. Singh, A. D. Kersey, E. J. Friebele, and M. A. Putnam, “In-line fiber etalon (ILFE) fiber-optic strain sensors,” J. Lightwave Technol. 13(7), 1256–1263 (1995).
[CrossRef]

Sirkis, J. S.

Y. L. Lo, J. S. Sirkis, and C. C. Chang, “Passive signal processing of in-line fiber etalon sensors for high strain-rate loading,” J. Lightwave Technol. 15(8), 1578–1586 (1997).
[CrossRef]

Sun, W.

Tran, T. A.

T. A. Tran, W. V. Miller, K. A. Murphy, A. M. Vengsarkar, and R. O. Claus, “Stabilized Extrinsic Fiber-Optic Fizeau Sensor for Surface Acoustic Wave Detection,” J. Lightwave Technol. 10(10), 1499–1506 (1992).
[CrossRef]

Tsai, H. L.

Vengsarkar, A. M.

T. A. Tran, W. V. Miller, K. A. Murphy, A. M. Vengsarkar, and R. O. Claus, “Stabilized Extrinsic Fiber-Optic Fizeau Sensor for Surface Acoustic Wave Detection,” J. Lightwave Technol. 10(10), 1499–1506 (1992).
[CrossRef]

K. A. Murphy, M. F. Gunther, A. M. Vengsarkar, and R. O. Claus, “Quadrature phase-shifted, extrinsic Fabry-Perot optical fiber sensors,” Opt. Lett. 16(4), 273–275 (1991).
[CrossRef] [PubMed]

Wang, A. B.

Wang, Z.

Q. Shi, F. Y. Lv, Z. Wang, L. Jin, J. J. Hu, Z. Liu, G. Kai, and X. Dong, “Environmentally stable Fabry–Perot-type strain sensor based on hollow-core photonic bandgap fiber,” IEEE Photon. Technol. Lett. 20(4), 237–239 (2008).
[CrossRef]

Wei, T.

Y. Zhang, Y. Li, T. Wei, X. Lan, Y. Huang, G. Chen, and H. Xiao, “Fringe visibility enhanced extrinsic Fabry–Perot interferometer using a graded index fiber collimator,” IEEE Photon. J. 2(3), 469–481 (2010).
[CrossRef]

T. Wei, Y. K. Han, H. L. Tsai, and H. Xiao, “Miniaturized fiber inline Fabry–Perot interferometer fabricated with a femtosecond laser,” Opt. Lett. 33(6), 536–538 (2008).
[CrossRef] [PubMed]

Werther, B.

Willshire, A. J.

A. J. Willshire, P. Niewczas, and J. R. McDonald, “An arrayed waveguide grating based multiplexer and interrogator for Fabry–Perot sensors,” IEEE Sens. J. 5(5), 964–969 (2005).
[CrossRef]

Wintgens, T.

J. Kochan, T. Wintgens, R. Hochstrat, and T. Melin, “Impact of wetting agents on the filtration performance of polymeric ultrafiltration membranes,” Desalination 241(1-3), 34–42 (2009).
[CrossRef]

Wu, H.

Wu, Y.

T. Zhao, Y. Gong, Y. Rao, Y. Wu, Z. Ran, and H. Wu, “Fiber-optic Fabry–Perot strain sensor based on graded-index multimode fiber,” Chin. Opt. Lett. 9(5), 050602–050605 (2011).
[CrossRef]

Y. Gong, Y. J. Rao, Y. Guo, Z. L. Ran, and Y. Wu, “Temperature-insensitive micro Fabry–Perot strain sensor fabricated by chemically etching Er-doped fiber,” IEEE Photon. Technol. Lett. 21(22), 1725–1727 (2009).
[CrossRef]

Xiao, H.

Y. Zhang, Y. Li, T. Wei, X. Lan, Y. Huang, G. Chen, and H. Xiao, “Fringe visibility enhanced extrinsic Fabry–Perot interferometer using a graded index fiber collimator,” IEEE Photon. J. 2(3), 469–481 (2010).
[CrossRef]

T. Wei, Y. K. Han, H. L. Tsai, and H. Xiao, “Miniaturized fiber inline Fabry–Perot interferometer fabricated with a femtosecond laser,” Opt. Lett. 33(6), 536–538 (2008).
[CrossRef] [PubMed]

Yang, X. C.

Yu, B.

Yuan, L.

Zhang, J.

Zhang, Y.

Y. Zhang, Y. Li, T. Wei, X. Lan, Y. Huang, G. Chen, and H. Xiao, “Fringe visibility enhanced extrinsic Fabry–Perot interferometer using a graded index fiber collimator,” IEEE Photon. J. 2(3), 469–481 (2010).
[CrossRef]

Zhao, T.

Zhu, T.

Zhu, Y. Z.

Y. Z. Zhu and A. B. Wang, “Miniature fiber-optic pressure sensor,” IEEE Photon. Technol. Lett. 17(2), 447–449 (2005).
[CrossRef]

Appl. Opt.

Chin. Opt. Lett.

Desalination

J. Kochan, T. Wintgens, R. Hochstrat, and T. Melin, “Impact of wetting agents on the filtration performance of polymeric ultrafiltration membranes,” Desalination 241(1-3), 34–42 (2009).
[CrossRef]

IEEE Photon. J.

S. Pevec, E. Cibula, B. Lenardic, and D. Donlagic, “Micromachining of optical fibers using selective etching based on phosphorus pentoxide doping,” IEEE Photon. J. 3(4), 627–632 (2011).
[CrossRef]

Y. Zhang, Y. Li, T. Wei, X. Lan, Y. Huang, G. Chen, and H. Xiao, “Fringe visibility enhanced extrinsic Fabry–Perot interferometer using a graded index fiber collimator,” IEEE Photon. J. 2(3), 469–481 (2010).
[CrossRef]

IEEE Photon. Technol. Lett.

A. Sakamoto and J. Nishii, “Fiber Fabry–Perot interferometer with precision glass-ceramic jacketing,” IEEE Photon. Technol. Lett. 17(7), 1462–1464 (2005).
[CrossRef]

Q. Shi, F. Y. Lv, Z. Wang, L. Jin, J. J. Hu, Z. Liu, G. Kai, and X. Dong, “Environmentally stable Fabry–Perot-type strain sensor based on hollow-core photonic bandgap fiber,” IEEE Photon. Technol. Lett. 20(4), 237–239 (2008).
[CrossRef]

Y. Gong, Y. J. Rao, Y. Guo, Z. L. Ran, and Y. Wu, “Temperature-insensitive micro Fabry–Perot strain sensor fabricated by chemically etching Er-doped fiber,” IEEE Photon. Technol. Lett. 21(22), 1725–1727 (2009).
[CrossRef]

Y. Z. Zhu and A. B. Wang, “Miniature fiber-optic pressure sensor,” IEEE Photon. Technol. Lett. 17(2), 447–449 (2005).
[CrossRef]

IEEE Sens. J.

A. J. Willshire, P. Niewczas, and J. R. McDonald, “An arrayed waveguide grating based multiplexer and interrogator for Fabry–Perot sensors,” IEEE Sens. J. 5(5), 964–969 (2005).
[CrossRef]

J. Lightwave Technol.

Y. L. Lo, J. S. Sirkis, and C. C. Chang, “Passive signal processing of in-line fiber etalon sensors for high strain-rate loading,” J. Lightwave Technol. 15(8), 1578–1586 (1997).
[CrossRef]

J. Sirkis, T. A. Berkoff, R. T. Jones, H. Singh, A. D. Kersey, E. J. Friebele, and M. A. Putnam, “In-line fiber etalon (ILFE) fiber-optic strain sensors,” J. Lightwave Technol. 13(7), 1256–1263 (1995).
[CrossRef]

T. A. Tran, W. V. Miller, K. A. Murphy, A. M. Vengsarkar, and R. O. Claus, “Stabilized Extrinsic Fiber-Optic Fizeau Sensor for Surface Acoustic Wave Detection,” J. Lightwave Technol. 10(10), 1499–1506 (1992).
[CrossRef]

B. Yu, A. B. Wang, and G. R. Pickrell, “Analysis of fiber Fabry–Perot interferometric sensors using low-coherence light sources,” J. Lightwave Technol. 24(4), 1758–1767 (2006).
[CrossRef]

J. Sensors

É. Pinet, “Fabry–Perot fiber-optics sensors for physical parameters measurements in challenging conditions,” J. Sensors 2009, Article ID 720980, 9 pages, (2009).
[CrossRef]

Microw. Opt. Technol. Lett.

Y. Jiang, “Fourier-transform phase comparator for the measurement of extrinsic Fabry–Perot interferometric sensors,” Microw. Opt. Technol. Lett. 50(10), 2621–2625 (2008).
[CrossRef]

Opt. Express

Opt. Fiber Technol.

Y. J. Rao, “Recent progress in fiber-optic extrinsic Fabry–Perot interferometric sensors,” Opt. Fiber Technol. 12(3), 227–237 (2006).
[CrossRef]

Opt. Lett.

Polym. Composite.

J. A. Etches and G. F. Fernando, “Evaluation of embedded optical fiber sensors in composites: EFPI sensor fabrication and quasi-static evaluation,” Polym. Composite. 30(9), 1265–1274 (2009).
[CrossRef]

Other

www.fiso.com

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

All fiber long active length strain-sensor.

Fig. 2
Fig. 2

(a) Optical microscopic image of the strain-sensor forming fiber cross-section; (b) the strain-sensor forming fiber after etching - frontal view (scanning electron microscopic image); (c) the strain-sensor forming fiber after etching - side view under an optical microscope.

Fig. 3
Fig. 3

Micromachining of proposed strain-sensor: (a) cleaving of sensor-forming fiber; (b) etching of the strain-sensor forming fiber; (c) fusion splicing of lead-in and strain-sensor forming fiber.

Fig. 4
Fig. 4

Optical microscope image of produced strain-sensor (360 µm long active length, FP cavity length 5.1 µm).

Fig. 5
Fig. 5

Sensors’s spectral characteristics within 800 and 1600 nm band.

Fig. 6
Fig. 6

Typically experimentally measured sensor’s cavity length elongation as a function of strain applied to: (a) steel bar; (b) PMMA bar.

Fig. 7
Fig. 7

Demonstration of strain-resolution: values in the circles indicate strain applied to the steel bar with test-sensor; graphs show measured strain versus time as measured by Fiso Technology’s FP signal processor: (a) in the case of 10 Hz sampling rate (b) in the case of 1 Hz sampling rate.

Fig. 8
Fig. 8

Sensors’s cavity length change due to the temperature change.

Tables (1)

Tables Icon

Table 1 FSS-2000 Splicing Sequence/Process (this Sequence is Automatically Executed by Splicer)

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ L c = l 0 ε ,
ε = 1 k Δ L c l 0 ,

Metrics