Abstract

High-repetition-rate, single-laser-shot measurements are important for the investigation of unsteady flows where temperature and species concentrations can vary significantly. Here, we demonstrate single-shot, pure-rotational, hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering (fs/ps RCARS) thermometry based on a kHz-rate fs laser source. Interferences that can affect nanosecond (ns) and ps CARS, such as nonresonant background and collisional dephasing, are eliminated by selecting an appropriate time delay between the 100-fs pump/Stokes pulses and the pulse-shaped 8.4-ps probe. A time- and frequency-domain theoretical model is introduced to account for rotational-level dependent collisional dephasing and indicates that the optimal probe-pulse time delay is 13.5 ps to 30 ps. This time delay allows for uncorrected best-fit N2-RCARS temperature measurements with ~1% accuracy. Hence, the hybrid fs/ps RCARS approach can be performed with kHz-rate laser sources while avoiding corrections that can be difficult to predict in unsteady flows.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Roy, J. R. Gord, and A. K. Patnaik, “Recent advances in coherent anti-Stokes Raman scattering spectroscopy: Fundamental developments and applications in reacting flows,” Prog. Energ. Combust. 36(2), 280–306 (2010).
    [CrossRef]
  2. A. C. Eckbreth, Laser diagnostics for combustion temperature and species (Gordon and Breach Publishers, 1996).
  3. J. Kiefer and P. Ewart, “Laser diagnostics and minor species detection in combustion using resonant four-wave mixing,” Prog. Energ. Combust. 37(5), 525–564 (2011).
    [CrossRef]
  4. S. A. Tedder, J. L. Wheeler, A. D. Cutler, and P. M. Danehy, “Width-increased dual-pump enhanced coherent anti-Stokes Raman spectroscopy,” Appl. Opt. 49(8), 1305–1313 (2010).
    [CrossRef] [PubMed]
  5. S. P. Kearney, R. P. Lucht, and A. M. Jacobi, “Temperature measurements in convective heat transfer flows using dual-broadband, pure-rotational coherent anti-Stokes Raman spectroscopy (CARS),” Exp. Therm. Fluid Sci. 19(1), 13–26 (1999).
    [CrossRef]
  6. P. E. Bengtsson, L. Martinsson, M. Aldén, B. Johansson, B. Lassesson, K. Marforio, and G. Lundholm, “Dual-broadband rotational CARS measurements in an IC engine,” Proc. Combust. Inst. 25, 1735–1742 (1994).
  7. R. J. M. Westerhof, D. W. F. Brilman, W. P. M. van Swaaij, and S. R. A. Kersten, “Effect of temperature in fluidized bed fast pyrolysis of biomass: oil quality assessment in test units,” Ind. Eng. Chem. Res. 49(3), 1160–1168 (2010).
    [CrossRef]
  8. W. Chaiwat, I. Hasegawa, and K. Mae, “Examination of the low-temperature region in a downdraft gasifier for the pyrolysis product analysis of biomass air gasification,” Ind. Eng. Chem. Res. 48(19), 8934–8943 (2009).
    [CrossRef]
  9. J. A. Hoolroyd, “Low temperature oxidation catalyst development and applications,” American Filtration and Separation Society Annual Conference, Valley Forge, PA, 19–22 May 2008.
  10. S. Roy, T. R. Meyer, R. P. Lucht, M. Afzelius, P. E. Bengtsson, and J. R. Gord, “Dual-pump dual-broadband coherent anti-Stokes Raman scattering in reacting flows,” Opt. Lett. 29(16), 1843–1845 (2004).
    [CrossRef] [PubMed]
  11. A. C. Eckbreth and R. J. Hall, “Cars concentration sensitivity with and without non-resonant background suppression,” Combust. Sci. Technol. 25(5), 175–192 (1981).
    [CrossRef]
  12. M. Afzelius, P.-E. Bengtsson, J. Bood, J. Bonamy, F. Chaussard, H. Berger, and T. Dreier, “Dual-broadband rotational CARS modeling of nitrogen at pressures up to 9 MPa. II. Rotational Raman line widths,” Appl. Phys. B 75(6-7), 771–778 (2002).
    [CrossRef]
  13. S. Roy, T. R. Meyer, and J. R. Gord, “Broadband coherent anti-Stokes Raman scattering spectroscopy of nitrogen using a picosecond modeless dye laser,” Opt. Lett. 30(23), 3222–3224 (2005).
    [CrossRef] [PubMed]
  14. S. Roy, T. R. Meyer, and J. R. Gord, “Time-resolved dynamics of resonant and nonresonant broadband picosecond coherent anti-Stokes Raman scattering signals,” Appl. Phys. Lett. 87(26), 264103 (2005).
    [CrossRef]
  15. T. R. Meyer, S. Roy, and J. R. Gord, “Improving signal-to-interference ratio in rich hydrocarbon-air flames using picosecond coherent anti-Stokes Raman scattering,” Appl. Spectrosc. 61(11), 1135–1140 (2007).
    [CrossRef] [PubMed]
  16. W. D. Kulatilaka, P. S. Hsu, H. U. Stauffer, J. R. Gord, and S. Roy, “Direct measurement of rotationally resolved H2 Q-branch Raman coherence lifetimes using time-resolved picosecond coherent anti-Stokes Raman scattering,” Appl. Phys. Lett. 97(8), 081112 (2010).
    [CrossRef]
  17. T. Seeger, J. Kiefer, Y. Gao, B. D. Patterson, C. J. Kliewer, and T. B. Settersten, “Suppression of Raman-resonant interferences in rotational coherent anti-Stokes Raman spectroscopy using time-delayed picosecond probe pulses,” Opt. Lett. 35(12), 2040–2042 (2010).
    [CrossRef] [PubMed]
  18. T. Seeger, J. Kiefer, A. Leipertz, B. D. Patterson, C. J. Kliewer, and T. B. Settersten, “Picosecond time-resolved pure-rotational coherent anti-Stokes Raman spectroscopy for N(2) thermometry,” Opt. Lett. 34(23), 3755–3757 (2009).
    [CrossRef] [PubMed]
  19. C. J. Kliewer, Y. Gao, T. Seeger, J. Kiefer, B. D. Patterson, and T. B. Settersten, “Picosecond time-resolved pure-rotational coherent anti-Stokes Raman spectroscopy in sooting flames,” Proc. Combust. Inst. 33(1), 831–838 (2011).
    [CrossRef]
  20. P. Beaud, H. M. Frey, T. Lang, and M. Motzkus, “Flame thermometry by femtosecond CARS,” Chem. Phys. Lett. 344(3-4), 407–412 (2001).
    [CrossRef]
  21. H. Frey, P. Beaud, T. Gerber, B. Mischler, P. Radi, and A. Tzannis, “Femtosecond nonresonant degenerate four-wave mixing at atmospheric pressure and in a free jet,” Appl. Phys. B 68(4), 735–739 (1999).
    [CrossRef]
  22. G. Knopp, P. Beaud, P. Radi, M. Tulej, B. Bougie, D. Cannavo, and T. Gerber, “Pressure-dependent N2 Q-branch fs-CARS measurements,” J. Raman Spectrosc. 33(11-12), 861–865 (2002).
    [CrossRef]
  23. R. P. Lucht, S. Roy, T. R. Meyer, and J. R. Gord, “Femtosecond coherent anti-Stokes Raman scattering measurement of gas temperatures from frequency-spread dephasing of the Raman coherence,” Appl. Phys. Lett. 89(25), 251112 (2006).
    [CrossRef]
  24. J. R. Gord, T. R. Meyer, and S. Roy, “Applications of ultrafast lasers for optical measurements in combusting flows,” Annu Rev Anal Chem (Palo Alto Calif) 1(1), 663–687 (2008).
    [CrossRef] [PubMed]
  25. S. Roy, W. D. Kulatilaka, D. R. Richardson, R. P. Lucht, and J. R. Gord, “Gas-phase single-shot thermometry at 1 kHz using fs-CARS spectroscopy,” Opt. Lett. 34(24), 3857–3859 (2009).
    [CrossRef] [PubMed]
  26. S. Roy, D. Richardson, P. J. Kinnius, R. P. Lucht, and J. R. Gord, “Effects of N2-CO polarization beating on femtosecond coherent anti-Stokes Raman scattering spectroscopy of N2,” Appl. Phys. Lett. 94(14), 144101 (2009).
    [CrossRef]
  27. Y. Coello, V. Lozovoy, T. Gunaratne, B. Xu, I. Borukhovich, C. Tseng, T. Weinacht, and M. Dantus, “Interference without an interferometer: a different approach to measuring, compressing, and shaping ultrashort laser pulses,” J. Opt. Soc. Am. B 25(6), A140–A150 (2008).
    [CrossRef]
  28. J. D. Miller, M. N. Slipchenko, T. R. Meyer, H. U. Stauffer, and J. R. Gord, “Hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering for high-speed gas-phase thermometry,” Opt. Lett. 35(14), 2430–2432 (2010).
    [CrossRef] [PubMed]
  29. J. D. Miller, M. N. Slipchenko, and T. R. Meyer, “Probe-pulse optimization for nonresonant suppression in hybrid fs/ps coherent anti-Stokes Raman scattering at high temperature,” Opt. Express 19(14), 13326–13333 (2011).
    [CrossRef] [PubMed]
  30. S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford University Press, 1995).
  31. B. D. Prince, A. Chakraborty, B. M. Prince, and H. U. Stauffer, “Development of simultaneous frequency- and time-resolved coherent anti-Stokes Raman scattering for ultrafast detection of molecular Raman spectra,” J. Chem. Phys. 125(4), 44502 (2006).
    [CrossRef] [PubMed]
  32. M. N. Slipchenko, B. D. Prince, S. C. Ducatman, and H. U. Stauffer, “Development of a simultaneously frequency- and time-resolved Raman-induced Kerr effect probe,” J. Phys. Chem. A 113(1), 135–140 (2009).
    [CrossRef] [PubMed]
  33. R. E. Palmer, “The CARSFT computer code for calculating coherent anti-Stokes Raman spectra: user and programmer information,” Sandia Rep. SAND–89–8206 (Sandia National Laboratories, Livermore, CA, 1989).
  34. F. Vestin, K. Nilsson, and P. E. Bengtsson, “Validation of a rotational coherent anti-Stokes Raman spectroscopy model for carbon dioxide using high-resolution detection in the temperature range 294-1143 K,” Appl. Opt. 47(11), 1893–1901 (2008).
    [CrossRef] [PubMed]
  35. A. Bohlin, P.-E. Bengtsson, and M. Marrocco, “On the sensitivity of rotational CARS N2 thermometry to the Herman-Wallis factor,” J. Raman Spectrosc. , Available Online Feb. 11, 2011.
    [CrossRef]
  36. K. P. Huber and G. Herzberg, Molecular spectra and molecular structure - IV. Constants of diatomic molecules (Van Nostrand Reinhold, 1979).
  37. L. A. Rahn and R. E. Palmer, “Studies of nitrogen self-broadening at high-temperature with inverse Raman spectroscopy,” J. Opt. Soc. Am. B 3(9), 1164–1169 (1986).
    [CrossRef]
  38. L. Martinsson, P. E. Bengtsson, M. Alden, S. Kroll, and J. Bonamy, “A test of different rotational Raman linewidth models: Accuracy of rotational coherent anti-Stokes-Raman ccattering thermometry in nitrogen from 295 to 1850 K,” J. Chem. Phys. 99(4), 2466–2477 (1993).
    [CrossRef]
  39. R. L. Farrow and L. A. Rahn, “Optical Stark splitting of rotational Raman transitions,” Phys. Rev. Lett. 48(6), 395–398 (1982).
    [CrossRef]
  40. A. C. Eckbreth, “BOXCARS: Crossed-beam phase-matched CARS generation in gases,” Appl. Phys. Lett. 32(7), 421–423 (1978).
    [CrossRef]
  41. G. Knopp, P. Radi, M. Tulej, T. Gerber, and P. Beaud, “Collision induced rotational energy transfer probed by time-resolved coherent anti-Stokes Raman scattering,” J. Chem. Phys. 118(18), 8223–8233 (2003).
    [CrossRef]

2011

J. Kiefer and P. Ewart, “Laser diagnostics and minor species detection in combustion using resonant four-wave mixing,” Prog. Energ. Combust. 37(5), 525–564 (2011).
[CrossRef]

C. J. Kliewer, Y. Gao, T. Seeger, J. Kiefer, B. D. Patterson, and T. B. Settersten, “Picosecond time-resolved pure-rotational coherent anti-Stokes Raman spectroscopy in sooting flames,” Proc. Combust. Inst. 33(1), 831–838 (2011).
[CrossRef]

A. Bohlin, P.-E. Bengtsson, and M. Marrocco, “On the sensitivity of rotational CARS N2 thermometry to the Herman-Wallis factor,” J. Raman Spectrosc. , Available Online Feb. 11, 2011.
[CrossRef]

J. D. Miller, M. N. Slipchenko, and T. R. Meyer, “Probe-pulse optimization for nonresonant suppression in hybrid fs/ps coherent anti-Stokes Raman scattering at high temperature,” Opt. Express 19(14), 13326–13333 (2011).
[CrossRef] [PubMed]

2010

S. A. Tedder, J. L. Wheeler, A. D. Cutler, and P. M. Danehy, “Width-increased dual-pump enhanced coherent anti-Stokes Raman spectroscopy,” Appl. Opt. 49(8), 1305–1313 (2010).
[CrossRef] [PubMed]

T. Seeger, J. Kiefer, Y. Gao, B. D. Patterson, C. J. Kliewer, and T. B. Settersten, “Suppression of Raman-resonant interferences in rotational coherent anti-Stokes Raman spectroscopy using time-delayed picosecond probe pulses,” Opt. Lett. 35(12), 2040–2042 (2010).
[CrossRef] [PubMed]

J. D. Miller, M. N. Slipchenko, T. R. Meyer, H. U. Stauffer, and J. R. Gord, “Hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering for high-speed gas-phase thermometry,” Opt. Lett. 35(14), 2430–2432 (2010).
[CrossRef] [PubMed]

W. D. Kulatilaka, P. S. Hsu, H. U. Stauffer, J. R. Gord, and S. Roy, “Direct measurement of rotationally resolved H2 Q-branch Raman coherence lifetimes using time-resolved picosecond coherent anti-Stokes Raman scattering,” Appl. Phys. Lett. 97(8), 081112 (2010).
[CrossRef]

S. Roy, J. R. Gord, and A. K. Patnaik, “Recent advances in coherent anti-Stokes Raman scattering spectroscopy: Fundamental developments and applications in reacting flows,” Prog. Energ. Combust. 36(2), 280–306 (2010).
[CrossRef]

R. J. M. Westerhof, D. W. F. Brilman, W. P. M. van Swaaij, and S. R. A. Kersten, “Effect of temperature in fluidized bed fast pyrolysis of biomass: oil quality assessment in test units,” Ind. Eng. Chem. Res. 49(3), 1160–1168 (2010).
[CrossRef]

2009

W. Chaiwat, I. Hasegawa, and K. Mae, “Examination of the low-temperature region in a downdraft gasifier for the pyrolysis product analysis of biomass air gasification,” Ind. Eng. Chem. Res. 48(19), 8934–8943 (2009).
[CrossRef]

S. Roy, D. Richardson, P. J. Kinnius, R. P. Lucht, and J. R. Gord, “Effects of N2-CO polarization beating on femtosecond coherent anti-Stokes Raman scattering spectroscopy of N2,” Appl. Phys. Lett. 94(14), 144101 (2009).
[CrossRef]

T. Seeger, J. Kiefer, A. Leipertz, B. D. Patterson, C. J. Kliewer, and T. B. Settersten, “Picosecond time-resolved pure-rotational coherent anti-Stokes Raman spectroscopy for N(2) thermometry,” Opt. Lett. 34(23), 3755–3757 (2009).
[CrossRef] [PubMed]

S. Roy, W. D. Kulatilaka, D. R. Richardson, R. P. Lucht, and J. R. Gord, “Gas-phase single-shot thermometry at 1 kHz using fs-CARS spectroscopy,” Opt. Lett. 34(24), 3857–3859 (2009).
[CrossRef] [PubMed]

M. N. Slipchenko, B. D. Prince, S. C. Ducatman, and H. U. Stauffer, “Development of a simultaneously frequency- and time-resolved Raman-induced Kerr effect probe,” J. Phys. Chem. A 113(1), 135–140 (2009).
[CrossRef] [PubMed]

2008

2007

2006

B. D. Prince, A. Chakraborty, B. M. Prince, and H. U. Stauffer, “Development of simultaneous frequency- and time-resolved coherent anti-Stokes Raman scattering for ultrafast detection of molecular Raman spectra,” J. Chem. Phys. 125(4), 44502 (2006).
[CrossRef] [PubMed]

R. P. Lucht, S. Roy, T. R. Meyer, and J. R. Gord, “Femtosecond coherent anti-Stokes Raman scattering measurement of gas temperatures from frequency-spread dephasing of the Raman coherence,” Appl. Phys. Lett. 89(25), 251112 (2006).
[CrossRef]

2005

S. Roy, T. R. Meyer, and J. R. Gord, “Time-resolved dynamics of resonant and nonresonant broadband picosecond coherent anti-Stokes Raman scattering signals,” Appl. Phys. Lett. 87(26), 264103 (2005).
[CrossRef]

S. Roy, T. R. Meyer, and J. R. Gord, “Broadband coherent anti-Stokes Raman scattering spectroscopy of nitrogen using a picosecond modeless dye laser,” Opt. Lett. 30(23), 3222–3224 (2005).
[CrossRef] [PubMed]

2004

2003

G. Knopp, P. Radi, M. Tulej, T. Gerber, and P. Beaud, “Collision induced rotational energy transfer probed by time-resolved coherent anti-Stokes Raman scattering,” J. Chem. Phys. 118(18), 8223–8233 (2003).
[CrossRef]

2002

G. Knopp, P. Beaud, P. Radi, M. Tulej, B. Bougie, D. Cannavo, and T. Gerber, “Pressure-dependent N2 Q-branch fs-CARS measurements,” J. Raman Spectrosc. 33(11-12), 861–865 (2002).
[CrossRef]

M. Afzelius, P.-E. Bengtsson, J. Bood, J. Bonamy, F. Chaussard, H. Berger, and T. Dreier, “Dual-broadband rotational CARS modeling of nitrogen at pressures up to 9 MPa. II. Rotational Raman line widths,” Appl. Phys. B 75(6-7), 771–778 (2002).
[CrossRef]

2001

P. Beaud, H. M. Frey, T. Lang, and M. Motzkus, “Flame thermometry by femtosecond CARS,” Chem. Phys. Lett. 344(3-4), 407–412 (2001).
[CrossRef]

1999

H. Frey, P. Beaud, T. Gerber, B. Mischler, P. Radi, and A. Tzannis, “Femtosecond nonresonant degenerate four-wave mixing at atmospheric pressure and in a free jet,” Appl. Phys. B 68(4), 735–739 (1999).
[CrossRef]

S. P. Kearney, R. P. Lucht, and A. M. Jacobi, “Temperature measurements in convective heat transfer flows using dual-broadband, pure-rotational coherent anti-Stokes Raman spectroscopy (CARS),” Exp. Therm. Fluid Sci. 19(1), 13–26 (1999).
[CrossRef]

1994

P. E. Bengtsson, L. Martinsson, M. Aldén, B. Johansson, B. Lassesson, K. Marforio, and G. Lundholm, “Dual-broadband rotational CARS measurements in an IC engine,” Proc. Combust. Inst. 25, 1735–1742 (1994).

1993

L. Martinsson, P. E. Bengtsson, M. Alden, S. Kroll, and J. Bonamy, “A test of different rotational Raman linewidth models: Accuracy of rotational coherent anti-Stokes-Raman ccattering thermometry in nitrogen from 295 to 1850 K,” J. Chem. Phys. 99(4), 2466–2477 (1993).
[CrossRef]

1986

1982

R. L. Farrow and L. A. Rahn, “Optical Stark splitting of rotational Raman transitions,” Phys. Rev. Lett. 48(6), 395–398 (1982).
[CrossRef]

1981

A. C. Eckbreth and R. J. Hall, “Cars concentration sensitivity with and without non-resonant background suppression,” Combust. Sci. Technol. 25(5), 175–192 (1981).
[CrossRef]

1978

A. C. Eckbreth, “BOXCARS: Crossed-beam phase-matched CARS generation in gases,” Appl. Phys. Lett. 32(7), 421–423 (1978).
[CrossRef]

Afzelius, M.

S. Roy, T. R. Meyer, R. P. Lucht, M. Afzelius, P. E. Bengtsson, and J. R. Gord, “Dual-pump dual-broadband coherent anti-Stokes Raman scattering in reacting flows,” Opt. Lett. 29(16), 1843–1845 (2004).
[CrossRef] [PubMed]

M. Afzelius, P.-E. Bengtsson, J. Bood, J. Bonamy, F. Chaussard, H. Berger, and T. Dreier, “Dual-broadband rotational CARS modeling of nitrogen at pressures up to 9 MPa. II. Rotational Raman line widths,” Appl. Phys. B 75(6-7), 771–778 (2002).
[CrossRef]

Alden, M.

L. Martinsson, P. E. Bengtsson, M. Alden, S. Kroll, and J. Bonamy, “A test of different rotational Raman linewidth models: Accuracy of rotational coherent anti-Stokes-Raman ccattering thermometry in nitrogen from 295 to 1850 K,” J. Chem. Phys. 99(4), 2466–2477 (1993).
[CrossRef]

Aldén, M.

P. E. Bengtsson, L. Martinsson, M. Aldén, B. Johansson, B. Lassesson, K. Marforio, and G. Lundholm, “Dual-broadband rotational CARS measurements in an IC engine,” Proc. Combust. Inst. 25, 1735–1742 (1994).

Beaud, P.

G. Knopp, P. Radi, M. Tulej, T. Gerber, and P. Beaud, “Collision induced rotational energy transfer probed by time-resolved coherent anti-Stokes Raman scattering,” J. Chem. Phys. 118(18), 8223–8233 (2003).
[CrossRef]

G. Knopp, P. Beaud, P. Radi, M. Tulej, B. Bougie, D. Cannavo, and T. Gerber, “Pressure-dependent N2 Q-branch fs-CARS measurements,” J. Raman Spectrosc. 33(11-12), 861–865 (2002).
[CrossRef]

P. Beaud, H. M. Frey, T. Lang, and M. Motzkus, “Flame thermometry by femtosecond CARS,” Chem. Phys. Lett. 344(3-4), 407–412 (2001).
[CrossRef]

H. Frey, P. Beaud, T. Gerber, B. Mischler, P. Radi, and A. Tzannis, “Femtosecond nonresonant degenerate four-wave mixing at atmospheric pressure and in a free jet,” Appl. Phys. B 68(4), 735–739 (1999).
[CrossRef]

Bengtsson, P. E.

F. Vestin, K. Nilsson, and P. E. Bengtsson, “Validation of a rotational coherent anti-Stokes Raman spectroscopy model for carbon dioxide using high-resolution detection in the temperature range 294-1143 K,” Appl. Opt. 47(11), 1893–1901 (2008).
[CrossRef] [PubMed]

S. Roy, T. R. Meyer, R. P. Lucht, M. Afzelius, P. E. Bengtsson, and J. R. Gord, “Dual-pump dual-broadband coherent anti-Stokes Raman scattering in reacting flows,” Opt. Lett. 29(16), 1843–1845 (2004).
[CrossRef] [PubMed]

P. E. Bengtsson, L. Martinsson, M. Aldén, B. Johansson, B. Lassesson, K. Marforio, and G. Lundholm, “Dual-broadband rotational CARS measurements in an IC engine,” Proc. Combust. Inst. 25, 1735–1742 (1994).

L. Martinsson, P. E. Bengtsson, M. Alden, S. Kroll, and J. Bonamy, “A test of different rotational Raman linewidth models: Accuracy of rotational coherent anti-Stokes-Raman ccattering thermometry in nitrogen from 295 to 1850 K,” J. Chem. Phys. 99(4), 2466–2477 (1993).
[CrossRef]

Bengtsson, P.-E.

A. Bohlin, P.-E. Bengtsson, and M. Marrocco, “On the sensitivity of rotational CARS N2 thermometry to the Herman-Wallis factor,” J. Raman Spectrosc. , Available Online Feb. 11, 2011.
[CrossRef]

M. Afzelius, P.-E. Bengtsson, J. Bood, J. Bonamy, F. Chaussard, H. Berger, and T. Dreier, “Dual-broadband rotational CARS modeling of nitrogen at pressures up to 9 MPa. II. Rotational Raman line widths,” Appl. Phys. B 75(6-7), 771–778 (2002).
[CrossRef]

Berger, H.

M. Afzelius, P.-E. Bengtsson, J. Bood, J. Bonamy, F. Chaussard, H. Berger, and T. Dreier, “Dual-broadband rotational CARS modeling of nitrogen at pressures up to 9 MPa. II. Rotational Raman line widths,” Appl. Phys. B 75(6-7), 771–778 (2002).
[CrossRef]

Bohlin, A.

A. Bohlin, P.-E. Bengtsson, and M. Marrocco, “On the sensitivity of rotational CARS N2 thermometry to the Herman-Wallis factor,” J. Raman Spectrosc. , Available Online Feb. 11, 2011.
[CrossRef]

Bonamy, J.

M. Afzelius, P.-E. Bengtsson, J. Bood, J. Bonamy, F. Chaussard, H. Berger, and T. Dreier, “Dual-broadband rotational CARS modeling of nitrogen at pressures up to 9 MPa. II. Rotational Raman line widths,” Appl. Phys. B 75(6-7), 771–778 (2002).
[CrossRef]

L. Martinsson, P. E. Bengtsson, M. Alden, S. Kroll, and J. Bonamy, “A test of different rotational Raman linewidth models: Accuracy of rotational coherent anti-Stokes-Raman ccattering thermometry in nitrogen from 295 to 1850 K,” J. Chem. Phys. 99(4), 2466–2477 (1993).
[CrossRef]

Bood, J.

M. Afzelius, P.-E. Bengtsson, J. Bood, J. Bonamy, F. Chaussard, H. Berger, and T. Dreier, “Dual-broadband rotational CARS modeling of nitrogen at pressures up to 9 MPa. II. Rotational Raman line widths,” Appl. Phys. B 75(6-7), 771–778 (2002).
[CrossRef]

Borukhovich, I.

Bougie, B.

G. Knopp, P. Beaud, P. Radi, M. Tulej, B. Bougie, D. Cannavo, and T. Gerber, “Pressure-dependent N2 Q-branch fs-CARS measurements,” J. Raman Spectrosc. 33(11-12), 861–865 (2002).
[CrossRef]

Brilman, D. W. F.

R. J. M. Westerhof, D. W. F. Brilman, W. P. M. van Swaaij, and S. R. A. Kersten, “Effect of temperature in fluidized bed fast pyrolysis of biomass: oil quality assessment in test units,” Ind. Eng. Chem. Res. 49(3), 1160–1168 (2010).
[CrossRef]

Cannavo, D.

G. Knopp, P. Beaud, P. Radi, M. Tulej, B. Bougie, D. Cannavo, and T. Gerber, “Pressure-dependent N2 Q-branch fs-CARS measurements,” J. Raman Spectrosc. 33(11-12), 861–865 (2002).
[CrossRef]

Chaiwat, W.

W. Chaiwat, I. Hasegawa, and K. Mae, “Examination of the low-temperature region in a downdraft gasifier for the pyrolysis product analysis of biomass air gasification,” Ind. Eng. Chem. Res. 48(19), 8934–8943 (2009).
[CrossRef]

Chakraborty, A.

B. D. Prince, A. Chakraborty, B. M. Prince, and H. U. Stauffer, “Development of simultaneous frequency- and time-resolved coherent anti-Stokes Raman scattering for ultrafast detection of molecular Raman spectra,” J. Chem. Phys. 125(4), 44502 (2006).
[CrossRef] [PubMed]

Chaussard, F.

M. Afzelius, P.-E. Bengtsson, J. Bood, J. Bonamy, F. Chaussard, H. Berger, and T. Dreier, “Dual-broadband rotational CARS modeling of nitrogen at pressures up to 9 MPa. II. Rotational Raman line widths,” Appl. Phys. B 75(6-7), 771–778 (2002).
[CrossRef]

Coello, Y.

Cutler, A. D.

Danehy, P. M.

Dantus, M.

Dreier, T.

M. Afzelius, P.-E. Bengtsson, J. Bood, J. Bonamy, F. Chaussard, H. Berger, and T. Dreier, “Dual-broadband rotational CARS modeling of nitrogen at pressures up to 9 MPa. II. Rotational Raman line widths,” Appl. Phys. B 75(6-7), 771–778 (2002).
[CrossRef]

Ducatman, S. C.

M. N. Slipchenko, B. D. Prince, S. C. Ducatman, and H. U. Stauffer, “Development of a simultaneously frequency- and time-resolved Raman-induced Kerr effect probe,” J. Phys. Chem. A 113(1), 135–140 (2009).
[CrossRef] [PubMed]

Eckbreth, A. C.

A. C. Eckbreth and R. J. Hall, “Cars concentration sensitivity with and without non-resonant background suppression,” Combust. Sci. Technol. 25(5), 175–192 (1981).
[CrossRef]

A. C. Eckbreth, “BOXCARS: Crossed-beam phase-matched CARS generation in gases,” Appl. Phys. Lett. 32(7), 421–423 (1978).
[CrossRef]

Ewart, P.

J. Kiefer and P. Ewart, “Laser diagnostics and minor species detection in combustion using resonant four-wave mixing,” Prog. Energ. Combust. 37(5), 525–564 (2011).
[CrossRef]

Farrow, R. L.

R. L. Farrow and L. A. Rahn, “Optical Stark splitting of rotational Raman transitions,” Phys. Rev. Lett. 48(6), 395–398 (1982).
[CrossRef]

Frey, H.

H. Frey, P. Beaud, T. Gerber, B. Mischler, P. Radi, and A. Tzannis, “Femtosecond nonresonant degenerate four-wave mixing at atmospheric pressure and in a free jet,” Appl. Phys. B 68(4), 735–739 (1999).
[CrossRef]

Frey, H. M.

P. Beaud, H. M. Frey, T. Lang, and M. Motzkus, “Flame thermometry by femtosecond CARS,” Chem. Phys. Lett. 344(3-4), 407–412 (2001).
[CrossRef]

Gao, Y.

C. J. Kliewer, Y. Gao, T. Seeger, J. Kiefer, B. D. Patterson, and T. B. Settersten, “Picosecond time-resolved pure-rotational coherent anti-Stokes Raman spectroscopy in sooting flames,” Proc. Combust. Inst. 33(1), 831–838 (2011).
[CrossRef]

T. Seeger, J. Kiefer, Y. Gao, B. D. Patterson, C. J. Kliewer, and T. B. Settersten, “Suppression of Raman-resonant interferences in rotational coherent anti-Stokes Raman spectroscopy using time-delayed picosecond probe pulses,” Opt. Lett. 35(12), 2040–2042 (2010).
[CrossRef] [PubMed]

Gerber, T.

G. Knopp, P. Radi, M. Tulej, T. Gerber, and P. Beaud, “Collision induced rotational energy transfer probed by time-resolved coherent anti-Stokes Raman scattering,” J. Chem. Phys. 118(18), 8223–8233 (2003).
[CrossRef]

G. Knopp, P. Beaud, P. Radi, M. Tulej, B. Bougie, D. Cannavo, and T. Gerber, “Pressure-dependent N2 Q-branch fs-CARS measurements,” J. Raman Spectrosc. 33(11-12), 861–865 (2002).
[CrossRef]

H. Frey, P. Beaud, T. Gerber, B. Mischler, P. Radi, and A. Tzannis, “Femtosecond nonresonant degenerate four-wave mixing at atmospheric pressure and in a free jet,” Appl. Phys. B 68(4), 735–739 (1999).
[CrossRef]

Gord, J. R.

J. D. Miller, M. N. Slipchenko, T. R. Meyer, H. U. Stauffer, and J. R. Gord, “Hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering for high-speed gas-phase thermometry,” Opt. Lett. 35(14), 2430–2432 (2010).
[CrossRef] [PubMed]

S. Roy, J. R. Gord, and A. K. Patnaik, “Recent advances in coherent anti-Stokes Raman scattering spectroscopy: Fundamental developments and applications in reacting flows,” Prog. Energ. Combust. 36(2), 280–306 (2010).
[CrossRef]

W. D. Kulatilaka, P. S. Hsu, H. U. Stauffer, J. R. Gord, and S. Roy, “Direct measurement of rotationally resolved H2 Q-branch Raman coherence lifetimes using time-resolved picosecond coherent anti-Stokes Raman scattering,” Appl. Phys. Lett. 97(8), 081112 (2010).
[CrossRef]

S. Roy, D. Richardson, P. J. Kinnius, R. P. Lucht, and J. R. Gord, “Effects of N2-CO polarization beating on femtosecond coherent anti-Stokes Raman scattering spectroscopy of N2,” Appl. Phys. Lett. 94(14), 144101 (2009).
[CrossRef]

S. Roy, W. D. Kulatilaka, D. R. Richardson, R. P. Lucht, and J. R. Gord, “Gas-phase single-shot thermometry at 1 kHz using fs-CARS spectroscopy,” Opt. Lett. 34(24), 3857–3859 (2009).
[CrossRef] [PubMed]

J. R. Gord, T. R. Meyer, and S. Roy, “Applications of ultrafast lasers for optical measurements in combusting flows,” Annu Rev Anal Chem (Palo Alto Calif) 1(1), 663–687 (2008).
[CrossRef] [PubMed]

T. R. Meyer, S. Roy, and J. R. Gord, “Improving signal-to-interference ratio in rich hydrocarbon-air flames using picosecond coherent anti-Stokes Raman scattering,” Appl. Spectrosc. 61(11), 1135–1140 (2007).
[CrossRef] [PubMed]

R. P. Lucht, S. Roy, T. R. Meyer, and J. R. Gord, “Femtosecond coherent anti-Stokes Raman scattering measurement of gas temperatures from frequency-spread dephasing of the Raman coherence,” Appl. Phys. Lett. 89(25), 251112 (2006).
[CrossRef]

S. Roy, T. R. Meyer, and J. R. Gord, “Broadband coherent anti-Stokes Raman scattering spectroscopy of nitrogen using a picosecond modeless dye laser,” Opt. Lett. 30(23), 3222–3224 (2005).
[CrossRef] [PubMed]

S. Roy, T. R. Meyer, and J. R. Gord, “Time-resolved dynamics of resonant and nonresonant broadband picosecond coherent anti-Stokes Raman scattering signals,” Appl. Phys. Lett. 87(26), 264103 (2005).
[CrossRef]

S. Roy, T. R. Meyer, R. P. Lucht, M. Afzelius, P. E. Bengtsson, and J. R. Gord, “Dual-pump dual-broadband coherent anti-Stokes Raman scattering in reacting flows,” Opt. Lett. 29(16), 1843–1845 (2004).
[CrossRef] [PubMed]

Gunaratne, T.

Hall, R. J.

A. C. Eckbreth and R. J. Hall, “Cars concentration sensitivity with and without non-resonant background suppression,” Combust. Sci. Technol. 25(5), 175–192 (1981).
[CrossRef]

Hasegawa, I.

W. Chaiwat, I. Hasegawa, and K. Mae, “Examination of the low-temperature region in a downdraft gasifier for the pyrolysis product analysis of biomass air gasification,” Ind. Eng. Chem. Res. 48(19), 8934–8943 (2009).
[CrossRef]

Hsu, P. S.

W. D. Kulatilaka, P. S. Hsu, H. U. Stauffer, J. R. Gord, and S. Roy, “Direct measurement of rotationally resolved H2 Q-branch Raman coherence lifetimes using time-resolved picosecond coherent anti-Stokes Raman scattering,” Appl. Phys. Lett. 97(8), 081112 (2010).
[CrossRef]

Jacobi, A. M.

S. P. Kearney, R. P. Lucht, and A. M. Jacobi, “Temperature measurements in convective heat transfer flows using dual-broadband, pure-rotational coherent anti-Stokes Raman spectroscopy (CARS),” Exp. Therm. Fluid Sci. 19(1), 13–26 (1999).
[CrossRef]

Johansson, B.

P. E. Bengtsson, L. Martinsson, M. Aldén, B. Johansson, B. Lassesson, K. Marforio, and G. Lundholm, “Dual-broadband rotational CARS measurements in an IC engine,” Proc. Combust. Inst. 25, 1735–1742 (1994).

Kearney, S. P.

S. P. Kearney, R. P. Lucht, and A. M. Jacobi, “Temperature measurements in convective heat transfer flows using dual-broadband, pure-rotational coherent anti-Stokes Raman spectroscopy (CARS),” Exp. Therm. Fluid Sci. 19(1), 13–26 (1999).
[CrossRef]

Kersten, S. R. A.

R. J. M. Westerhof, D. W. F. Brilman, W. P. M. van Swaaij, and S. R. A. Kersten, “Effect of temperature in fluidized bed fast pyrolysis of biomass: oil quality assessment in test units,” Ind. Eng. Chem. Res. 49(3), 1160–1168 (2010).
[CrossRef]

Kiefer, J.

C. J. Kliewer, Y. Gao, T. Seeger, J. Kiefer, B. D. Patterson, and T. B. Settersten, “Picosecond time-resolved pure-rotational coherent anti-Stokes Raman spectroscopy in sooting flames,” Proc. Combust. Inst. 33(1), 831–838 (2011).
[CrossRef]

J. Kiefer and P. Ewart, “Laser diagnostics and minor species detection in combustion using resonant four-wave mixing,” Prog. Energ. Combust. 37(5), 525–564 (2011).
[CrossRef]

T. Seeger, J. Kiefer, Y. Gao, B. D. Patterson, C. J. Kliewer, and T. B. Settersten, “Suppression of Raman-resonant interferences in rotational coherent anti-Stokes Raman spectroscopy using time-delayed picosecond probe pulses,” Opt. Lett. 35(12), 2040–2042 (2010).
[CrossRef] [PubMed]

T. Seeger, J. Kiefer, A. Leipertz, B. D. Patterson, C. J. Kliewer, and T. B. Settersten, “Picosecond time-resolved pure-rotational coherent anti-Stokes Raman spectroscopy for N(2) thermometry,” Opt. Lett. 34(23), 3755–3757 (2009).
[CrossRef] [PubMed]

Kinnius, P. J.

S. Roy, D. Richardson, P. J. Kinnius, R. P. Lucht, and J. R. Gord, “Effects of N2-CO polarization beating on femtosecond coherent anti-Stokes Raman scattering spectroscopy of N2,” Appl. Phys. Lett. 94(14), 144101 (2009).
[CrossRef]

Kliewer, C. J.

Knopp, G.

G. Knopp, P. Radi, M. Tulej, T. Gerber, and P. Beaud, “Collision induced rotational energy transfer probed by time-resolved coherent anti-Stokes Raman scattering,” J. Chem. Phys. 118(18), 8223–8233 (2003).
[CrossRef]

G. Knopp, P. Beaud, P. Radi, M. Tulej, B. Bougie, D. Cannavo, and T. Gerber, “Pressure-dependent N2 Q-branch fs-CARS measurements,” J. Raman Spectrosc. 33(11-12), 861–865 (2002).
[CrossRef]

Kroll, S.

L. Martinsson, P. E. Bengtsson, M. Alden, S. Kroll, and J. Bonamy, “A test of different rotational Raman linewidth models: Accuracy of rotational coherent anti-Stokes-Raman ccattering thermometry in nitrogen from 295 to 1850 K,” J. Chem. Phys. 99(4), 2466–2477 (1993).
[CrossRef]

Kulatilaka, W. D.

W. D. Kulatilaka, P. S. Hsu, H. U. Stauffer, J. R. Gord, and S. Roy, “Direct measurement of rotationally resolved H2 Q-branch Raman coherence lifetimes using time-resolved picosecond coherent anti-Stokes Raman scattering,” Appl. Phys. Lett. 97(8), 081112 (2010).
[CrossRef]

S. Roy, W. D. Kulatilaka, D. R. Richardson, R. P. Lucht, and J. R. Gord, “Gas-phase single-shot thermometry at 1 kHz using fs-CARS spectroscopy,” Opt. Lett. 34(24), 3857–3859 (2009).
[CrossRef] [PubMed]

Lang, T.

P. Beaud, H. M. Frey, T. Lang, and M. Motzkus, “Flame thermometry by femtosecond CARS,” Chem. Phys. Lett. 344(3-4), 407–412 (2001).
[CrossRef]

Lassesson, B.

P. E. Bengtsson, L. Martinsson, M. Aldén, B. Johansson, B. Lassesson, K. Marforio, and G. Lundholm, “Dual-broadband rotational CARS measurements in an IC engine,” Proc. Combust. Inst. 25, 1735–1742 (1994).

Leipertz, A.

Lozovoy, V.

Lucht, R. P.

S. Roy, D. Richardson, P. J. Kinnius, R. P. Lucht, and J. R. Gord, “Effects of N2-CO polarization beating on femtosecond coherent anti-Stokes Raman scattering spectroscopy of N2,” Appl. Phys. Lett. 94(14), 144101 (2009).
[CrossRef]

S. Roy, W. D. Kulatilaka, D. R. Richardson, R. P. Lucht, and J. R. Gord, “Gas-phase single-shot thermometry at 1 kHz using fs-CARS spectroscopy,” Opt. Lett. 34(24), 3857–3859 (2009).
[CrossRef] [PubMed]

R. P. Lucht, S. Roy, T. R. Meyer, and J. R. Gord, “Femtosecond coherent anti-Stokes Raman scattering measurement of gas temperatures from frequency-spread dephasing of the Raman coherence,” Appl. Phys. Lett. 89(25), 251112 (2006).
[CrossRef]

S. Roy, T. R. Meyer, R. P. Lucht, M. Afzelius, P. E. Bengtsson, and J. R. Gord, “Dual-pump dual-broadband coherent anti-Stokes Raman scattering in reacting flows,” Opt. Lett. 29(16), 1843–1845 (2004).
[CrossRef] [PubMed]

S. P. Kearney, R. P. Lucht, and A. M. Jacobi, “Temperature measurements in convective heat transfer flows using dual-broadband, pure-rotational coherent anti-Stokes Raman spectroscopy (CARS),” Exp. Therm. Fluid Sci. 19(1), 13–26 (1999).
[CrossRef]

Lundholm, G.

P. E. Bengtsson, L. Martinsson, M. Aldén, B. Johansson, B. Lassesson, K. Marforio, and G. Lundholm, “Dual-broadband rotational CARS measurements in an IC engine,” Proc. Combust. Inst. 25, 1735–1742 (1994).

Mae, K.

W. Chaiwat, I. Hasegawa, and K. Mae, “Examination of the low-temperature region in a downdraft gasifier for the pyrolysis product analysis of biomass air gasification,” Ind. Eng. Chem. Res. 48(19), 8934–8943 (2009).
[CrossRef]

Marforio, K.

P. E. Bengtsson, L. Martinsson, M. Aldén, B. Johansson, B. Lassesson, K. Marforio, and G. Lundholm, “Dual-broadband rotational CARS measurements in an IC engine,” Proc. Combust. Inst. 25, 1735–1742 (1994).

Marrocco, M.

A. Bohlin, P.-E. Bengtsson, and M. Marrocco, “On the sensitivity of rotational CARS N2 thermometry to the Herman-Wallis factor,” J. Raman Spectrosc. , Available Online Feb. 11, 2011.
[CrossRef]

Martinsson, L.

P. E. Bengtsson, L. Martinsson, M. Aldén, B. Johansson, B. Lassesson, K. Marforio, and G. Lundholm, “Dual-broadband rotational CARS measurements in an IC engine,” Proc. Combust. Inst. 25, 1735–1742 (1994).

L. Martinsson, P. E. Bengtsson, M. Alden, S. Kroll, and J. Bonamy, “A test of different rotational Raman linewidth models: Accuracy of rotational coherent anti-Stokes-Raman ccattering thermometry in nitrogen from 295 to 1850 K,” J. Chem. Phys. 99(4), 2466–2477 (1993).
[CrossRef]

Meyer, T. R.

J. D. Miller, M. N. Slipchenko, and T. R. Meyer, “Probe-pulse optimization for nonresonant suppression in hybrid fs/ps coherent anti-Stokes Raman scattering at high temperature,” Opt. Express 19(14), 13326–13333 (2011).
[CrossRef] [PubMed]

J. D. Miller, M. N. Slipchenko, T. R. Meyer, H. U. Stauffer, and J. R. Gord, “Hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering for high-speed gas-phase thermometry,” Opt. Lett. 35(14), 2430–2432 (2010).
[CrossRef] [PubMed]

J. R. Gord, T. R. Meyer, and S. Roy, “Applications of ultrafast lasers for optical measurements in combusting flows,” Annu Rev Anal Chem (Palo Alto Calif) 1(1), 663–687 (2008).
[CrossRef] [PubMed]

T. R. Meyer, S. Roy, and J. R. Gord, “Improving signal-to-interference ratio in rich hydrocarbon-air flames using picosecond coherent anti-Stokes Raman scattering,” Appl. Spectrosc. 61(11), 1135–1140 (2007).
[CrossRef] [PubMed]

R. P. Lucht, S. Roy, T. R. Meyer, and J. R. Gord, “Femtosecond coherent anti-Stokes Raman scattering measurement of gas temperatures from frequency-spread dephasing of the Raman coherence,” Appl. Phys. Lett. 89(25), 251112 (2006).
[CrossRef]

S. Roy, T. R. Meyer, and J. R. Gord, “Broadband coherent anti-Stokes Raman scattering spectroscopy of nitrogen using a picosecond modeless dye laser,” Opt. Lett. 30(23), 3222–3224 (2005).
[CrossRef] [PubMed]

S. Roy, T. R. Meyer, and J. R. Gord, “Time-resolved dynamics of resonant and nonresonant broadband picosecond coherent anti-Stokes Raman scattering signals,” Appl. Phys. Lett. 87(26), 264103 (2005).
[CrossRef]

S. Roy, T. R. Meyer, R. P. Lucht, M. Afzelius, P. E. Bengtsson, and J. R. Gord, “Dual-pump dual-broadband coherent anti-Stokes Raman scattering in reacting flows,” Opt. Lett. 29(16), 1843–1845 (2004).
[CrossRef] [PubMed]

Miller, J. D.

Mischler, B.

H. Frey, P. Beaud, T. Gerber, B. Mischler, P. Radi, and A. Tzannis, “Femtosecond nonresonant degenerate four-wave mixing at atmospheric pressure and in a free jet,” Appl. Phys. B 68(4), 735–739 (1999).
[CrossRef]

Motzkus, M.

P. Beaud, H. M. Frey, T. Lang, and M. Motzkus, “Flame thermometry by femtosecond CARS,” Chem. Phys. Lett. 344(3-4), 407–412 (2001).
[CrossRef]

Nilsson, K.

Palmer, R. E.

Patnaik, A. K.

S. Roy, J. R. Gord, and A. K. Patnaik, “Recent advances in coherent anti-Stokes Raman scattering spectroscopy: Fundamental developments and applications in reacting flows,” Prog. Energ. Combust. 36(2), 280–306 (2010).
[CrossRef]

Patterson, B. D.

Prince, B. D.

M. N. Slipchenko, B. D. Prince, S. C. Ducatman, and H. U. Stauffer, “Development of a simultaneously frequency- and time-resolved Raman-induced Kerr effect probe,” J. Phys. Chem. A 113(1), 135–140 (2009).
[CrossRef] [PubMed]

B. D. Prince, A. Chakraborty, B. M. Prince, and H. U. Stauffer, “Development of simultaneous frequency- and time-resolved coherent anti-Stokes Raman scattering for ultrafast detection of molecular Raman spectra,” J. Chem. Phys. 125(4), 44502 (2006).
[CrossRef] [PubMed]

Prince, B. M.

B. D. Prince, A. Chakraborty, B. M. Prince, and H. U. Stauffer, “Development of simultaneous frequency- and time-resolved coherent anti-Stokes Raman scattering for ultrafast detection of molecular Raman spectra,” J. Chem. Phys. 125(4), 44502 (2006).
[CrossRef] [PubMed]

Radi, P.

G. Knopp, P. Radi, M. Tulej, T. Gerber, and P. Beaud, “Collision induced rotational energy transfer probed by time-resolved coherent anti-Stokes Raman scattering,” J. Chem. Phys. 118(18), 8223–8233 (2003).
[CrossRef]

G. Knopp, P. Beaud, P. Radi, M. Tulej, B. Bougie, D. Cannavo, and T. Gerber, “Pressure-dependent N2 Q-branch fs-CARS measurements,” J. Raman Spectrosc. 33(11-12), 861–865 (2002).
[CrossRef]

H. Frey, P. Beaud, T. Gerber, B. Mischler, P. Radi, and A. Tzannis, “Femtosecond nonresonant degenerate four-wave mixing at atmospheric pressure and in a free jet,” Appl. Phys. B 68(4), 735–739 (1999).
[CrossRef]

Rahn, L. A.

L. A. Rahn and R. E. Palmer, “Studies of nitrogen self-broadening at high-temperature with inverse Raman spectroscopy,” J. Opt. Soc. Am. B 3(9), 1164–1169 (1986).
[CrossRef]

R. L. Farrow and L. A. Rahn, “Optical Stark splitting of rotational Raman transitions,” Phys. Rev. Lett. 48(6), 395–398 (1982).
[CrossRef]

Richardson, D.

S. Roy, D. Richardson, P. J. Kinnius, R. P. Lucht, and J. R. Gord, “Effects of N2-CO polarization beating on femtosecond coherent anti-Stokes Raman scattering spectroscopy of N2,” Appl. Phys. Lett. 94(14), 144101 (2009).
[CrossRef]

Richardson, D. R.

Roy, S.

S. Roy, J. R. Gord, and A. K. Patnaik, “Recent advances in coherent anti-Stokes Raman scattering spectroscopy: Fundamental developments and applications in reacting flows,” Prog. Energ. Combust. 36(2), 280–306 (2010).
[CrossRef]

W. D. Kulatilaka, P. S. Hsu, H. U. Stauffer, J. R. Gord, and S. Roy, “Direct measurement of rotationally resolved H2 Q-branch Raman coherence lifetimes using time-resolved picosecond coherent anti-Stokes Raman scattering,” Appl. Phys. Lett. 97(8), 081112 (2010).
[CrossRef]

S. Roy, D. Richardson, P. J. Kinnius, R. P. Lucht, and J. R. Gord, “Effects of N2-CO polarization beating on femtosecond coherent anti-Stokes Raman scattering spectroscopy of N2,” Appl. Phys. Lett. 94(14), 144101 (2009).
[CrossRef]

S. Roy, W. D. Kulatilaka, D. R. Richardson, R. P. Lucht, and J. R. Gord, “Gas-phase single-shot thermometry at 1 kHz using fs-CARS spectroscopy,” Opt. Lett. 34(24), 3857–3859 (2009).
[CrossRef] [PubMed]

J. R. Gord, T. R. Meyer, and S. Roy, “Applications of ultrafast lasers for optical measurements in combusting flows,” Annu Rev Anal Chem (Palo Alto Calif) 1(1), 663–687 (2008).
[CrossRef] [PubMed]

T. R. Meyer, S. Roy, and J. R. Gord, “Improving signal-to-interference ratio in rich hydrocarbon-air flames using picosecond coherent anti-Stokes Raman scattering,” Appl. Spectrosc. 61(11), 1135–1140 (2007).
[CrossRef] [PubMed]

R. P. Lucht, S. Roy, T. R. Meyer, and J. R. Gord, “Femtosecond coherent anti-Stokes Raman scattering measurement of gas temperatures from frequency-spread dephasing of the Raman coherence,” Appl. Phys. Lett. 89(25), 251112 (2006).
[CrossRef]

S. Roy, T. R. Meyer, and J. R. Gord, “Broadband coherent anti-Stokes Raman scattering spectroscopy of nitrogen using a picosecond modeless dye laser,” Opt. Lett. 30(23), 3222–3224 (2005).
[CrossRef] [PubMed]

S. Roy, T. R. Meyer, and J. R. Gord, “Time-resolved dynamics of resonant and nonresonant broadband picosecond coherent anti-Stokes Raman scattering signals,” Appl. Phys. Lett. 87(26), 264103 (2005).
[CrossRef]

S. Roy, T. R. Meyer, R. P. Lucht, M. Afzelius, P. E. Bengtsson, and J. R. Gord, “Dual-pump dual-broadband coherent anti-Stokes Raman scattering in reacting flows,” Opt. Lett. 29(16), 1843–1845 (2004).
[CrossRef] [PubMed]

Seeger, T.

Settersten, T. B.

Slipchenko, M. N.

Stauffer, H. U.

J. D. Miller, M. N. Slipchenko, T. R. Meyer, H. U. Stauffer, and J. R. Gord, “Hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering for high-speed gas-phase thermometry,” Opt. Lett. 35(14), 2430–2432 (2010).
[CrossRef] [PubMed]

W. D. Kulatilaka, P. S. Hsu, H. U. Stauffer, J. R. Gord, and S. Roy, “Direct measurement of rotationally resolved H2 Q-branch Raman coherence lifetimes using time-resolved picosecond coherent anti-Stokes Raman scattering,” Appl. Phys. Lett. 97(8), 081112 (2010).
[CrossRef]

M. N. Slipchenko, B. D. Prince, S. C. Ducatman, and H. U. Stauffer, “Development of a simultaneously frequency- and time-resolved Raman-induced Kerr effect probe,” J. Phys. Chem. A 113(1), 135–140 (2009).
[CrossRef] [PubMed]

B. D. Prince, A. Chakraborty, B. M. Prince, and H. U. Stauffer, “Development of simultaneous frequency- and time-resolved coherent anti-Stokes Raman scattering for ultrafast detection of molecular Raman spectra,” J. Chem. Phys. 125(4), 44502 (2006).
[CrossRef] [PubMed]

Tedder, S. A.

Tseng, C.

Tulej, M.

G. Knopp, P. Radi, M. Tulej, T. Gerber, and P. Beaud, “Collision induced rotational energy transfer probed by time-resolved coherent anti-Stokes Raman scattering,” J. Chem. Phys. 118(18), 8223–8233 (2003).
[CrossRef]

G. Knopp, P. Beaud, P. Radi, M. Tulej, B. Bougie, D. Cannavo, and T. Gerber, “Pressure-dependent N2 Q-branch fs-CARS measurements,” J. Raman Spectrosc. 33(11-12), 861–865 (2002).
[CrossRef]

Tzannis, A.

H. Frey, P. Beaud, T. Gerber, B. Mischler, P. Radi, and A. Tzannis, “Femtosecond nonresonant degenerate four-wave mixing at atmospheric pressure and in a free jet,” Appl. Phys. B 68(4), 735–739 (1999).
[CrossRef]

van Swaaij, W. P. M.

R. J. M. Westerhof, D. W. F. Brilman, W. P. M. van Swaaij, and S. R. A. Kersten, “Effect of temperature in fluidized bed fast pyrolysis of biomass: oil quality assessment in test units,” Ind. Eng. Chem. Res. 49(3), 1160–1168 (2010).
[CrossRef]

Vestin, F.

Weinacht, T.

Westerhof, R. J. M.

R. J. M. Westerhof, D. W. F. Brilman, W. P. M. van Swaaij, and S. R. A. Kersten, “Effect of temperature in fluidized bed fast pyrolysis of biomass: oil quality assessment in test units,” Ind. Eng. Chem. Res. 49(3), 1160–1168 (2010).
[CrossRef]

Wheeler, J. L.

Xu, B.

Annu Rev Anal Chem (Palo Alto Calif)

J. R. Gord, T. R. Meyer, and S. Roy, “Applications of ultrafast lasers for optical measurements in combusting flows,” Annu Rev Anal Chem (Palo Alto Calif) 1(1), 663–687 (2008).
[CrossRef] [PubMed]

Appl. Opt.

Appl. Phys. B

M. Afzelius, P.-E. Bengtsson, J. Bood, J. Bonamy, F. Chaussard, H. Berger, and T. Dreier, “Dual-broadband rotational CARS modeling of nitrogen at pressures up to 9 MPa. II. Rotational Raman line widths,” Appl. Phys. B 75(6-7), 771–778 (2002).
[CrossRef]

H. Frey, P. Beaud, T. Gerber, B. Mischler, P. Radi, and A. Tzannis, “Femtosecond nonresonant degenerate four-wave mixing at atmospheric pressure and in a free jet,” Appl. Phys. B 68(4), 735–739 (1999).
[CrossRef]

Appl. Phys. Lett.

S. Roy, T. R. Meyer, and J. R. Gord, “Time-resolved dynamics of resonant and nonresonant broadband picosecond coherent anti-Stokes Raman scattering signals,” Appl. Phys. Lett. 87(26), 264103 (2005).
[CrossRef]

S. Roy, D. Richardson, P. J. Kinnius, R. P. Lucht, and J. R. Gord, “Effects of N2-CO polarization beating on femtosecond coherent anti-Stokes Raman scattering spectroscopy of N2,” Appl. Phys. Lett. 94(14), 144101 (2009).
[CrossRef]

R. P. Lucht, S. Roy, T. R. Meyer, and J. R. Gord, “Femtosecond coherent anti-Stokes Raman scattering measurement of gas temperatures from frequency-spread dephasing of the Raman coherence,” Appl. Phys. Lett. 89(25), 251112 (2006).
[CrossRef]

W. D. Kulatilaka, P. S. Hsu, H. U. Stauffer, J. R. Gord, and S. Roy, “Direct measurement of rotationally resolved H2 Q-branch Raman coherence lifetimes using time-resolved picosecond coherent anti-Stokes Raman scattering,” Appl. Phys. Lett. 97(8), 081112 (2010).
[CrossRef]

A. C. Eckbreth, “BOXCARS: Crossed-beam phase-matched CARS generation in gases,” Appl. Phys. Lett. 32(7), 421–423 (1978).
[CrossRef]

Appl. Spectrosc.

Chem. Phys. Lett.

P. Beaud, H. M. Frey, T. Lang, and M. Motzkus, “Flame thermometry by femtosecond CARS,” Chem. Phys. Lett. 344(3-4), 407–412 (2001).
[CrossRef]

Combust. Sci. Technol.

A. C. Eckbreth and R. J. Hall, “Cars concentration sensitivity with and without non-resonant background suppression,” Combust. Sci. Technol. 25(5), 175–192 (1981).
[CrossRef]

Exp. Therm. Fluid Sci.

S. P. Kearney, R. P. Lucht, and A. M. Jacobi, “Temperature measurements in convective heat transfer flows using dual-broadband, pure-rotational coherent anti-Stokes Raman spectroscopy (CARS),” Exp. Therm. Fluid Sci. 19(1), 13–26 (1999).
[CrossRef]

Ind. Eng. Chem. Res.

R. J. M. Westerhof, D. W. F. Brilman, W. P. M. van Swaaij, and S. R. A. Kersten, “Effect of temperature in fluidized bed fast pyrolysis of biomass: oil quality assessment in test units,” Ind. Eng. Chem. Res. 49(3), 1160–1168 (2010).
[CrossRef]

W. Chaiwat, I. Hasegawa, and K. Mae, “Examination of the low-temperature region in a downdraft gasifier for the pyrolysis product analysis of biomass air gasification,” Ind. Eng. Chem. Res. 48(19), 8934–8943 (2009).
[CrossRef]

J. Chem. Phys.

G. Knopp, P. Radi, M. Tulej, T. Gerber, and P. Beaud, “Collision induced rotational energy transfer probed by time-resolved coherent anti-Stokes Raman scattering,” J. Chem. Phys. 118(18), 8223–8233 (2003).
[CrossRef]

B. D. Prince, A. Chakraborty, B. M. Prince, and H. U. Stauffer, “Development of simultaneous frequency- and time-resolved coherent anti-Stokes Raman scattering for ultrafast detection of molecular Raman spectra,” J. Chem. Phys. 125(4), 44502 (2006).
[CrossRef] [PubMed]

L. Martinsson, P. E. Bengtsson, M. Alden, S. Kroll, and J. Bonamy, “A test of different rotational Raman linewidth models: Accuracy of rotational coherent anti-Stokes-Raman ccattering thermometry in nitrogen from 295 to 1850 K,” J. Chem. Phys. 99(4), 2466–2477 (1993).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. Chem. A

M. N. Slipchenko, B. D. Prince, S. C. Ducatman, and H. U. Stauffer, “Development of a simultaneously frequency- and time-resolved Raman-induced Kerr effect probe,” J. Phys. Chem. A 113(1), 135–140 (2009).
[CrossRef] [PubMed]

J. Raman Spectrosc.

A. Bohlin, P.-E. Bengtsson, and M. Marrocco, “On the sensitivity of rotational CARS N2 thermometry to the Herman-Wallis factor,” J. Raman Spectrosc. , Available Online Feb. 11, 2011.
[CrossRef]

G. Knopp, P. Beaud, P. Radi, M. Tulej, B. Bougie, D. Cannavo, and T. Gerber, “Pressure-dependent N2 Q-branch fs-CARS measurements,” J. Raman Spectrosc. 33(11-12), 861–865 (2002).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

R. L. Farrow and L. A. Rahn, “Optical Stark splitting of rotational Raman transitions,” Phys. Rev. Lett. 48(6), 395–398 (1982).
[CrossRef]

Proc. Combust. Inst.

C. J. Kliewer, Y. Gao, T. Seeger, J. Kiefer, B. D. Patterson, and T. B. Settersten, “Picosecond time-resolved pure-rotational coherent anti-Stokes Raman spectroscopy in sooting flames,” Proc. Combust. Inst. 33(1), 831–838 (2011).
[CrossRef]

P. E. Bengtsson, L. Martinsson, M. Aldén, B. Johansson, B. Lassesson, K. Marforio, and G. Lundholm, “Dual-broadband rotational CARS measurements in an IC engine,” Proc. Combust. Inst. 25, 1735–1742 (1994).

Prog. Energ. Combust.

S. Roy, J. R. Gord, and A. K. Patnaik, “Recent advances in coherent anti-Stokes Raman scattering spectroscopy: Fundamental developments and applications in reacting flows,” Prog. Energ. Combust. 36(2), 280–306 (2010).
[CrossRef]

J. Kiefer and P. Ewart, “Laser diagnostics and minor species detection in combustion using resonant four-wave mixing,” Prog. Energ. Combust. 37(5), 525–564 (2011).
[CrossRef]

Other

J. A. Hoolroyd, “Low temperature oxidation catalyst development and applications,” American Filtration and Separation Society Annual Conference, Valley Forge, PA, 19–22 May 2008.

A. C. Eckbreth, Laser diagnostics for combustion temperature and species (Gordon and Breach Publishers, 1996).

S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford University Press, 1995).

K. P. Huber and G. Herzberg, Molecular spectra and molecular structure - IV. Constants of diatomic molecules (Van Nostrand Reinhold, 1979).

R. E. Palmer, “The CARSFT computer code for calculating coherent anti-Stokes Raman spectra: user and programmer information,” Sandia Rep. SAND–89–8206 (Sandia National Laboratories, Livermore, CA, 1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Energy diagram for fs/ps RCARS illustrating spectral characteristics of pump (ω1), Stokes (ω2), probe (ω3), and CARS (ωCARS) beams, and (b) timing diagram of Gaussian probe-pulse generated by 4-f pulse shaper with time delay τ23 from pump and Stokes pulses.

Fig. 2
Fig. 2

Experimental schematic of hybrid fs/ps RCARS system. WP: wave plate, TFP: thin-film polarizer, BS: ultrafast beam splitter, EMCCD: electron-multiplied charge-coupled device camera.

Fig. 3
Fig. 3

Experimentally measured (a) broadband pump/Stokes and narrowband probe lineshapes, and (b) cross-correlation of nearly transform-limited shaped probe pulse. Solid lines are Gaussian fits to experimental data.

Fig. 4
Fig. 4

Experimental N2 fs/ps RCARS spectra with 8.4-ps probe pulse delayed by 0 ps and 13.5 ps.

Fig. 5
Fig. 5

Normalized spectrally integrated fs/ps RCARS signal for nonresonant signal in Ar and spectrally-integrated resonant signal in pure N2 at 306 K and 500 K. Open symbols represent experimental data and solid lines represent simulations.

Fig. 6
Fig. 6

Direct time-domain measurement of J-level dependent collisional linewidths at 306 K. (a) Experimental data for J = 6 and J = 14 transitions along with best-fit single-exponential decays. Inset illustrates perceived shift of fs/ps RCARS spectra to higher temperature from probe delay of 13.5 to 300 ps. (b) Measured linewidth for each transition and published linewidth from Ref, [37]. Error bars represent 95% confidence interval for exponential fit.

Fig. 7
Fig. 7

(a) Best-fit temperature and (b) associated percent error as a function of probe delay for simulations with (solid squares) and without (open circles) time-dependent collisional energy transfer at 306 K and 500 K. Error bars represent a 1% uncertainty based on the data.

Fig. 8
Fig. 8

Single-shot pure-rotational hybrid fs/ps RCARS spectra of N2 at (a) 306 K, (b) 500 K, and (c) 700 K. Open symbols represent experimental data while solid lines represent best fit simulations. Residual is shown shifted by −0.1.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

I C A R S ( t , τ 23 ) | P Re s ( 3 ) ( t , τ 23 ) + P N R ( 3 ) ( t , τ 23 ) | 2 ,
P Re s ( 3 ) ( t , τ 23 ) = ( i ) 3 0 d t 3 0 d t 2 0 d t 1 [ R ( t 3 , t 2 , t 1 ) E 3 ( t t 3 ) × E 2 * ( t + τ 23 t 3 t 2 ) E 1 ( t + τ 23 t 3 t 2 t 1 ) e i ( ω 1 ω 2 + ω 3 ) t 3 e i ( ω 1 ω 2 ) t 2 e i ω 1 t 1 ] ,
P Re s ( 3 ) ( t , τ 23 ) = ( i ) 3 E 3 ( t ) 0 d t 2 [ R ( t 2 ) E 2 * ( t + τ 23 t 2 ) × E 1 ( t + τ 23 t 2 ) e i ( ω 1 ω 2 ) t 2 ] ,
R ( t ) = I n m ( T ) e i ω n m t Γ n m t .
I n m ( T ) ( σ Ω ) J Δ ρ J , J + 2 ( T ) ,
( σ Ω ) J 4 45 b J , J + 2 ( γ ' ) 2 F ( J ) ,
F ( J ) = 1 + 4.448 ( 2 B e ω e ) 2 ( J 2 + 3 J + 3 ) ,
Γ J , J + 2 1 2 ( Γ J , J + Γ J + 2 , J + 2 ) .
Γ J = 1 2 π c τ C A R S , J ,

Metrics