Abstract

A sub-10µm long microfiber Bragg grating was nanostructured into a ~1µm-diameter optical microfiber by focused ion beam (FIB) technology. The periodic structures were carved into the microfiber and the large refractive index contrast between glass and air allowed for the formation of strong gratings with only 20 periods. 3D simulation showed a good agreement with the experiment demonstration. This compact device can find applications in a variety of fields ranging from temperature and refractive index sensing to optical communications.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection filter fabrication,” Appl. Phys. Lett. 32(10), 647–649 (1978).
    [CrossRef]
  2. B. S. Kawasaki, K. O. Hill, D. C. Johnson, and Y. Fujii, “Narrow-band Bragg reflectors in optical fibers,” Opt. Lett. 3(2), 66–68 (1978).
    [CrossRef] [PubMed]
  3. R. Kashyap, Fiber Bragg Grating (Elsevier Academic, 2010).
  4. G. Meltz, W. W. Morey, and W. H. Glenn, “Formation of Bragg gratings in optical fibers by a transverse holographic method,” Opt. Lett. 14(15), 823–825 (1989).
    [CrossRef] [PubMed]
  5. K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg grating fabricated inmonomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993).
    [CrossRef]
  6. G. Pakulski, R. Moore, C. Maritan, F. Shepherd, M. Fallahi, I. Templeton, and G. Champion, “Fused silica masks for printing uniform and phase adjusted gratings for distributed feedback lasers,” Appl. Phys. Lett. 62(3), 222–224 (1993).
    [CrossRef]
  7. M. J. Cole, W. H. Loh, R. I. Laming, M. N. Zervas, and S. Barcelos, “Moving fiber/phase mask-scanning beam technique for enhanced flexibility in producing fiber gratings with uniform phase mask,” Electron. Lett. 31(17), 1488–1490 (1995).
    [CrossRef]
  8. D. C. Johnson, F. Bilodeau, B. Malo, K. O. Hill, P. G. J. Wigley, and G. I. Stegeman, “Long-length, long-period rocking filters fabricated from conventional monomode telecommunications optical fiber,” Opt. Lett. 17(22), 1635–1637 (1992).
    [CrossRef] [PubMed]
  9. C. W. Smelser, S. J. Mihailov, and D. Grobnic, “Hydrogen loading for fiber grating writing with a femtosecond laser and a phase mask,” Opt. Lett. 29(18), 2127–2129 (2004).
    [CrossRef] [PubMed]
  10. A. Dragomir, D. N. Nikogosyan, K. A. Zagorulko, P. G. Kryukov, and E. M. Dianov, “Inscription of fiber Bragg gratings by ultraviolet femtosecond radiation,” Opt. Lett. 28(22), 2171–2173 (2003).
    [CrossRef] [PubMed]
  11. H. Xuan, W. Jin, and S. Liu, “Long-period gratings in wavelength-scale microfibers,” Opt. Lett. 35(1), 85–87 (2010).
    [CrossRef] [PubMed]
  12. J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibers and devices. I. Adiabaticity criteria,” IEE Proc.-J.:Optoelectron. 138, 343–354 (1991).
    [CrossRef]
  13. F. Bilodeau, K. O. Hill, S. Faucher, and D. C. Johnson, “Low-loss highly overcoupled fused couplers: fabrication and sensitivity to external pressure,” J. Lightwave Technol. 6(10), 1476–1482 (1988).
    [CrossRef]
  14. G. Brambilla, E. Koizumi, X. Feng, and D. J. Richardson, “Compound-glass optical nanowires,” Electron. Lett. 41(7), 400–401 (2005).
    [CrossRef]
  15. T. A. Birks and Y. W. Li, “The shape of fiber tapers,” J. Lightwave Technol. 10(4), 432–438 (1992).
    [CrossRef]
  16. G. Brambilla, V. Finazzi, and D. J. Richardson, “Ultra-low-loss optical fiber nanotapers,” Opt. Express 12(10), 2258–2263 (2004).
    [CrossRef] [PubMed]
  17. Y. Jung, G. Brambilla, and D. J. Richardson, “Optical microfiber coupler for broadband single-mode operation,” Opt. Express 17(7), 5273–5278 (2009).
    [CrossRef] [PubMed]
  18. R. Feced and M. N. Zervas, “Effects of random phase and amplitude errors in optical fiber Bragg gratings,” J. Lightwave Technol. 18(1), 90–101 (2000).
    [CrossRef]

2010 (1)

2009 (1)

2005 (1)

G. Brambilla, E. Koizumi, X. Feng, and D. J. Richardson, “Compound-glass optical nanowires,” Electron. Lett. 41(7), 400–401 (2005).
[CrossRef]

2004 (2)

2003 (1)

2000 (1)

1995 (1)

M. J. Cole, W. H. Loh, R. I. Laming, M. N. Zervas, and S. Barcelos, “Moving fiber/phase mask-scanning beam technique for enhanced flexibility in producing fiber gratings with uniform phase mask,” Electron. Lett. 31(17), 1488–1490 (1995).
[CrossRef]

1993 (2)

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg grating fabricated inmonomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993).
[CrossRef]

G. Pakulski, R. Moore, C. Maritan, F. Shepherd, M. Fallahi, I. Templeton, and G. Champion, “Fused silica masks for printing uniform and phase adjusted gratings for distributed feedback lasers,” Appl. Phys. Lett. 62(3), 222–224 (1993).
[CrossRef]

1992 (2)

1991 (1)

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibers and devices. I. Adiabaticity criteria,” IEE Proc.-J.:Optoelectron. 138, 343–354 (1991).
[CrossRef]

1989 (1)

1988 (1)

F. Bilodeau, K. O. Hill, S. Faucher, and D. C. Johnson, “Low-loss highly overcoupled fused couplers: fabrication and sensitivity to external pressure,” J. Lightwave Technol. 6(10), 1476–1482 (1988).
[CrossRef]

1978 (2)

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection filter fabrication,” Appl. Phys. Lett. 32(10), 647–649 (1978).
[CrossRef]

B. S. Kawasaki, K. O. Hill, D. C. Johnson, and Y. Fujii, “Narrow-band Bragg reflectors in optical fibers,” Opt. Lett. 3(2), 66–68 (1978).
[CrossRef] [PubMed]

Albert, J.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg grating fabricated inmonomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993).
[CrossRef]

Barcelos, S.

M. J. Cole, W. H. Loh, R. I. Laming, M. N. Zervas, and S. Barcelos, “Moving fiber/phase mask-scanning beam technique for enhanced flexibility in producing fiber gratings with uniform phase mask,” Electron. Lett. 31(17), 1488–1490 (1995).
[CrossRef]

Bilodeau, F.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg grating fabricated inmonomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993).
[CrossRef]

D. C. Johnson, F. Bilodeau, B. Malo, K. O. Hill, P. G. J. Wigley, and G. I. Stegeman, “Long-length, long-period rocking filters fabricated from conventional monomode telecommunications optical fiber,” Opt. Lett. 17(22), 1635–1637 (1992).
[CrossRef] [PubMed]

F. Bilodeau, K. O. Hill, S. Faucher, and D. C. Johnson, “Low-loss highly overcoupled fused couplers: fabrication and sensitivity to external pressure,” J. Lightwave Technol. 6(10), 1476–1482 (1988).
[CrossRef]

Birks, T. A.

T. A. Birks and Y. W. Li, “The shape of fiber tapers,” J. Lightwave Technol. 10(4), 432–438 (1992).
[CrossRef]

Black, R. J.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibers and devices. I. Adiabaticity criteria,” IEE Proc.-J.:Optoelectron. 138, 343–354 (1991).
[CrossRef]

Brambilla, G.

Champion, G.

G. Pakulski, R. Moore, C. Maritan, F. Shepherd, M. Fallahi, I. Templeton, and G. Champion, “Fused silica masks for printing uniform and phase adjusted gratings for distributed feedback lasers,” Appl. Phys. Lett. 62(3), 222–224 (1993).
[CrossRef]

Cole, M. J.

M. J. Cole, W. H. Loh, R. I. Laming, M. N. Zervas, and S. Barcelos, “Moving fiber/phase mask-scanning beam technique for enhanced flexibility in producing fiber gratings with uniform phase mask,” Electron. Lett. 31(17), 1488–1490 (1995).
[CrossRef]

Dianov, E. M.

Dragomir, A.

Fallahi, M.

G. Pakulski, R. Moore, C. Maritan, F. Shepherd, M. Fallahi, I. Templeton, and G. Champion, “Fused silica masks for printing uniform and phase adjusted gratings for distributed feedback lasers,” Appl. Phys. Lett. 62(3), 222–224 (1993).
[CrossRef]

Faucher, S.

F. Bilodeau, K. O. Hill, S. Faucher, and D. C. Johnson, “Low-loss highly overcoupled fused couplers: fabrication and sensitivity to external pressure,” J. Lightwave Technol. 6(10), 1476–1482 (1988).
[CrossRef]

Feced, R.

Feng, X.

G. Brambilla, E. Koizumi, X. Feng, and D. J. Richardson, “Compound-glass optical nanowires,” Electron. Lett. 41(7), 400–401 (2005).
[CrossRef]

Finazzi, V.

Fujii, Y.

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection filter fabrication,” Appl. Phys. Lett. 32(10), 647–649 (1978).
[CrossRef]

B. S. Kawasaki, K. O. Hill, D. C. Johnson, and Y. Fujii, “Narrow-band Bragg reflectors in optical fibers,” Opt. Lett. 3(2), 66–68 (1978).
[CrossRef] [PubMed]

Glenn, W. H.

Gonthier, F.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibers and devices. I. Adiabaticity criteria,” IEE Proc.-J.:Optoelectron. 138, 343–354 (1991).
[CrossRef]

Grobnic, D.

Henry, W. M.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibers and devices. I. Adiabaticity criteria,” IEE Proc.-J.:Optoelectron. 138, 343–354 (1991).
[CrossRef]

Hill, K. O.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg grating fabricated inmonomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993).
[CrossRef]

D. C. Johnson, F. Bilodeau, B. Malo, K. O. Hill, P. G. J. Wigley, and G. I. Stegeman, “Long-length, long-period rocking filters fabricated from conventional monomode telecommunications optical fiber,” Opt. Lett. 17(22), 1635–1637 (1992).
[CrossRef] [PubMed]

F. Bilodeau, K. O. Hill, S. Faucher, and D. C. Johnson, “Low-loss highly overcoupled fused couplers: fabrication and sensitivity to external pressure,” J. Lightwave Technol. 6(10), 1476–1482 (1988).
[CrossRef]

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection filter fabrication,” Appl. Phys. Lett. 32(10), 647–649 (1978).
[CrossRef]

B. S. Kawasaki, K. O. Hill, D. C. Johnson, and Y. Fujii, “Narrow-band Bragg reflectors in optical fibers,” Opt. Lett. 3(2), 66–68 (1978).
[CrossRef] [PubMed]

Jin, W.

Johnson, D. C.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg grating fabricated inmonomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993).
[CrossRef]

D. C. Johnson, F. Bilodeau, B. Malo, K. O. Hill, P. G. J. Wigley, and G. I. Stegeman, “Long-length, long-period rocking filters fabricated from conventional monomode telecommunications optical fiber,” Opt. Lett. 17(22), 1635–1637 (1992).
[CrossRef] [PubMed]

F. Bilodeau, K. O. Hill, S. Faucher, and D. C. Johnson, “Low-loss highly overcoupled fused couplers: fabrication and sensitivity to external pressure,” J. Lightwave Technol. 6(10), 1476–1482 (1988).
[CrossRef]

B. S. Kawasaki, K. O. Hill, D. C. Johnson, and Y. Fujii, “Narrow-band Bragg reflectors in optical fibers,” Opt. Lett. 3(2), 66–68 (1978).
[CrossRef] [PubMed]

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection filter fabrication,” Appl. Phys. Lett. 32(10), 647–649 (1978).
[CrossRef]

Jung, Y.

Kawasaki, B. S.

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection filter fabrication,” Appl. Phys. Lett. 32(10), 647–649 (1978).
[CrossRef]

B. S. Kawasaki, K. O. Hill, D. C. Johnson, and Y. Fujii, “Narrow-band Bragg reflectors in optical fibers,” Opt. Lett. 3(2), 66–68 (1978).
[CrossRef] [PubMed]

Koizumi, E.

G. Brambilla, E. Koizumi, X. Feng, and D. J. Richardson, “Compound-glass optical nanowires,” Electron. Lett. 41(7), 400–401 (2005).
[CrossRef]

Kryukov, P. G.

Lacroix, S.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibers and devices. I. Adiabaticity criteria,” IEE Proc.-J.:Optoelectron. 138, 343–354 (1991).
[CrossRef]

Laming, R. I.

M. J. Cole, W. H. Loh, R. I. Laming, M. N. Zervas, and S. Barcelos, “Moving fiber/phase mask-scanning beam technique for enhanced flexibility in producing fiber gratings with uniform phase mask,” Electron. Lett. 31(17), 1488–1490 (1995).
[CrossRef]

Li, Y. W.

T. A. Birks and Y. W. Li, “The shape of fiber tapers,” J. Lightwave Technol. 10(4), 432–438 (1992).
[CrossRef]

Liu, S.

Loh, W. H.

M. J. Cole, W. H. Loh, R. I. Laming, M. N. Zervas, and S. Barcelos, “Moving fiber/phase mask-scanning beam technique for enhanced flexibility in producing fiber gratings with uniform phase mask,” Electron. Lett. 31(17), 1488–1490 (1995).
[CrossRef]

Love, J. D.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibers and devices. I. Adiabaticity criteria,” IEE Proc.-J.:Optoelectron. 138, 343–354 (1991).
[CrossRef]

Malo, B.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg grating fabricated inmonomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993).
[CrossRef]

D. C. Johnson, F. Bilodeau, B. Malo, K. O. Hill, P. G. J. Wigley, and G. I. Stegeman, “Long-length, long-period rocking filters fabricated from conventional monomode telecommunications optical fiber,” Opt. Lett. 17(22), 1635–1637 (1992).
[CrossRef] [PubMed]

Maritan, C.

G. Pakulski, R. Moore, C. Maritan, F. Shepherd, M. Fallahi, I. Templeton, and G. Champion, “Fused silica masks for printing uniform and phase adjusted gratings for distributed feedback lasers,” Appl. Phys. Lett. 62(3), 222–224 (1993).
[CrossRef]

Meltz, G.

Mihailov, S. J.

Moore, R.

G. Pakulski, R. Moore, C. Maritan, F. Shepherd, M. Fallahi, I. Templeton, and G. Champion, “Fused silica masks for printing uniform and phase adjusted gratings for distributed feedback lasers,” Appl. Phys. Lett. 62(3), 222–224 (1993).
[CrossRef]

Morey, W. W.

Nikogosyan, D. N.

Pakulski, G.

G. Pakulski, R. Moore, C. Maritan, F. Shepherd, M. Fallahi, I. Templeton, and G. Champion, “Fused silica masks for printing uniform and phase adjusted gratings for distributed feedback lasers,” Appl. Phys. Lett. 62(3), 222–224 (1993).
[CrossRef]

Richardson, D. J.

Shepherd, F.

G. Pakulski, R. Moore, C. Maritan, F. Shepherd, M. Fallahi, I. Templeton, and G. Champion, “Fused silica masks for printing uniform and phase adjusted gratings for distributed feedback lasers,” Appl. Phys. Lett. 62(3), 222–224 (1993).
[CrossRef]

Smelser, C. W.

Stegeman, G. I.

Stewart, W. J.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibers and devices. I. Adiabaticity criteria,” IEE Proc.-J.:Optoelectron. 138, 343–354 (1991).
[CrossRef]

Templeton, I.

G. Pakulski, R. Moore, C. Maritan, F. Shepherd, M. Fallahi, I. Templeton, and G. Champion, “Fused silica masks for printing uniform and phase adjusted gratings for distributed feedback lasers,” Appl. Phys. Lett. 62(3), 222–224 (1993).
[CrossRef]

Wigley, P. G. J.

Xuan, H.

Zagorulko, K. A.

Zervas, M. N.

R. Feced and M. N. Zervas, “Effects of random phase and amplitude errors in optical fiber Bragg gratings,” J. Lightwave Technol. 18(1), 90–101 (2000).
[CrossRef]

M. J. Cole, W. H. Loh, R. I. Laming, M. N. Zervas, and S. Barcelos, “Moving fiber/phase mask-scanning beam technique for enhanced flexibility in producing fiber gratings with uniform phase mask,” Electron. Lett. 31(17), 1488–1490 (1995).
[CrossRef]

Appl. Phys. Lett. (3)

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg grating fabricated inmonomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993).
[CrossRef]

G. Pakulski, R. Moore, C. Maritan, F. Shepherd, M. Fallahi, I. Templeton, and G. Champion, “Fused silica masks for printing uniform and phase adjusted gratings for distributed feedback lasers,” Appl. Phys. Lett. 62(3), 222–224 (1993).
[CrossRef]

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection filter fabrication,” Appl. Phys. Lett. 32(10), 647–649 (1978).
[CrossRef]

Electron. Lett. (2)

M. J. Cole, W. H. Loh, R. I. Laming, M. N. Zervas, and S. Barcelos, “Moving fiber/phase mask-scanning beam technique for enhanced flexibility in producing fiber gratings with uniform phase mask,” Electron. Lett. 31(17), 1488–1490 (1995).
[CrossRef]

G. Brambilla, E. Koizumi, X. Feng, and D. J. Richardson, “Compound-glass optical nanowires,” Electron. Lett. 41(7), 400–401 (2005).
[CrossRef]

IEE Proc.-J.:Optoelectron. (1)

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibers and devices. I. Adiabaticity criteria,” IEE Proc.-J.:Optoelectron. 138, 343–354 (1991).
[CrossRef]

J. Lightwave Technol. (3)

F. Bilodeau, K. O. Hill, S. Faucher, and D. C. Johnson, “Low-loss highly overcoupled fused couplers: fabrication and sensitivity to external pressure,” J. Lightwave Technol. 6(10), 1476–1482 (1988).
[CrossRef]

T. A. Birks and Y. W. Li, “The shape of fiber tapers,” J. Lightwave Technol. 10(4), 432–438 (1992).
[CrossRef]

R. Feced and M. N. Zervas, “Effects of random phase and amplitude errors in optical fiber Bragg gratings,” J. Lightwave Technol. 18(1), 90–101 (2000).
[CrossRef]

Opt. Express (2)

Opt. Lett. (6)

Other (1)

R. Kashyap, Fiber Bragg Grating (Elsevier Academic, 2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of MFBG. The insert shows a schematic of the biconcave shape of curved air notches.

Fig. 2
Fig. 2

SEM image of MFBG which was partly embedded in the polymer and coated with a gold layer. Yellow dashed lines visualize the microfiber edge, which is not clear because the microfiber was packaged in polymer and gold coated. The insert shows the details of the biconcave air notches.

Fig. 3
Fig. 3

(a) Schematic of experimental set-up used to characterize the MFBG; (b) MFBG reflection spectrum.

Fig. 4
Fig. 4

(a) Schematic of the MFBG modeling, the insert shows the magnified figure of the biconcave air notch; (b)(c)(d) Electric fields at wavelength λ1 = 1041.7nm, λ2 = 1363.6nm and λ3 = 1428.6nm respectively.

Fig. 5
Fig. 5

MFBG reflectivity spectra. The red solid line is the 3D simulation line while the blue dashed line is the experiment result. λ1, λ2 and λ3 represent the wavelengths whose electric fields are shown in Fig. 4(b), 4(c) and 4(d).

Metrics