Abstract

A ‘release-rollup’ assembly (RRA) technique is described that yields corrugated metallodielectric superlattices. Bilayers of polymer/Au cast onto diffraction gratings are released and rolled into multilayers with registration of the stacked corrugations across mm-scales. Optical imaging reveals Moiré fringes with reflection spectra that track the bilayer thickness due to mis-stacking. Angular-resolved spectra show spectrally-modulated diffraction opposite to that of the metallic stop-bands, but which agrees with a simple model. This scalable fabrication strategy is thus widely exploitable for laterally patterned metamaterials and optical superlattices.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. W. Wood, “‘XLII. on a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag. 4, 396–402 (1902).
  2. U. Fano, “The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfelds waves),” J. Opt. Soc. Am. 31, 213–222 (1941).
    [CrossRef]
  3. M. B. Sobnack, W. C. Tan, N. P. Wanstall, T. W. Preist, and J. R. Sambles, “Stationary surface plasmons on a zero-order metal grating,” Phys. Rev. Lett. 80, 5667–5670 (1998).
    [CrossRef]
  4. Z. Chen, I. R. Hooper, and J. R. Sambles, “Strongly coupled surface plasmons on thin shallow metallic gratings,” Phys. Rev. B 77, 161405 (2008).
    [CrossRef]
  5. J. Le Perchec, P. Qumerais, A. Barbara, and T. López-Rios, “Why metallic surfaces with grooves a few nanometers deep and wide may strongly absorb visible light,” Phys. Rev. Lett. 100, 66408 (2008).
    [CrossRef]
  6. E. Popov, S. Enoch, and N. Bonod, “Absorption of light by extremely shallow metallic gratings: metamaterial behavior,” Opt. Express 17, 6770–6781 (2009).
    [CrossRef] [PubMed]
  7. J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96, 251104 (2010).
    [CrossRef]
  8. R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin film solar cells with broadband absorption enhancements,” Adv. Mater. 21, 3504–3509 (2009).
    [CrossRef]
  9. M. Ghulinyan, C. J. Oton, Z. Gaburro, L. Pavesi, C. Toninelli, and D. S. Wiersma, “Zener tunneling of lightwaves in an optical superlattice,” Phys. Rev. Lett. 94, 127401 (2005).
    [CrossRef] [PubMed]
  10. M. J. Bloemer and M. Scalora, “Transmissive properties of Ag/MgF photonic band gaps,” Appl. Phys. Lett. 72, 1676 (1998).
    [CrossRef]
  11. N. Gibbons, J. J. Baumberg, C. L. Bower, M. Kolle, and U. Steiner, “Scalable cylindrical metallodielectric metamaterials,” Adv. Mater. 21, 3933–3936 (2009).
    [CrossRef]
  12. R. S. Bennink, Y. K. Yoon, R. W. Boyd, and J. E. Sipe, “Accessing the optical nonlinearity of metals with metal-dielectric photonic bandgap structures,” Opt. Lett. 24, 1416–1418 (1999).
    [CrossRef]
  13. N. N. Lepeshkin, A. Schweinsberg, G. Piredda, R. S. Bennink, and R. W. Boyd, “Enhanced nonlinear optical response of one-dimensional metal-dielectric photonic crystals,” Phys. Rev. Lett. 93 (12), 123902 (2004).
    [CrossRef] [PubMed]
  14. B. Wood, J. B. Pendry, and D. P. Tsai, “Directed subwavelength imaging using a layered metal-dielectric system,” Phys. Rev. B 74, 115116 (2006).
    [CrossRef]
  15. Anan Fang, Thomas Koschny, and Costas M. Soukoulis, “Optical anisotropic metamaterials: negative refraction and focusing,” Phys. Rev. B 79 (24), 245127 (2009).
    [CrossRef]
  16. Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686 (2007).
    [CrossRef] [PubMed]
  17. C. C. Fu, A. Grimes, M. Long, C. G. L. Ferri, B. D. Rich, S. Ghosh, L. P. Lee, A. Gopinathan, and M. Khine, “Tunable nanowrinkles on shape memory polymer sheets,” Adv. Mater. 21, 4472–4476 (2009).
    [CrossRef]
  18. W. T. S. Huck, “Artificial skins: hierarchical wrinkling,” Nat. Mater. 4, 271–272 (2005).
    [CrossRef] [PubMed]
  19. K. Efimenko, M. Rackaitis, E. Manias, A. Vaziri, L. Mahadevan, and J. Genzer, “Nested self-similar wrinkling patterns in skins,” Nat. Mater. 4, 293–297 (2005).
    [CrossRef] [PubMed]
  20. O. Schumacher, S. Mendach, H. Welsch, A. Schramm, C. Heyn, and W. Hansen, “Lithographically defined metal-semiconductor-hybrid nanoscrolls,” Appl. Phys. Lett. 86, 143109 (2005).
    [CrossRef]
  21. S. Schwaiger, M. Brll, A. Krohn, A. Stemmann, C. Heyn, Y. Stark, D. Stickler, D. Heitmann, and S. Mendach, “Rolled-up three-dimensional metamaterials with a tunable plasma frequency in the visible regime,” Phys. Rev. Lett. 102 (16), 163903 (2009).
    [CrossRef] [PubMed]
  22. S. P. Lacour, S. Wagner, Z. Huang, and Z. Suo, “Stretchable gold conductors on elastomeric substrates,” Appl. Phys. Lett. 82, 2404 (2003).
    [CrossRef]
  23. F. Huang and J.J. Baumberg, “Actively tuned plasmons on elastomerically driven Au nanoparticle dimers,” Nano Lett. 10, 1787–1792 (2010)
    [CrossRef] [PubMed]
  24. I.M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, “Highly strained compliant optical metamaterials with large frequency tunability,” Nano Lett. 10, 4222–4227 (2010)
    [CrossRef] [PubMed]
  25. M. Kolle, B. Zheng, N. Gibbons, J. J. Baumberg, and U. Steiner, “Stretch-tuneable dielectric mirrors and optical microcavities,” Opt. Express 18, 4356 (2010).
    [CrossRef] [PubMed]
  26. M. D. Austin, H. Ge, W. Wu, M. Li, Z. Yu, D. Wasserman, S. A. Lyon, and S. Y. Chou, “Fabrication of 5 nm linewidth and 14 nm pitch features by nanoimprint lithography,” Appl. Phys. Lett. 84, 5299 (2004).
    [CrossRef]
  27. V. M. Shalaev, W. Cai, U. K. Chettiar, H. K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30, 3356 (2005).
    [CrossRef]

2010 (4)

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96, 251104 (2010).
[CrossRef]

F. Huang and J.J. Baumberg, “Actively tuned plasmons on elastomerically driven Au nanoparticle dimers,” Nano Lett. 10, 1787–1792 (2010)
[CrossRef] [PubMed]

I.M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, “Highly strained compliant optical metamaterials with large frequency tunability,” Nano Lett. 10, 4222–4227 (2010)
[CrossRef] [PubMed]

M. Kolle, B. Zheng, N. Gibbons, J. J. Baumberg, and U. Steiner, “Stretch-tuneable dielectric mirrors and optical microcavities,” Opt. Express 18, 4356 (2010).
[CrossRef] [PubMed]

2009 (6)

C. C. Fu, A. Grimes, M. Long, C. G. L. Ferri, B. D. Rich, S. Ghosh, L. P. Lee, A. Gopinathan, and M. Khine, “Tunable nanowrinkles on shape memory polymer sheets,” Adv. Mater. 21, 4472–4476 (2009).
[CrossRef]

S. Schwaiger, M. Brll, A. Krohn, A. Stemmann, C. Heyn, Y. Stark, D. Stickler, D. Heitmann, and S. Mendach, “Rolled-up three-dimensional metamaterials with a tunable plasma frequency in the visible regime,” Phys. Rev. Lett. 102 (16), 163903 (2009).
[CrossRef] [PubMed]

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin film solar cells with broadband absorption enhancements,” Adv. Mater. 21, 3504–3509 (2009).
[CrossRef]

E. Popov, S. Enoch, and N. Bonod, “Absorption of light by extremely shallow metallic gratings: metamaterial behavior,” Opt. Express 17, 6770–6781 (2009).
[CrossRef] [PubMed]

N. Gibbons, J. J. Baumberg, C. L. Bower, M. Kolle, and U. Steiner, “Scalable cylindrical metallodielectric metamaterials,” Adv. Mater. 21, 3933–3936 (2009).
[CrossRef]

Anan Fang, Thomas Koschny, and Costas M. Soukoulis, “Optical anisotropic metamaterials: negative refraction and focusing,” Phys. Rev. B 79 (24), 245127 (2009).
[CrossRef]

2008 (2)

Z. Chen, I. R. Hooper, and J. R. Sambles, “Strongly coupled surface plasmons on thin shallow metallic gratings,” Phys. Rev. B 77, 161405 (2008).
[CrossRef]

J. Le Perchec, P. Qumerais, A. Barbara, and T. López-Rios, “Why metallic surfaces with grooves a few nanometers deep and wide may strongly absorb visible light,” Phys. Rev. Lett. 100, 66408 (2008).
[CrossRef]

2007 (1)

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686 (2007).
[CrossRef] [PubMed]

2006 (1)

B. Wood, J. B. Pendry, and D. P. Tsai, “Directed subwavelength imaging using a layered metal-dielectric system,” Phys. Rev. B 74, 115116 (2006).
[CrossRef]

2005 (5)

M. Ghulinyan, C. J. Oton, Z. Gaburro, L. Pavesi, C. Toninelli, and D. S. Wiersma, “Zener tunneling of lightwaves in an optical superlattice,” Phys. Rev. Lett. 94, 127401 (2005).
[CrossRef] [PubMed]

V. M. Shalaev, W. Cai, U. K. Chettiar, H. K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30, 3356 (2005).
[CrossRef]

W. T. S. Huck, “Artificial skins: hierarchical wrinkling,” Nat. Mater. 4, 271–272 (2005).
[CrossRef] [PubMed]

K. Efimenko, M. Rackaitis, E. Manias, A. Vaziri, L. Mahadevan, and J. Genzer, “Nested self-similar wrinkling patterns in skins,” Nat. Mater. 4, 293–297 (2005).
[CrossRef] [PubMed]

O. Schumacher, S. Mendach, H. Welsch, A. Schramm, C. Heyn, and W. Hansen, “Lithographically defined metal-semiconductor-hybrid nanoscrolls,” Appl. Phys. Lett. 86, 143109 (2005).
[CrossRef]

2004 (2)

M. D. Austin, H. Ge, W. Wu, M. Li, Z. Yu, D. Wasserman, S. A. Lyon, and S. Y. Chou, “Fabrication of 5 nm linewidth and 14 nm pitch features by nanoimprint lithography,” Appl. Phys. Lett. 84, 5299 (2004).
[CrossRef]

N. N. Lepeshkin, A. Schweinsberg, G. Piredda, R. S. Bennink, and R. W. Boyd, “Enhanced nonlinear optical response of one-dimensional metal-dielectric photonic crystals,” Phys. Rev. Lett. 93 (12), 123902 (2004).
[CrossRef] [PubMed]

2003 (1)

S. P. Lacour, S. Wagner, Z. Huang, and Z. Suo, “Stretchable gold conductors on elastomeric substrates,” Appl. Phys. Lett. 82, 2404 (2003).
[CrossRef]

1999 (1)

1998 (2)

M. B. Sobnack, W. C. Tan, N. P. Wanstall, T. W. Preist, and J. R. Sambles, “Stationary surface plasmons on a zero-order metal grating,” Phys. Rev. Lett. 80, 5667–5670 (1998).
[CrossRef]

M. J. Bloemer and M. Scalora, “Transmissive properties of Ag/MgF photonic band gaps,” Appl. Phys. Lett. 72, 1676 (1998).
[CrossRef]

1941 (1)

1902 (1)

R. W. Wood, “‘XLII. on a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag. 4, 396–402 (1902).

Atwater, H. A.

I.M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, “Highly strained compliant optical metamaterials with large frequency tunability,” Nano Lett. 10, 4222–4227 (2010)
[CrossRef] [PubMed]

Austin, M. D.

M. D. Austin, H. Ge, W. Wu, M. Li, Z. Yu, D. Wasserman, S. A. Lyon, and S. Y. Chou, “Fabrication of 5 nm linewidth and 14 nm pitch features by nanoimprint lithography,” Appl. Phys. Lett. 84, 5299 (2004).
[CrossRef]

Aydin, K.

I.M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, “Highly strained compliant optical metamaterials with large frequency tunability,” Nano Lett. 10, 4222–4227 (2010)
[CrossRef] [PubMed]

Barbara, A.

J. Le Perchec, P. Qumerais, A. Barbara, and T. López-Rios, “Why metallic surfaces with grooves a few nanometers deep and wide may strongly absorb visible light,” Phys. Rev. Lett. 100, 66408 (2008).
[CrossRef]

Barnard, E.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin film solar cells with broadband absorption enhancements,” Adv. Mater. 21, 3504–3509 (2009).
[CrossRef]

Baumberg, J. J.

M. Kolle, B. Zheng, N. Gibbons, J. J. Baumberg, and U. Steiner, “Stretch-tuneable dielectric mirrors and optical microcavities,” Opt. Express 18, 4356 (2010).
[CrossRef] [PubMed]

N. Gibbons, J. J. Baumberg, C. L. Bower, M. Kolle, and U. Steiner, “Scalable cylindrical metallodielectric metamaterials,” Adv. Mater. 21, 3933–3936 (2009).
[CrossRef]

Baumberg, J.J.

F. Huang and J.J. Baumberg, “Actively tuned plasmons on elastomerically driven Au nanoparticle dimers,” Nano Lett. 10, 1787–1792 (2010)
[CrossRef] [PubMed]

Bennink, R. S.

N. N. Lepeshkin, A. Schweinsberg, G. Piredda, R. S. Bennink, and R. W. Boyd, “Enhanced nonlinear optical response of one-dimensional metal-dielectric photonic crystals,” Phys. Rev. Lett. 93 (12), 123902 (2004).
[CrossRef] [PubMed]

R. S. Bennink, Y. K. Yoon, R. W. Boyd, and J. E. Sipe, “Accessing the optical nonlinearity of metals with metal-dielectric photonic bandgap structures,” Opt. Lett. 24, 1416–1418 (1999).
[CrossRef]

Bloemer, M. J.

M. J. Bloemer and M. Scalora, “Transmissive properties of Ag/MgF photonic band gaps,” Appl. Phys. Lett. 72, 1676 (1998).
[CrossRef]

Bonod, N.

Bower, C. L.

N. Gibbons, J. J. Baumberg, C. L. Bower, M. Kolle, and U. Steiner, “Scalable cylindrical metallodielectric metamaterials,” Adv. Mater. 21, 3933–3936 (2009).
[CrossRef]

Boyd, R. W.

N. N. Lepeshkin, A. Schweinsberg, G. Piredda, R. S. Bennink, and R. W. Boyd, “Enhanced nonlinear optical response of one-dimensional metal-dielectric photonic crystals,” Phys. Rev. Lett. 93 (12), 123902 (2004).
[CrossRef] [PubMed]

R. S. Bennink, Y. K. Yoon, R. W. Boyd, and J. E. Sipe, “Accessing the optical nonlinearity of metals with metal-dielectric photonic bandgap structures,” Opt. Lett. 24, 1416–1418 (1999).
[CrossRef]

Briggs, R. M.

I.M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, “Highly strained compliant optical metamaterials with large frequency tunability,” Nano Lett. 10, 4222–4227 (2010)
[CrossRef] [PubMed]

Brll, M.

S. Schwaiger, M. Brll, A. Krohn, A. Stemmann, C. Heyn, Y. Stark, D. Stickler, D. Heitmann, and S. Mendach, “Rolled-up three-dimensional metamaterials with a tunable plasma frequency in the visible regime,” Phys. Rev. Lett. 102 (16), 163903 (2009).
[CrossRef] [PubMed]

Brongersma, M. L.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin film solar cells with broadband absorption enhancements,” Adv. Mater. 21, 3504–3509 (2009).
[CrossRef]

Cai, W.

Chen, Z.

Z. Chen, I. R. Hooper, and J. R. Sambles, “Strongly coupled surface plasmons on thin shallow metallic gratings,” Phys. Rev. B 77, 161405 (2008).
[CrossRef]

Chettiar, U. K.

Chou, S. Y.

M. D. Austin, H. Ge, W. Wu, M. Li, Z. Yu, D. Wasserman, S. A. Lyon, and S. Y. Chou, “Fabrication of 5 nm linewidth and 14 nm pitch features by nanoimprint lithography,” Appl. Phys. Lett. 84, 5299 (2004).
[CrossRef]

Drachev, V. P.

Efimenko, K.

K. Efimenko, M. Rackaitis, E. Manias, A. Vaziri, L. Mahadevan, and J. Genzer, “Nested self-similar wrinkling patterns in skins,” Nat. Mater. 4, 293–297 (2005).
[CrossRef] [PubMed]

Enoch, S.

Fang, Anan

Anan Fang, Thomas Koschny, and Costas M. Soukoulis, “Optical anisotropic metamaterials: negative refraction and focusing,” Phys. Rev. B 79 (24), 245127 (2009).
[CrossRef]

Fano, U.

Ferri, C. G. L.

C. C. Fu, A. Grimes, M. Long, C. G. L. Ferri, B. D. Rich, S. Ghosh, L. P. Lee, A. Gopinathan, and M. Khine, “Tunable nanowrinkles on shape memory polymer sheets,” Adv. Mater. 21, 4472–4476 (2009).
[CrossRef]

Fu, C. C.

C. C. Fu, A. Grimes, M. Long, C. G. L. Ferri, B. D. Rich, S. Ghosh, L. P. Lee, A. Gopinathan, and M. Khine, “Tunable nanowrinkles on shape memory polymer sheets,” Adv. Mater. 21, 4472–4476 (2009).
[CrossRef]

Gaburro, Z.

M. Ghulinyan, C. J. Oton, Z. Gaburro, L. Pavesi, C. Toninelli, and D. S. Wiersma, “Zener tunneling of lightwaves in an optical superlattice,” Phys. Rev. Lett. 94, 127401 (2005).
[CrossRef] [PubMed]

Ge, H.

M. D. Austin, H. Ge, W. Wu, M. Li, Z. Yu, D. Wasserman, S. A. Lyon, and S. Y. Chou, “Fabrication of 5 nm linewidth and 14 nm pitch features by nanoimprint lithography,” Appl. Phys. Lett. 84, 5299 (2004).
[CrossRef]

Genzer, J.

K. Efimenko, M. Rackaitis, E. Manias, A. Vaziri, L. Mahadevan, and J. Genzer, “Nested self-similar wrinkling patterns in skins,” Nat. Mater. 4, 293–297 (2005).
[CrossRef] [PubMed]

Ghosh, S.

C. C. Fu, A. Grimes, M. Long, C. G. L. Ferri, B. D. Rich, S. Ghosh, L. P. Lee, A. Gopinathan, and M. Khine, “Tunable nanowrinkles on shape memory polymer sheets,” Adv. Mater. 21, 4472–4476 (2009).
[CrossRef]

Ghulinyan, M.

M. Ghulinyan, C. J. Oton, Z. Gaburro, L. Pavesi, C. Toninelli, and D. S. Wiersma, “Zener tunneling of lightwaves in an optical superlattice,” Phys. Rev. Lett. 94, 127401 (2005).
[CrossRef] [PubMed]

Gibbons, N.

M. Kolle, B. Zheng, N. Gibbons, J. J. Baumberg, and U. Steiner, “Stretch-tuneable dielectric mirrors and optical microcavities,” Opt. Express 18, 4356 (2010).
[CrossRef] [PubMed]

N. Gibbons, J. J. Baumberg, C. L. Bower, M. Kolle, and U. Steiner, “Scalable cylindrical metallodielectric metamaterials,” Adv. Mater. 21, 3933–3936 (2009).
[CrossRef]

Gopinathan, A.

C. C. Fu, A. Grimes, M. Long, C. G. L. Ferri, B. D. Rich, S. Ghosh, L. P. Lee, A. Gopinathan, and M. Khine, “Tunable nanowrinkles on shape memory polymer sheets,” Adv. Mater. 21, 4472–4476 (2009).
[CrossRef]

Grimes, A.

C. C. Fu, A. Grimes, M. Long, C. G. L. Ferri, B. D. Rich, S. Ghosh, L. P. Lee, A. Gopinathan, and M. Khine, “Tunable nanowrinkles on shape memory polymer sheets,” Adv. Mater. 21, 4472–4476 (2009).
[CrossRef]

Hansen, W.

O. Schumacher, S. Mendach, H. Welsch, A. Schramm, C. Heyn, and W. Hansen, “Lithographically defined metal-semiconductor-hybrid nanoscrolls,” Appl. Phys. Lett. 86, 143109 (2005).
[CrossRef]

Hao, J.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96, 251104 (2010).
[CrossRef]

Heitmann, D.

S. Schwaiger, M. Brll, A. Krohn, A. Stemmann, C. Heyn, Y. Stark, D. Stickler, D. Heitmann, and S. Mendach, “Rolled-up three-dimensional metamaterials with a tunable plasma frequency in the visible regime,” Phys. Rev. Lett. 102 (16), 163903 (2009).
[CrossRef] [PubMed]

Heyn, C.

S. Schwaiger, M. Brll, A. Krohn, A. Stemmann, C. Heyn, Y. Stark, D. Stickler, D. Heitmann, and S. Mendach, “Rolled-up three-dimensional metamaterials with a tunable plasma frequency in the visible regime,” Phys. Rev. Lett. 102 (16), 163903 (2009).
[CrossRef] [PubMed]

O. Schumacher, S. Mendach, H. Welsch, A. Schramm, C. Heyn, and W. Hansen, “Lithographically defined metal-semiconductor-hybrid nanoscrolls,” Appl. Phys. Lett. 86, 143109 (2005).
[CrossRef]

Hooper, I. R.

Z. Chen, I. R. Hooper, and J. R. Sambles, “Strongly coupled surface plasmons on thin shallow metallic gratings,” Phys. Rev. B 77, 161405 (2008).
[CrossRef]

Huang, F.

F. Huang and J.J. Baumberg, “Actively tuned plasmons on elastomerically driven Au nanoparticle dimers,” Nano Lett. 10, 1787–1792 (2010)
[CrossRef] [PubMed]

Huang, Z.

S. P. Lacour, S. Wagner, Z. Huang, and Z. Suo, “Stretchable gold conductors on elastomeric substrates,” Appl. Phys. Lett. 82, 2404 (2003).
[CrossRef]

Huck, W. T. S.

W. T. S. Huck, “Artificial skins: hierarchical wrinkling,” Nat. Mater. 4, 271–272 (2005).
[CrossRef] [PubMed]

Kelaita, Y. A.

I.M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, “Highly strained compliant optical metamaterials with large frequency tunability,” Nano Lett. 10, 4222–4227 (2010)
[CrossRef] [PubMed]

Khine, M.

C. C. Fu, A. Grimes, M. Long, C. G. L. Ferri, B. D. Rich, S. Ghosh, L. P. Lee, A. Gopinathan, and M. Khine, “Tunable nanowrinkles on shape memory polymer sheets,” Adv. Mater. 21, 4472–4476 (2009).
[CrossRef]

Kildishev, A. V.

Kolle, M.

M. Kolle, B. Zheng, N. Gibbons, J. J. Baumberg, and U. Steiner, “Stretch-tuneable dielectric mirrors and optical microcavities,” Opt. Express 18, 4356 (2010).
[CrossRef] [PubMed]

N. Gibbons, J. J. Baumberg, C. L. Bower, M. Kolle, and U. Steiner, “Scalable cylindrical metallodielectric metamaterials,” Adv. Mater. 21, 3933–3936 (2009).
[CrossRef]

Koschny, Thomas

Anan Fang, Thomas Koschny, and Costas M. Soukoulis, “Optical anisotropic metamaterials: negative refraction and focusing,” Phys. Rev. B 79 (24), 245127 (2009).
[CrossRef]

Krohn, A.

S. Schwaiger, M. Brll, A. Krohn, A. Stemmann, C. Heyn, Y. Stark, D. Stickler, D. Heitmann, and S. Mendach, “Rolled-up three-dimensional metamaterials with a tunable plasma frequency in the visible regime,” Phys. Rev. Lett. 102 (16), 163903 (2009).
[CrossRef] [PubMed]

Lacour, S. P.

S. P. Lacour, S. Wagner, Z. Huang, and Z. Suo, “Stretchable gold conductors on elastomeric substrates,” Appl. Phys. Lett. 82, 2404 (2003).
[CrossRef]

Le Perchec, J.

J. Le Perchec, P. Qumerais, A. Barbara, and T. López-Rios, “Why metallic surfaces with grooves a few nanometers deep and wide may strongly absorb visible light,” Phys. Rev. Lett. 100, 66408 (2008).
[CrossRef]

Lee, H.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686 (2007).
[CrossRef] [PubMed]

Lee, L. P.

C. C. Fu, A. Grimes, M. Long, C. G. L. Ferri, B. D. Rich, S. Ghosh, L. P. Lee, A. Gopinathan, and M. Khine, “Tunable nanowrinkles on shape memory polymer sheets,” Adv. Mater. 21, 4472–4476 (2009).
[CrossRef]

Lepeshkin, N. N.

N. N. Lepeshkin, A. Schweinsberg, G. Piredda, R. S. Bennink, and R. W. Boyd, “Enhanced nonlinear optical response of one-dimensional metal-dielectric photonic crystals,” Phys. Rev. Lett. 93 (12), 123902 (2004).
[CrossRef] [PubMed]

Li, M.

M. D. Austin, H. Ge, W. Wu, M. Li, Z. Yu, D. Wasserman, S. A. Lyon, and S. Y. Chou, “Fabrication of 5 nm linewidth and 14 nm pitch features by nanoimprint lithography,” Appl. Phys. Lett. 84, 5299 (2004).
[CrossRef]

Liu, J.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin film solar cells with broadband absorption enhancements,” Adv. Mater. 21, 3504–3509 (2009).
[CrossRef]

Liu, X.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96, 251104 (2010).
[CrossRef]

Liu, Z.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686 (2007).
[CrossRef] [PubMed]

Long, M.

C. C. Fu, A. Grimes, M. Long, C. G. L. Ferri, B. D. Rich, S. Ghosh, L. P. Lee, A. Gopinathan, and M. Khine, “Tunable nanowrinkles on shape memory polymer sheets,” Adv. Mater. 21, 4472–4476 (2009).
[CrossRef]

López-Rios, T.

J. Le Perchec, P. Qumerais, A. Barbara, and T. López-Rios, “Why metallic surfaces with grooves a few nanometers deep and wide may strongly absorb visible light,” Phys. Rev. Lett. 100, 66408 (2008).
[CrossRef]

Lyon, S. A.

M. D. Austin, H. Ge, W. Wu, M. Li, Z. Yu, D. Wasserman, S. A. Lyon, and S. Y. Chou, “Fabrication of 5 nm linewidth and 14 nm pitch features by nanoimprint lithography,” Appl. Phys. Lett. 84, 5299 (2004).
[CrossRef]

Mahadevan, L.

K. Efimenko, M. Rackaitis, E. Manias, A. Vaziri, L. Mahadevan, and J. Genzer, “Nested self-similar wrinkling patterns in skins,” Nat. Mater. 4, 293–297 (2005).
[CrossRef] [PubMed]

Manias, E.

K. Efimenko, M. Rackaitis, E. Manias, A. Vaziri, L. Mahadevan, and J. Genzer, “Nested self-similar wrinkling patterns in skins,” Nat. Mater. 4, 293–297 (2005).
[CrossRef] [PubMed]

Mendach, S.

S. Schwaiger, M. Brll, A. Krohn, A. Stemmann, C. Heyn, Y. Stark, D. Stickler, D. Heitmann, and S. Mendach, “Rolled-up three-dimensional metamaterials with a tunable plasma frequency in the visible regime,” Phys. Rev. Lett. 102 (16), 163903 (2009).
[CrossRef] [PubMed]

O. Schumacher, S. Mendach, H. Welsch, A. Schramm, C. Heyn, and W. Hansen, “Lithographically defined metal-semiconductor-hybrid nanoscrolls,” Appl. Phys. Lett. 86, 143109 (2005).
[CrossRef]

Oton, C. J.

M. Ghulinyan, C. J. Oton, Z. Gaburro, L. Pavesi, C. Toninelli, and D. S. Wiersma, “Zener tunneling of lightwaves in an optical superlattice,” Phys. Rev. Lett. 94, 127401 (2005).
[CrossRef] [PubMed]

Padilla, W. J.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96, 251104 (2010).
[CrossRef]

Pala, R. A.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin film solar cells with broadband absorption enhancements,” Adv. Mater. 21, 3504–3509 (2009).
[CrossRef]

Pavesi, L.

M. Ghulinyan, C. J. Oton, Z. Gaburro, L. Pavesi, C. Toninelli, and D. S. Wiersma, “Zener tunneling of lightwaves in an optical superlattice,” Phys. Rev. Lett. 94, 127401 (2005).
[CrossRef] [PubMed]

Pendry, J. B.

B. Wood, J. B. Pendry, and D. P. Tsai, “Directed subwavelength imaging using a layered metal-dielectric system,” Phys. Rev. B 74, 115116 (2006).
[CrossRef]

Piredda, G.

N. N. Lepeshkin, A. Schweinsberg, G. Piredda, R. S. Bennink, and R. W. Boyd, “Enhanced nonlinear optical response of one-dimensional metal-dielectric photonic crystals,” Phys. Rev. Lett. 93 (12), 123902 (2004).
[CrossRef] [PubMed]

Popov, E.

Preist, T. W.

M. B. Sobnack, W. C. Tan, N. P. Wanstall, T. W. Preist, and J. R. Sambles, “Stationary surface plasmons on a zero-order metal grating,” Phys. Rev. Lett. 80, 5667–5670 (1998).
[CrossRef]

Pryce, I.M.

I.M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, “Highly strained compliant optical metamaterials with large frequency tunability,” Nano Lett. 10, 4222–4227 (2010)
[CrossRef] [PubMed]

Qiu, M.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96, 251104 (2010).
[CrossRef]

Qumerais, P.

J. Le Perchec, P. Qumerais, A. Barbara, and T. López-Rios, “Why metallic surfaces with grooves a few nanometers deep and wide may strongly absorb visible light,” Phys. Rev. Lett. 100, 66408 (2008).
[CrossRef]

Rackaitis, M.

K. Efimenko, M. Rackaitis, E. Manias, A. Vaziri, L. Mahadevan, and J. Genzer, “Nested self-similar wrinkling patterns in skins,” Nat. Mater. 4, 293–297 (2005).
[CrossRef] [PubMed]

Rich, B. D.

C. C. Fu, A. Grimes, M. Long, C. G. L. Ferri, B. D. Rich, S. Ghosh, L. P. Lee, A. Gopinathan, and M. Khine, “Tunable nanowrinkles on shape memory polymer sheets,” Adv. Mater. 21, 4472–4476 (2009).
[CrossRef]

Sambles, J. R.

Z. Chen, I. R. Hooper, and J. R. Sambles, “Strongly coupled surface plasmons on thin shallow metallic gratings,” Phys. Rev. B 77, 161405 (2008).
[CrossRef]

M. B. Sobnack, W. C. Tan, N. P. Wanstall, T. W. Preist, and J. R. Sambles, “Stationary surface plasmons on a zero-order metal grating,” Phys. Rev. Lett. 80, 5667–5670 (1998).
[CrossRef]

Sarychev, A. K.

Scalora, M.

M. J. Bloemer and M. Scalora, “Transmissive properties of Ag/MgF photonic band gaps,” Appl. Phys. Lett. 72, 1676 (1998).
[CrossRef]

Schramm, A.

O. Schumacher, S. Mendach, H. Welsch, A. Schramm, C. Heyn, and W. Hansen, “Lithographically defined metal-semiconductor-hybrid nanoscrolls,” Appl. Phys. Lett. 86, 143109 (2005).
[CrossRef]

Schumacher, O.

O. Schumacher, S. Mendach, H. Welsch, A. Schramm, C. Heyn, and W. Hansen, “Lithographically defined metal-semiconductor-hybrid nanoscrolls,” Appl. Phys. Lett. 86, 143109 (2005).
[CrossRef]

Schwaiger, S.

S. Schwaiger, M. Brll, A. Krohn, A. Stemmann, C. Heyn, Y. Stark, D. Stickler, D. Heitmann, and S. Mendach, “Rolled-up three-dimensional metamaterials with a tunable plasma frequency in the visible regime,” Phys. Rev. Lett. 102 (16), 163903 (2009).
[CrossRef] [PubMed]

Schweinsberg, A.

N. N. Lepeshkin, A. Schweinsberg, G. Piredda, R. S. Bennink, and R. W. Boyd, “Enhanced nonlinear optical response of one-dimensional metal-dielectric photonic crystals,” Phys. Rev. Lett. 93 (12), 123902 (2004).
[CrossRef] [PubMed]

Shalaev, V. M.

Sipe, J. E.

Sobnack, M. B.

M. B. Sobnack, W. C. Tan, N. P. Wanstall, T. W. Preist, and J. R. Sambles, “Stationary surface plasmons on a zero-order metal grating,” Phys. Rev. Lett. 80, 5667–5670 (1998).
[CrossRef]

Soukoulis, Costas M.

Anan Fang, Thomas Koschny, and Costas M. Soukoulis, “Optical anisotropic metamaterials: negative refraction and focusing,” Phys. Rev. B 79 (24), 245127 (2009).
[CrossRef]

Stark, Y.

S. Schwaiger, M. Brll, A. Krohn, A. Stemmann, C. Heyn, Y. Stark, D. Stickler, D. Heitmann, and S. Mendach, “Rolled-up three-dimensional metamaterials with a tunable plasma frequency in the visible regime,” Phys. Rev. Lett. 102 (16), 163903 (2009).
[CrossRef] [PubMed]

Steiner, U.

M. Kolle, B. Zheng, N. Gibbons, J. J. Baumberg, and U. Steiner, “Stretch-tuneable dielectric mirrors and optical microcavities,” Opt. Express 18, 4356 (2010).
[CrossRef] [PubMed]

N. Gibbons, J. J. Baumberg, C. L. Bower, M. Kolle, and U. Steiner, “Scalable cylindrical metallodielectric metamaterials,” Adv. Mater. 21, 3933–3936 (2009).
[CrossRef]

Stemmann, A.

S. Schwaiger, M. Brll, A. Krohn, A. Stemmann, C. Heyn, Y. Stark, D. Stickler, D. Heitmann, and S. Mendach, “Rolled-up three-dimensional metamaterials with a tunable plasma frequency in the visible regime,” Phys. Rev. Lett. 102 (16), 163903 (2009).
[CrossRef] [PubMed]

Stickler, D.

S. Schwaiger, M. Brll, A. Krohn, A. Stemmann, C. Heyn, Y. Stark, D. Stickler, D. Heitmann, and S. Mendach, “Rolled-up three-dimensional metamaterials with a tunable plasma frequency in the visible regime,” Phys. Rev. Lett. 102 (16), 163903 (2009).
[CrossRef] [PubMed]

Sun, C.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686 (2007).
[CrossRef] [PubMed]

Suo, Z.

S. P. Lacour, S. Wagner, Z. Huang, and Z. Suo, “Stretchable gold conductors on elastomeric substrates,” Appl. Phys. Lett. 82, 2404 (2003).
[CrossRef]

Tan, W. C.

M. B. Sobnack, W. C. Tan, N. P. Wanstall, T. W. Preist, and J. R. Sambles, “Stationary surface plasmons on a zero-order metal grating,” Phys. Rev. Lett. 80, 5667–5670 (1998).
[CrossRef]

Toninelli, C.

M. Ghulinyan, C. J. Oton, Z. Gaburro, L. Pavesi, C. Toninelli, and D. S. Wiersma, “Zener tunneling of lightwaves in an optical superlattice,” Phys. Rev. Lett. 94, 127401 (2005).
[CrossRef] [PubMed]

Tsai, D. P.

B. Wood, J. B. Pendry, and D. P. Tsai, “Directed subwavelength imaging using a layered metal-dielectric system,” Phys. Rev. B 74, 115116 (2006).
[CrossRef]

Vaziri, A.

K. Efimenko, M. Rackaitis, E. Manias, A. Vaziri, L. Mahadevan, and J. Genzer, “Nested self-similar wrinkling patterns in skins,” Nat. Mater. 4, 293–297 (2005).
[CrossRef] [PubMed]

Wagner, S.

S. P. Lacour, S. Wagner, Z. Huang, and Z. Suo, “Stretchable gold conductors on elastomeric substrates,” Appl. Phys. Lett. 82, 2404 (2003).
[CrossRef]

Wang, J.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96, 251104 (2010).
[CrossRef]

Wanstall, N. P.

M. B. Sobnack, W. C. Tan, N. P. Wanstall, T. W. Preist, and J. R. Sambles, “Stationary surface plasmons on a zero-order metal grating,” Phys. Rev. Lett. 80, 5667–5670 (1998).
[CrossRef]

Wasserman, D.

M. D. Austin, H. Ge, W. Wu, M. Li, Z. Yu, D. Wasserman, S. A. Lyon, and S. Y. Chou, “Fabrication of 5 nm linewidth and 14 nm pitch features by nanoimprint lithography,” Appl. Phys. Lett. 84, 5299 (2004).
[CrossRef]

Welsch, H.

O. Schumacher, S. Mendach, H. Welsch, A. Schramm, C. Heyn, and W. Hansen, “Lithographically defined metal-semiconductor-hybrid nanoscrolls,” Appl. Phys. Lett. 86, 143109 (2005).
[CrossRef]

White, J.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin film solar cells with broadband absorption enhancements,” Adv. Mater. 21, 3504–3509 (2009).
[CrossRef]

Wiersma, D. S.

M. Ghulinyan, C. J. Oton, Z. Gaburro, L. Pavesi, C. Toninelli, and D. S. Wiersma, “Zener tunneling of lightwaves in an optical superlattice,” Phys. Rev. Lett. 94, 127401 (2005).
[CrossRef] [PubMed]

Wood, B.

B. Wood, J. B. Pendry, and D. P. Tsai, “Directed subwavelength imaging using a layered metal-dielectric system,” Phys. Rev. B 74, 115116 (2006).
[CrossRef]

Wood, R. W.

R. W. Wood, “‘XLII. on a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag. 4, 396–402 (1902).

Wu, W.

M. D. Austin, H. Ge, W. Wu, M. Li, Z. Yu, D. Wasserman, S. A. Lyon, and S. Y. Chou, “Fabrication of 5 nm linewidth and 14 nm pitch features by nanoimprint lithography,” Appl. Phys. Lett. 84, 5299 (2004).
[CrossRef]

Xiong, Y.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686 (2007).
[CrossRef] [PubMed]

Yoon, Y. K.

Yu, Z.

M. D. Austin, H. Ge, W. Wu, M. Li, Z. Yu, D. Wasserman, S. A. Lyon, and S. Y. Chou, “Fabrication of 5 nm linewidth and 14 nm pitch features by nanoimprint lithography,” Appl. Phys. Lett. 84, 5299 (2004).
[CrossRef]

Yuan, H. K.

Zhang, X.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686 (2007).
[CrossRef] [PubMed]

Zheng, B.

Zhou, L.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96, 251104 (2010).
[CrossRef]

Adv. Mater. (3)

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin film solar cells with broadband absorption enhancements,” Adv. Mater. 21, 3504–3509 (2009).
[CrossRef]

N. Gibbons, J. J. Baumberg, C. L. Bower, M. Kolle, and U. Steiner, “Scalable cylindrical metallodielectric metamaterials,” Adv. Mater. 21, 3933–3936 (2009).
[CrossRef]

C. C. Fu, A. Grimes, M. Long, C. G. L. Ferri, B. D. Rich, S. Ghosh, L. P. Lee, A. Gopinathan, and M. Khine, “Tunable nanowrinkles on shape memory polymer sheets,” Adv. Mater. 21, 4472–4476 (2009).
[CrossRef]

Appl. Phys. Lett. (5)

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96, 251104 (2010).
[CrossRef]

M. J. Bloemer and M. Scalora, “Transmissive properties of Ag/MgF photonic band gaps,” Appl. Phys. Lett. 72, 1676 (1998).
[CrossRef]

S. P. Lacour, S. Wagner, Z. Huang, and Z. Suo, “Stretchable gold conductors on elastomeric substrates,” Appl. Phys. Lett. 82, 2404 (2003).
[CrossRef]

O. Schumacher, S. Mendach, H. Welsch, A. Schramm, C. Heyn, and W. Hansen, “Lithographically defined metal-semiconductor-hybrid nanoscrolls,” Appl. Phys. Lett. 86, 143109 (2005).
[CrossRef]

M. D. Austin, H. Ge, W. Wu, M. Li, Z. Yu, D. Wasserman, S. A. Lyon, and S. Y. Chou, “Fabrication of 5 nm linewidth and 14 nm pitch features by nanoimprint lithography,” Appl. Phys. Lett. 84, 5299 (2004).
[CrossRef]

J. Opt. Soc. Am. (1)

Nano Lett. (2)

F. Huang and J.J. Baumberg, “Actively tuned plasmons on elastomerically driven Au nanoparticle dimers,” Nano Lett. 10, 1787–1792 (2010)
[CrossRef] [PubMed]

I.M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, “Highly strained compliant optical metamaterials with large frequency tunability,” Nano Lett. 10, 4222–4227 (2010)
[CrossRef] [PubMed]

Nat. Mater. (2)

W. T. S. Huck, “Artificial skins: hierarchical wrinkling,” Nat. Mater. 4, 271–272 (2005).
[CrossRef] [PubMed]

K. Efimenko, M. Rackaitis, E. Manias, A. Vaziri, L. Mahadevan, and J. Genzer, “Nested self-similar wrinkling patterns in skins,” Nat. Mater. 4, 293–297 (2005).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (2)

Philos. Mag. (1)

R. W. Wood, “‘XLII. on a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag. 4, 396–402 (1902).

Phys. Rev. B (3)

Z. Chen, I. R. Hooper, and J. R. Sambles, “Strongly coupled surface plasmons on thin shallow metallic gratings,” Phys. Rev. B 77, 161405 (2008).
[CrossRef]

B. Wood, J. B. Pendry, and D. P. Tsai, “Directed subwavelength imaging using a layered metal-dielectric system,” Phys. Rev. B 74, 115116 (2006).
[CrossRef]

Anan Fang, Thomas Koschny, and Costas M. Soukoulis, “Optical anisotropic metamaterials: negative refraction and focusing,” Phys. Rev. B 79 (24), 245127 (2009).
[CrossRef]

Phys. Rev. Lett. (5)

N. N. Lepeshkin, A. Schweinsberg, G. Piredda, R. S. Bennink, and R. W. Boyd, “Enhanced nonlinear optical response of one-dimensional metal-dielectric photonic crystals,” Phys. Rev. Lett. 93 (12), 123902 (2004).
[CrossRef] [PubMed]

J. Le Perchec, P. Qumerais, A. Barbara, and T. López-Rios, “Why metallic surfaces with grooves a few nanometers deep and wide may strongly absorb visible light,” Phys. Rev. Lett. 100, 66408 (2008).
[CrossRef]

M. B. Sobnack, W. C. Tan, N. P. Wanstall, T. W. Preist, and J. R. Sambles, “Stationary surface plasmons on a zero-order metal grating,” Phys. Rev. Lett. 80, 5667–5670 (1998).
[CrossRef]

M. Ghulinyan, C. J. Oton, Z. Gaburro, L. Pavesi, C. Toninelli, and D. S. Wiersma, “Zener tunneling of lightwaves in an optical superlattice,” Phys. Rev. Lett. 94, 127401 (2005).
[CrossRef] [PubMed]

S. Schwaiger, M. Brll, A. Krohn, A. Stemmann, C. Heyn, Y. Stark, D. Stickler, D. Heitmann, and S. Mendach, “Rolled-up three-dimensional metamaterials with a tunable plasma frequency in the visible regime,” Phys. Rev. Lett. 102 (16), 163903 (2009).
[CrossRef] [PubMed]

Science (1)

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686 (2007).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Bilayer cross-section after Au deposition on PSS and PDMS layers spin-coated onto a 1.6μm pitch grating. (b) Corrugated bi-layer of Au/PDMS released from the substrate and rolled up around a silica rod of width 1.5mm. (c) AFM scan across rolled-up sample (red), and original grating (height÷3, blue dashed). (d) Photo of a 4-bilayer grating MDBR. Surface Moiré fringes arise from imperfect groove alignment.

Fig. 2
Fig. 2

(a) Dark field image showing Moiré fringes caused by groove misalignment. (b) Bright field images showing surface grooves at areas of good (B) and poor (D) registration. (c) Small groove mismatch angles, θ, lead to Moiré fringes of spacing, s. (d) Different registration configurations arise from groove mismatch.

Fig. 3
Fig. 3

(a) Bright field spectra from adjacent dark (D) and bright fringes (B) with collection spot size of 5μm. (b) Corresponding transfer matrix simulations of flat multilayers with varying polymer thickness.

Fig. 4
Fig. 4

(a) Schematic white-light goniometer rig. (b) Intensity from corrugated multilayer measured at different collection angles with 0° incidence. (c) Reflection spectrum (•) with corresponding simulation of flat MDBR (black dashed). Extracted diffraction intensities of +1 (blue +) order (×8) plotted along with simulated MDBR absorption (red dashed). Shown for 2 bilayers and, (d) 3 bilayers for +1 (blue +) and −1 (red +) diffractive orders.

Metrics