Abstract

The highly transparent micro-grating structures (MGSs) of sapphire substrate with large diffuse light scattering were theoretically and experimentally studied. From the finite difference time domain simulation, it was found that the degree of diffuse light scattering is strongly dependent on the size of grating structures. For a highly transparent property, the sapphire MGSs were optimally designed by the theoretical calculations using the rigorous coupled wave analysis method. The order of taper, geometry (i.e., width and height), and pitch length of MGSs were optimized to maximize their average total transmittance over a wide wavelength range of 300-1800 nm. Additionally, the influence of the deposition of low-refractive index material such as SiO2 onto sapphire MGSs on the transmittance characteristics was investigated. To verify experimentally the feasibility, the sapphire MGSs were fabricated by the conventional lithography and dry etching processes. The SiO2 deposited sapphire MGS exhibited a further increase in the total transmittance due to its relatively more graded refractive index profile while maintaining a significantly enhanced diffuse light scattering. The experimental data were in a reasonable agreement with the theoretical results.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. F. Hartman and T. K. Gaylord, “Antireflection gold surface-relief gratings: experimental characteristics,” Appl. Opt. 27(17), 3738–3743 (1988).
    [CrossRef] [PubMed]
  2. K. Kintaka, J. Nishii, A. Mizutani, H. Kikuta, and H. Nakano, “Antireflection microstructures fabricated upon fluorine-doped SiO2 films,” Opt. Lett. 26(21), 1642–1644 (2001).
    [CrossRef] [PubMed]
  3. L. Escoubas, J. J. Simon, M. Loli, G. Berginc, F. Flory, and H. Giovannini, “An antireflective silicon grating working in the resonance domain for the near infrared spectral region,” Opt. Commun. 226(1-6), 81–88 (2003).
    [CrossRef]
  4. S. J. Choi and S. Y. Huh, “Direct structuring of a biomimetic anti-reflective, self-cleaning surface for light harvesting in organic solar cells,” Macromol. Rapid Commun. 31(6), 539–544 (2010).
    [CrossRef] [PubMed]
  5. M. I. Elhaj and M. Schadt, “Optical polymer thin films with isotropic and anisotropic nano-corrugated surface topologies,” Nature 410(6830), 796–799 (2001).
    [CrossRef] [PubMed]
  6. O. Deparis, N. Khuzayim, A. Parker, and J. P. Vigneron, “Assessment of the antireflection property of moth wings by three-dimensional transfer-matrix optical simulations,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 79(4 Pt 1), 041910 (2009).
    [CrossRef] [PubMed]
  7. Y. Wang, N. Lu, H. Xu, G. Shi, M. Xu, X. Lin, H. Li, W. Wang, D. Qi, Y. Lu, and L. Chi, “Biomimetic corrugated silicon nanocone arrays for self-cleaning antireflection coatings,” Nano Res. 3(7), 520–527 (2010).
    [CrossRef]
  8. W. Śmigaj, B. Gralak, R. Pierre, and G. Tayeb, “Antireflection gratings for a photonic-crystal flat lens,” Opt. Lett. 34(22), 3532–3534 (2009).
    [CrossRef] [PubMed]
  9. J. M. Park, S. G. Lee, H. R. Park, and M. H. Lee, “Self-collimating photonic crystal antireflection structure for both TE and TM polarizations,” Opt. Express 18(12), 13083–13093 (2010).
    [CrossRef] [PubMed]
  10. Y. M. Song, S. J. Jang, J. S. Yu, and Y. T. Lee, “Bioinspired parabola subwavelength structures for improved broadband antireflection,” Small 6(9), 984–987 (2010).
    [CrossRef] [PubMed]
  11. Y. H. Ko and J. S. Yu, “Design of hemi-urchin shaped ZnO nanostructures for broadband and wide-angle antireflection coatings,” Opt. Express 19(1), 297–305 (2011).
    [CrossRef] [PubMed]
  12. S. Walheim, E. Schaffer, J. Mlynek, and U. Steiner, “Nanophase-separated polymer films as high-performance antireflection coatings,” Science 283(5401), 520–522 (1999).
    [CrossRef] [PubMed]
  13. K. Crabtree and R. A. Chipman, “Subwavelength-grating-induced wavefront aberrations: a case study,” Appl. Opt. 46(21), 4549–4554 (2007).
    [CrossRef] [PubMed]
  14. Y. M. Song, H. J. Choi, J. S. Yu, and Y. T. Lee, “Design of highly transparent glasses with broadband antireflective subwavelength structures,” Opt. Express 18(12), 13063–13071 (2010).
    [CrossRef] [PubMed]
  15. Y. M. Song, E. S. Choi, G. C. Park, C. Y. Park, S. J. Jang, and Y. T. Lee, “Disordered antireflective nanostructures on GaN-based light-emitting diodes using Ag nanoparticles for improved light extraction efficiency,” Appl. Phys. Lett. 97(9), 093110 (2010).
    [CrossRef]
  16. Y. M. Song, G. C. Park, S. J. Jang, J. H. Ha, J. S. Yu, and Y. T. Lee, “Multifunctional light escaping architecture inspired by compound eye surface structures: From understanding to experimental demonstration,” Opt. Express 19(S2), A157–A165 (2011).
    [CrossRef] [PubMed]
  17. J. Y. Chen and K. W. Sun, “Enhancement of the light conversion efficiency of silicon solar cells by using nanoimprint anti-reflection layer,” Sol. Energy Mater. Sol. Cells 94(3), 629–633 (2010).
    [CrossRef]
  18. J. Jonsson and F. Nikolaje, “Investigation of optical properties of injection molded subwavelength gratings,” Proc. SPIE 4779, 23–30 (2002).
    [CrossRef]
  19. D. L. Brundrett, T. K. Gaylord, and E. N. Glytsis, “Polarizing mirror/absorber for visible wavelengths based on a silicon subwavelength grating: design and fabrication,” Appl. Opt. 37(13), 2534–2541 (1998).
    [CrossRef] [PubMed]
  20. W. Ge, C. Wang, Y. Xue, B. Cao, B. Zhang, and K. Xu, “Tunable ultra-deep subwavelength photolithography using a surface plasmon resonant cavity,” Opt. Express 19(7), 6714–6723 (2011).
    [CrossRef] [PubMed]
  21. C. C. Yu, Y. T. Chen, D. H. Wan, H. L. Chen, S. L. Ku, and Y. F. Chou, “Using one-step, dual-side nanoimprint lithography to fabricate low-cost, highly flexible wave plates exhibiting broadband antireflection,” J. Electrochem. Soc. 158(6), J195–J199 (2011).
    [CrossRef]
  22. P. Lalanne and G. M. Morris, “Antireflection behavior of silicon subwavelength periodic structures for visible light,” Nanotechnology 8(2), 53–56 (1997).
    [CrossRef]
  23. Z. Jehl, J. Rousset, F. Donsanti, G. Renou, N. Naghavi, and D. Lincot, “Electrodeposition of ZnO nanorod arrays on ZnO substrate with tunable orientation and optical properties,” Nanotechnology 21(39), 395603 (2010).
    [CrossRef] [PubMed]
  24. S. S. Lo, D. Haung, and D. J. Jan, “Haze ratio enhancement using a closely packed ZnO monolayer structure,” Opt. Express 18(2), 662–669 (2010).
    [CrossRef] [PubMed]
  25. C. Haase and H. Stiebig, “Thin-flm silicon solar cells with efficient periodic light trapping texture,” Appl. Phys. Lett. 91(6), 061116 (2007).
    [CrossRef]
  26. S. Mokkapati, F. J. Beck, A. Polman, and K. R. Catchpole, “Designing periodic arrays of metal nanoparticles for light-trapping applications in solar cells,” Appl. Phys. Lett. 95(5), 053115 (2009).
    [CrossRef]
  27. R. Bouffaron, L. Escoubas, J. J. Simon, Ph. Torchio, F. Flory, G. Berginc, Ph. Masclet, C. Perret, and P. Schiavone, “Design and fabrication of infrared antireflecting bi-periodic micro-structured surfaces,” Proc. SPIE 6992, 69920H (2008).
    [CrossRef]
  28. S. L. Chuang, Physics of optoelectronic devices, (John Wiley & Sons. Inc. 1995).
  29. S. L. Chuang and J. A. Kong, “Wave scattering and guidance by dielectric waveguides with periodic surfaces,” J. Opt. Soc. Am. 73(5), 669–679 (1983).
    [CrossRef]
  30. R. Bouffaron, L. Escoubas, V. Brissonneau, J. J. Simon, G. Berginc, P. Torchio, F. Flory, and P. Masclet, “Spherically shaped micro-structured antireflective surfaces,” Opt. Express 17(24), 21590–21597 (2009).
    [CrossRef] [PubMed]
  31. W. Zhou, M. Tao, L. Chen, and H. Yang, “Microstructured surface design for omnidirectional antireflection coatings on solar cells,” J. Appl. Phys. 102(10), 103105 (2007).
    [CrossRef]
  32. D. W. Kang, S. H. Kuk, K. S. Ji, S. W. Ahn, and M. K. Han, “Highly transparent and high haze bilayer Al-doped ZnO thin film employing oxygen-controlled seed layer,” Jpn. J. Appl. Phys. 49(3), 031101 (2010).
    [CrossRef]

2011

2010

S. S. Lo, D. Haung, and D. J. Jan, “Haze ratio enhancement using a closely packed ZnO monolayer structure,” Opt. Express 18(2), 662–669 (2010).
[CrossRef] [PubMed]

Y. M. Song, H. J. Choi, J. S. Yu, and Y. T. Lee, “Design of highly transparent glasses with broadband antireflective subwavelength structures,” Opt. Express 18(12), 13063–13071 (2010).
[CrossRef] [PubMed]

J. M. Park, S. G. Lee, H. R. Park, and M. H. Lee, “Self-collimating photonic crystal antireflection structure for both TE and TM polarizations,” Opt. Express 18(12), 13083–13093 (2010).
[CrossRef] [PubMed]

Z. Jehl, J. Rousset, F. Donsanti, G. Renou, N. Naghavi, and D. Lincot, “Electrodeposition of ZnO nanorod arrays on ZnO substrate with tunable orientation and optical properties,” Nanotechnology 21(39), 395603 (2010).
[CrossRef] [PubMed]

D. W. Kang, S. H. Kuk, K. S. Ji, S. W. Ahn, and M. K. Han, “Highly transparent and high haze bilayer Al-doped ZnO thin film employing oxygen-controlled seed layer,” Jpn. J. Appl. Phys. 49(3), 031101 (2010).
[CrossRef]

S. J. Choi and S. Y. Huh, “Direct structuring of a biomimetic anti-reflective, self-cleaning surface for light harvesting in organic solar cells,” Macromol. Rapid Commun. 31(6), 539–544 (2010).
[CrossRef] [PubMed]

Y. Wang, N. Lu, H. Xu, G. Shi, M. Xu, X. Lin, H. Li, W. Wang, D. Qi, Y. Lu, and L. Chi, “Biomimetic corrugated silicon nanocone arrays for self-cleaning antireflection coatings,” Nano Res. 3(7), 520–527 (2010).
[CrossRef]

Y. M. Song, S. J. Jang, J. S. Yu, and Y. T. Lee, “Bioinspired parabola subwavelength structures for improved broadband antireflection,” Small 6(9), 984–987 (2010).
[CrossRef] [PubMed]

Y. M. Song, E. S. Choi, G. C. Park, C. Y. Park, S. J. Jang, and Y. T. Lee, “Disordered antireflective nanostructures on GaN-based light-emitting diodes using Ag nanoparticles for improved light extraction efficiency,” Appl. Phys. Lett. 97(9), 093110 (2010).
[CrossRef]

J. Y. Chen and K. W. Sun, “Enhancement of the light conversion efficiency of silicon solar cells by using nanoimprint anti-reflection layer,” Sol. Energy Mater. Sol. Cells 94(3), 629–633 (2010).
[CrossRef]

2009

O. Deparis, N. Khuzayim, A. Parker, and J. P. Vigneron, “Assessment of the antireflection property of moth wings by three-dimensional transfer-matrix optical simulations,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 79(4 Pt 1), 041910 (2009).
[CrossRef] [PubMed]

S. Mokkapati, F. J. Beck, A. Polman, and K. R. Catchpole, “Designing periodic arrays of metal nanoparticles for light-trapping applications in solar cells,” Appl. Phys. Lett. 95(5), 053115 (2009).
[CrossRef]

W. Śmigaj, B. Gralak, R. Pierre, and G. Tayeb, “Antireflection gratings for a photonic-crystal flat lens,” Opt. Lett. 34(22), 3532–3534 (2009).
[CrossRef] [PubMed]

R. Bouffaron, L. Escoubas, V. Brissonneau, J. J. Simon, G. Berginc, P. Torchio, F. Flory, and P. Masclet, “Spherically shaped micro-structured antireflective surfaces,” Opt. Express 17(24), 21590–21597 (2009).
[CrossRef] [PubMed]

2008

R. Bouffaron, L. Escoubas, J. J. Simon, Ph. Torchio, F. Flory, G. Berginc, Ph. Masclet, C. Perret, and P. Schiavone, “Design and fabrication of infrared antireflecting bi-periodic micro-structured surfaces,” Proc. SPIE 6992, 69920H (2008).
[CrossRef]

2007

W. Zhou, M. Tao, L. Chen, and H. Yang, “Microstructured surface design for omnidirectional antireflection coatings on solar cells,” J. Appl. Phys. 102(10), 103105 (2007).
[CrossRef]

C. Haase and H. Stiebig, “Thin-flm silicon solar cells with efficient periodic light trapping texture,” Appl. Phys. Lett. 91(6), 061116 (2007).
[CrossRef]

K. Crabtree and R. A. Chipman, “Subwavelength-grating-induced wavefront aberrations: a case study,” Appl. Opt. 46(21), 4549–4554 (2007).
[CrossRef] [PubMed]

2003

L. Escoubas, J. J. Simon, M. Loli, G. Berginc, F. Flory, and H. Giovannini, “An antireflective silicon grating working in the resonance domain for the near infrared spectral region,” Opt. Commun. 226(1-6), 81–88 (2003).
[CrossRef]

2002

J. Jonsson and F. Nikolaje, “Investigation of optical properties of injection molded subwavelength gratings,” Proc. SPIE 4779, 23–30 (2002).
[CrossRef]

2001

M. I. Elhaj and M. Schadt, “Optical polymer thin films with isotropic and anisotropic nano-corrugated surface topologies,” Nature 410(6830), 796–799 (2001).
[CrossRef] [PubMed]

K. Kintaka, J. Nishii, A. Mizutani, H. Kikuta, and H. Nakano, “Antireflection microstructures fabricated upon fluorine-doped SiO2 films,” Opt. Lett. 26(21), 1642–1644 (2001).
[CrossRef] [PubMed]

1999

S. Walheim, E. Schaffer, J. Mlynek, and U. Steiner, “Nanophase-separated polymer films as high-performance antireflection coatings,” Science 283(5401), 520–522 (1999).
[CrossRef] [PubMed]

1998

1997

P. Lalanne and G. M. Morris, “Antireflection behavior of silicon subwavelength periodic structures for visible light,” Nanotechnology 8(2), 53–56 (1997).
[CrossRef]

1988

1983

Ahn, S. W.

D. W. Kang, S. H. Kuk, K. S. Ji, S. W. Ahn, and M. K. Han, “Highly transparent and high haze bilayer Al-doped ZnO thin film employing oxygen-controlled seed layer,” Jpn. J. Appl. Phys. 49(3), 031101 (2010).
[CrossRef]

Beck, F. J.

S. Mokkapati, F. J. Beck, A. Polman, and K. R. Catchpole, “Designing periodic arrays of metal nanoparticles for light-trapping applications in solar cells,” Appl. Phys. Lett. 95(5), 053115 (2009).
[CrossRef]

Berginc, G.

R. Bouffaron, L. Escoubas, V. Brissonneau, J. J. Simon, G. Berginc, P. Torchio, F. Flory, and P. Masclet, “Spherically shaped micro-structured antireflective surfaces,” Opt. Express 17(24), 21590–21597 (2009).
[CrossRef] [PubMed]

R. Bouffaron, L. Escoubas, J. J. Simon, Ph. Torchio, F. Flory, G. Berginc, Ph. Masclet, C. Perret, and P. Schiavone, “Design and fabrication of infrared antireflecting bi-periodic micro-structured surfaces,” Proc. SPIE 6992, 69920H (2008).
[CrossRef]

L. Escoubas, J. J. Simon, M. Loli, G. Berginc, F. Flory, and H. Giovannini, “An antireflective silicon grating working in the resonance domain for the near infrared spectral region,” Opt. Commun. 226(1-6), 81–88 (2003).
[CrossRef]

Bouffaron, R.

R. Bouffaron, L. Escoubas, V. Brissonneau, J. J. Simon, G. Berginc, P. Torchio, F. Flory, and P. Masclet, “Spherically shaped micro-structured antireflective surfaces,” Opt. Express 17(24), 21590–21597 (2009).
[CrossRef] [PubMed]

R. Bouffaron, L. Escoubas, J. J. Simon, Ph. Torchio, F. Flory, G. Berginc, Ph. Masclet, C. Perret, and P. Schiavone, “Design and fabrication of infrared antireflecting bi-periodic micro-structured surfaces,” Proc. SPIE 6992, 69920H (2008).
[CrossRef]

Brissonneau, V.

Brundrett, D. L.

Cao, B.

Catchpole, K. R.

S. Mokkapati, F. J. Beck, A. Polman, and K. R. Catchpole, “Designing periodic arrays of metal nanoparticles for light-trapping applications in solar cells,” Appl. Phys. Lett. 95(5), 053115 (2009).
[CrossRef]

Chen, H. L.

C. C. Yu, Y. T. Chen, D. H. Wan, H. L. Chen, S. L. Ku, and Y. F. Chou, “Using one-step, dual-side nanoimprint lithography to fabricate low-cost, highly flexible wave plates exhibiting broadband antireflection,” J. Electrochem. Soc. 158(6), J195–J199 (2011).
[CrossRef]

Chen, J. Y.

J. Y. Chen and K. W. Sun, “Enhancement of the light conversion efficiency of silicon solar cells by using nanoimprint anti-reflection layer,” Sol. Energy Mater. Sol. Cells 94(3), 629–633 (2010).
[CrossRef]

Chen, L.

W. Zhou, M. Tao, L. Chen, and H. Yang, “Microstructured surface design for omnidirectional antireflection coatings on solar cells,” J. Appl. Phys. 102(10), 103105 (2007).
[CrossRef]

Chen, Y. T.

C. C. Yu, Y. T. Chen, D. H. Wan, H. L. Chen, S. L. Ku, and Y. F. Chou, “Using one-step, dual-side nanoimprint lithography to fabricate low-cost, highly flexible wave plates exhibiting broadband antireflection,” J. Electrochem. Soc. 158(6), J195–J199 (2011).
[CrossRef]

Chi, L.

Y. Wang, N. Lu, H. Xu, G. Shi, M. Xu, X. Lin, H. Li, W. Wang, D. Qi, Y. Lu, and L. Chi, “Biomimetic corrugated silicon nanocone arrays for self-cleaning antireflection coatings,” Nano Res. 3(7), 520–527 (2010).
[CrossRef]

Chipman, R. A.

Choi, E. S.

Y. M. Song, E. S. Choi, G. C. Park, C. Y. Park, S. J. Jang, and Y. T. Lee, “Disordered antireflective nanostructures on GaN-based light-emitting diodes using Ag nanoparticles for improved light extraction efficiency,” Appl. Phys. Lett. 97(9), 093110 (2010).
[CrossRef]

Choi, H. J.

Choi, S. J.

S. J. Choi and S. Y. Huh, “Direct structuring of a biomimetic anti-reflective, self-cleaning surface for light harvesting in organic solar cells,” Macromol. Rapid Commun. 31(6), 539–544 (2010).
[CrossRef] [PubMed]

Chou, Y. F.

C. C. Yu, Y. T. Chen, D. H. Wan, H. L. Chen, S. L. Ku, and Y. F. Chou, “Using one-step, dual-side nanoimprint lithography to fabricate low-cost, highly flexible wave plates exhibiting broadband antireflection,” J. Electrochem. Soc. 158(6), J195–J199 (2011).
[CrossRef]

Chuang, S. L.

Crabtree, K.

Deparis, O.

O. Deparis, N. Khuzayim, A. Parker, and J. P. Vigneron, “Assessment of the antireflection property of moth wings by three-dimensional transfer-matrix optical simulations,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 79(4 Pt 1), 041910 (2009).
[CrossRef] [PubMed]

Donsanti, F.

Z. Jehl, J. Rousset, F. Donsanti, G. Renou, N. Naghavi, and D. Lincot, “Electrodeposition of ZnO nanorod arrays on ZnO substrate with tunable orientation and optical properties,” Nanotechnology 21(39), 395603 (2010).
[CrossRef] [PubMed]

Elhaj, M. I.

M. I. Elhaj and M. Schadt, “Optical polymer thin films with isotropic and anisotropic nano-corrugated surface topologies,” Nature 410(6830), 796–799 (2001).
[CrossRef] [PubMed]

Escoubas, L.

R. Bouffaron, L. Escoubas, V. Brissonneau, J. J. Simon, G. Berginc, P. Torchio, F. Flory, and P. Masclet, “Spherically shaped micro-structured antireflective surfaces,” Opt. Express 17(24), 21590–21597 (2009).
[CrossRef] [PubMed]

R. Bouffaron, L. Escoubas, J. J. Simon, Ph. Torchio, F. Flory, G. Berginc, Ph. Masclet, C. Perret, and P. Schiavone, “Design and fabrication of infrared antireflecting bi-periodic micro-structured surfaces,” Proc. SPIE 6992, 69920H (2008).
[CrossRef]

L. Escoubas, J. J. Simon, M. Loli, G. Berginc, F. Flory, and H. Giovannini, “An antireflective silicon grating working in the resonance domain for the near infrared spectral region,” Opt. Commun. 226(1-6), 81–88 (2003).
[CrossRef]

Flory, F.

R. Bouffaron, L. Escoubas, V. Brissonneau, J. J. Simon, G. Berginc, P. Torchio, F. Flory, and P. Masclet, “Spherically shaped micro-structured antireflective surfaces,” Opt. Express 17(24), 21590–21597 (2009).
[CrossRef] [PubMed]

R. Bouffaron, L. Escoubas, J. J. Simon, Ph. Torchio, F. Flory, G. Berginc, Ph. Masclet, C. Perret, and P. Schiavone, “Design and fabrication of infrared antireflecting bi-periodic micro-structured surfaces,” Proc. SPIE 6992, 69920H (2008).
[CrossRef]

L. Escoubas, J. J. Simon, M. Loli, G. Berginc, F. Flory, and H. Giovannini, “An antireflective silicon grating working in the resonance domain for the near infrared spectral region,” Opt. Commun. 226(1-6), 81–88 (2003).
[CrossRef]

Gaylord, T. K.

Ge, W.

Giovannini, H.

L. Escoubas, J. J. Simon, M. Loli, G. Berginc, F. Flory, and H. Giovannini, “An antireflective silicon grating working in the resonance domain for the near infrared spectral region,” Opt. Commun. 226(1-6), 81–88 (2003).
[CrossRef]

Glytsis, E. N.

Gralak, B.

Ha, J. H.

Haase, C.

C. Haase and H. Stiebig, “Thin-flm silicon solar cells with efficient periodic light trapping texture,” Appl. Phys. Lett. 91(6), 061116 (2007).
[CrossRef]

Han, M. K.

D. W. Kang, S. H. Kuk, K. S. Ji, S. W. Ahn, and M. K. Han, “Highly transparent and high haze bilayer Al-doped ZnO thin film employing oxygen-controlled seed layer,” Jpn. J. Appl. Phys. 49(3), 031101 (2010).
[CrossRef]

Hartman, N. F.

Haung, D.

Huh, S. Y.

S. J. Choi and S. Y. Huh, “Direct structuring of a biomimetic anti-reflective, self-cleaning surface for light harvesting in organic solar cells,” Macromol. Rapid Commun. 31(6), 539–544 (2010).
[CrossRef] [PubMed]

Jan, D. J.

Jang, S. J.

Y. M. Song, G. C. Park, S. J. Jang, J. H. Ha, J. S. Yu, and Y. T. Lee, “Multifunctional light escaping architecture inspired by compound eye surface structures: From understanding to experimental demonstration,” Opt. Express 19(S2), A157–A165 (2011).
[CrossRef] [PubMed]

Y. M. Song, S. J. Jang, J. S. Yu, and Y. T. Lee, “Bioinspired parabola subwavelength structures for improved broadband antireflection,” Small 6(9), 984–987 (2010).
[CrossRef] [PubMed]

Y. M. Song, E. S. Choi, G. C. Park, C. Y. Park, S. J. Jang, and Y. T. Lee, “Disordered antireflective nanostructures on GaN-based light-emitting diodes using Ag nanoparticles for improved light extraction efficiency,” Appl. Phys. Lett. 97(9), 093110 (2010).
[CrossRef]

Jehl, Z.

Z. Jehl, J. Rousset, F. Donsanti, G. Renou, N. Naghavi, and D. Lincot, “Electrodeposition of ZnO nanorod arrays on ZnO substrate with tunable orientation and optical properties,” Nanotechnology 21(39), 395603 (2010).
[CrossRef] [PubMed]

Ji, K. S.

D. W. Kang, S. H. Kuk, K. S. Ji, S. W. Ahn, and M. K. Han, “Highly transparent and high haze bilayer Al-doped ZnO thin film employing oxygen-controlled seed layer,” Jpn. J. Appl. Phys. 49(3), 031101 (2010).
[CrossRef]

Jonsson, J.

J. Jonsson and F. Nikolaje, “Investigation of optical properties of injection molded subwavelength gratings,” Proc. SPIE 4779, 23–30 (2002).
[CrossRef]

Kang, D. W.

D. W. Kang, S. H. Kuk, K. S. Ji, S. W. Ahn, and M. K. Han, “Highly transparent and high haze bilayer Al-doped ZnO thin film employing oxygen-controlled seed layer,” Jpn. J. Appl. Phys. 49(3), 031101 (2010).
[CrossRef]

Khuzayim, N.

O. Deparis, N. Khuzayim, A. Parker, and J. P. Vigneron, “Assessment of the antireflection property of moth wings by three-dimensional transfer-matrix optical simulations,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 79(4 Pt 1), 041910 (2009).
[CrossRef] [PubMed]

Kikuta, H.

Kintaka, K.

Ko, Y. H.

Kong, J. A.

Ku, S. L.

C. C. Yu, Y. T. Chen, D. H. Wan, H. L. Chen, S. L. Ku, and Y. F. Chou, “Using one-step, dual-side nanoimprint lithography to fabricate low-cost, highly flexible wave plates exhibiting broadband antireflection,” J. Electrochem. Soc. 158(6), J195–J199 (2011).
[CrossRef]

Kuk, S. H.

D. W. Kang, S. H. Kuk, K. S. Ji, S. W. Ahn, and M. K. Han, “Highly transparent and high haze bilayer Al-doped ZnO thin film employing oxygen-controlled seed layer,” Jpn. J. Appl. Phys. 49(3), 031101 (2010).
[CrossRef]

Lalanne, P.

P. Lalanne and G. M. Morris, “Antireflection behavior of silicon subwavelength periodic structures for visible light,” Nanotechnology 8(2), 53–56 (1997).
[CrossRef]

Lee, M. H.

Lee, S. G.

Lee, Y. T.

Y. M. Song, G. C. Park, S. J. Jang, J. H. Ha, J. S. Yu, and Y. T. Lee, “Multifunctional light escaping architecture inspired by compound eye surface structures: From understanding to experimental demonstration,” Opt. Express 19(S2), A157–A165 (2011).
[CrossRef] [PubMed]

Y. M. Song, H. J. Choi, J. S. Yu, and Y. T. Lee, “Design of highly transparent glasses with broadband antireflective subwavelength structures,” Opt. Express 18(12), 13063–13071 (2010).
[CrossRef] [PubMed]

Y. M. Song, S. J. Jang, J. S. Yu, and Y. T. Lee, “Bioinspired parabola subwavelength structures for improved broadband antireflection,” Small 6(9), 984–987 (2010).
[CrossRef] [PubMed]

Y. M. Song, E. S. Choi, G. C. Park, C. Y. Park, S. J. Jang, and Y. T. Lee, “Disordered antireflective nanostructures on GaN-based light-emitting diodes using Ag nanoparticles for improved light extraction efficiency,” Appl. Phys. Lett. 97(9), 093110 (2010).
[CrossRef]

Li, H.

Y. Wang, N. Lu, H. Xu, G. Shi, M. Xu, X. Lin, H. Li, W. Wang, D. Qi, Y. Lu, and L. Chi, “Biomimetic corrugated silicon nanocone arrays for self-cleaning antireflection coatings,” Nano Res. 3(7), 520–527 (2010).
[CrossRef]

Lin, X.

Y. Wang, N. Lu, H. Xu, G. Shi, M. Xu, X. Lin, H. Li, W. Wang, D. Qi, Y. Lu, and L. Chi, “Biomimetic corrugated silicon nanocone arrays for self-cleaning antireflection coatings,” Nano Res. 3(7), 520–527 (2010).
[CrossRef]

Lincot, D.

Z. Jehl, J. Rousset, F. Donsanti, G. Renou, N. Naghavi, and D. Lincot, “Electrodeposition of ZnO nanorod arrays on ZnO substrate with tunable orientation and optical properties,” Nanotechnology 21(39), 395603 (2010).
[CrossRef] [PubMed]

Lo, S. S.

Loli, M.

L. Escoubas, J. J. Simon, M. Loli, G. Berginc, F. Flory, and H. Giovannini, “An antireflective silicon grating working in the resonance domain for the near infrared spectral region,” Opt. Commun. 226(1-6), 81–88 (2003).
[CrossRef]

Lu, N.

Y. Wang, N. Lu, H. Xu, G. Shi, M. Xu, X. Lin, H. Li, W. Wang, D. Qi, Y. Lu, and L. Chi, “Biomimetic corrugated silicon nanocone arrays for self-cleaning antireflection coatings,” Nano Res. 3(7), 520–527 (2010).
[CrossRef]

Lu, Y.

Y. Wang, N. Lu, H. Xu, G. Shi, M. Xu, X. Lin, H. Li, W. Wang, D. Qi, Y. Lu, and L. Chi, “Biomimetic corrugated silicon nanocone arrays for self-cleaning antireflection coatings,” Nano Res. 3(7), 520–527 (2010).
[CrossRef]

Masclet, P.

Masclet, Ph.

R. Bouffaron, L. Escoubas, J. J. Simon, Ph. Torchio, F. Flory, G. Berginc, Ph. Masclet, C. Perret, and P. Schiavone, “Design and fabrication of infrared antireflecting bi-periodic micro-structured surfaces,” Proc. SPIE 6992, 69920H (2008).
[CrossRef]

Mizutani, A.

Mlynek, J.

S. Walheim, E. Schaffer, J. Mlynek, and U. Steiner, “Nanophase-separated polymer films as high-performance antireflection coatings,” Science 283(5401), 520–522 (1999).
[CrossRef] [PubMed]

Mokkapati, S.

S. Mokkapati, F. J. Beck, A. Polman, and K. R. Catchpole, “Designing periodic arrays of metal nanoparticles for light-trapping applications in solar cells,” Appl. Phys. Lett. 95(5), 053115 (2009).
[CrossRef]

Morris, G. M.

P. Lalanne and G. M. Morris, “Antireflection behavior of silicon subwavelength periodic structures for visible light,” Nanotechnology 8(2), 53–56 (1997).
[CrossRef]

Naghavi, N.

Z. Jehl, J. Rousset, F. Donsanti, G. Renou, N. Naghavi, and D. Lincot, “Electrodeposition of ZnO nanorod arrays on ZnO substrate with tunable orientation and optical properties,” Nanotechnology 21(39), 395603 (2010).
[CrossRef] [PubMed]

Nakano, H.

Nikolaje, F.

J. Jonsson and F. Nikolaje, “Investigation of optical properties of injection molded subwavelength gratings,” Proc. SPIE 4779, 23–30 (2002).
[CrossRef]

Nishii, J.

Park, C. Y.

Y. M. Song, E. S. Choi, G. C. Park, C. Y. Park, S. J. Jang, and Y. T. Lee, “Disordered antireflective nanostructures on GaN-based light-emitting diodes using Ag nanoparticles for improved light extraction efficiency,” Appl. Phys. Lett. 97(9), 093110 (2010).
[CrossRef]

Park, G. C.

Y. M. Song, G. C. Park, S. J. Jang, J. H. Ha, J. S. Yu, and Y. T. Lee, “Multifunctional light escaping architecture inspired by compound eye surface structures: From understanding to experimental demonstration,” Opt. Express 19(S2), A157–A165 (2011).
[CrossRef] [PubMed]

Y. M. Song, E. S. Choi, G. C. Park, C. Y. Park, S. J. Jang, and Y. T. Lee, “Disordered antireflective nanostructures on GaN-based light-emitting diodes using Ag nanoparticles for improved light extraction efficiency,” Appl. Phys. Lett. 97(9), 093110 (2010).
[CrossRef]

Park, H. R.

Park, J. M.

Parker, A.

O. Deparis, N. Khuzayim, A. Parker, and J. P. Vigneron, “Assessment of the antireflection property of moth wings by three-dimensional transfer-matrix optical simulations,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 79(4 Pt 1), 041910 (2009).
[CrossRef] [PubMed]

Perret, C.

R. Bouffaron, L. Escoubas, J. J. Simon, Ph. Torchio, F. Flory, G. Berginc, Ph. Masclet, C. Perret, and P. Schiavone, “Design and fabrication of infrared antireflecting bi-periodic micro-structured surfaces,” Proc. SPIE 6992, 69920H (2008).
[CrossRef]

Pierre, R.

Polman, A.

S. Mokkapati, F. J. Beck, A. Polman, and K. R. Catchpole, “Designing periodic arrays of metal nanoparticles for light-trapping applications in solar cells,” Appl. Phys. Lett. 95(5), 053115 (2009).
[CrossRef]

Qi, D.

Y. Wang, N. Lu, H. Xu, G. Shi, M. Xu, X. Lin, H. Li, W. Wang, D. Qi, Y. Lu, and L. Chi, “Biomimetic corrugated silicon nanocone arrays for self-cleaning antireflection coatings,” Nano Res. 3(7), 520–527 (2010).
[CrossRef]

Renou, G.

Z. Jehl, J. Rousset, F. Donsanti, G. Renou, N. Naghavi, and D. Lincot, “Electrodeposition of ZnO nanorod arrays on ZnO substrate with tunable orientation and optical properties,” Nanotechnology 21(39), 395603 (2010).
[CrossRef] [PubMed]

Rousset, J.

Z. Jehl, J. Rousset, F. Donsanti, G. Renou, N. Naghavi, and D. Lincot, “Electrodeposition of ZnO nanorod arrays on ZnO substrate with tunable orientation and optical properties,” Nanotechnology 21(39), 395603 (2010).
[CrossRef] [PubMed]

Schadt, M.

M. I. Elhaj and M. Schadt, “Optical polymer thin films with isotropic and anisotropic nano-corrugated surface topologies,” Nature 410(6830), 796–799 (2001).
[CrossRef] [PubMed]

Schaffer, E.

S. Walheim, E. Schaffer, J. Mlynek, and U. Steiner, “Nanophase-separated polymer films as high-performance antireflection coatings,” Science 283(5401), 520–522 (1999).
[CrossRef] [PubMed]

Schiavone, P.

R. Bouffaron, L. Escoubas, J. J. Simon, Ph. Torchio, F. Flory, G. Berginc, Ph. Masclet, C. Perret, and P. Schiavone, “Design and fabrication of infrared antireflecting bi-periodic micro-structured surfaces,” Proc. SPIE 6992, 69920H (2008).
[CrossRef]

Shi, G.

Y. Wang, N. Lu, H. Xu, G. Shi, M. Xu, X. Lin, H. Li, W. Wang, D. Qi, Y. Lu, and L. Chi, “Biomimetic corrugated silicon nanocone arrays for self-cleaning antireflection coatings,” Nano Res. 3(7), 520–527 (2010).
[CrossRef]

Simon, J. J.

R. Bouffaron, L. Escoubas, V. Brissonneau, J. J. Simon, G. Berginc, P. Torchio, F. Flory, and P. Masclet, “Spherically shaped micro-structured antireflective surfaces,” Opt. Express 17(24), 21590–21597 (2009).
[CrossRef] [PubMed]

R. Bouffaron, L. Escoubas, J. J. Simon, Ph. Torchio, F. Flory, G. Berginc, Ph. Masclet, C. Perret, and P. Schiavone, “Design and fabrication of infrared antireflecting bi-periodic micro-structured surfaces,” Proc. SPIE 6992, 69920H (2008).
[CrossRef]

L. Escoubas, J. J. Simon, M. Loli, G. Berginc, F. Flory, and H. Giovannini, “An antireflective silicon grating working in the resonance domain for the near infrared spectral region,” Opt. Commun. 226(1-6), 81–88 (2003).
[CrossRef]

Smigaj, W.

Song, Y. M.

Y. M. Song, G. C. Park, S. J. Jang, J. H. Ha, J. S. Yu, and Y. T. Lee, “Multifunctional light escaping architecture inspired by compound eye surface structures: From understanding to experimental demonstration,” Opt. Express 19(S2), A157–A165 (2011).
[CrossRef] [PubMed]

Y. M. Song, H. J. Choi, J. S. Yu, and Y. T. Lee, “Design of highly transparent glasses with broadband antireflective subwavelength structures,” Opt. Express 18(12), 13063–13071 (2010).
[CrossRef] [PubMed]

Y. M. Song, S. J. Jang, J. S. Yu, and Y. T. Lee, “Bioinspired parabola subwavelength structures for improved broadband antireflection,” Small 6(9), 984–987 (2010).
[CrossRef] [PubMed]

Y. M. Song, E. S. Choi, G. C. Park, C. Y. Park, S. J. Jang, and Y. T. Lee, “Disordered antireflective nanostructures on GaN-based light-emitting diodes using Ag nanoparticles for improved light extraction efficiency,” Appl. Phys. Lett. 97(9), 093110 (2010).
[CrossRef]

Steiner, U.

S. Walheim, E. Schaffer, J. Mlynek, and U. Steiner, “Nanophase-separated polymer films as high-performance antireflection coatings,” Science 283(5401), 520–522 (1999).
[CrossRef] [PubMed]

Stiebig, H.

C. Haase and H. Stiebig, “Thin-flm silicon solar cells with efficient periodic light trapping texture,” Appl. Phys. Lett. 91(6), 061116 (2007).
[CrossRef]

Sun, K. W.

J. Y. Chen and K. W. Sun, “Enhancement of the light conversion efficiency of silicon solar cells by using nanoimprint anti-reflection layer,” Sol. Energy Mater. Sol. Cells 94(3), 629–633 (2010).
[CrossRef]

Tao, M.

W. Zhou, M. Tao, L. Chen, and H. Yang, “Microstructured surface design for omnidirectional antireflection coatings on solar cells,” J. Appl. Phys. 102(10), 103105 (2007).
[CrossRef]

Tayeb, G.

Torchio, P.

Torchio, Ph.

R. Bouffaron, L. Escoubas, J. J. Simon, Ph. Torchio, F. Flory, G. Berginc, Ph. Masclet, C. Perret, and P. Schiavone, “Design and fabrication of infrared antireflecting bi-periodic micro-structured surfaces,” Proc. SPIE 6992, 69920H (2008).
[CrossRef]

Vigneron, J. P.

O. Deparis, N. Khuzayim, A. Parker, and J. P. Vigneron, “Assessment of the antireflection property of moth wings by three-dimensional transfer-matrix optical simulations,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 79(4 Pt 1), 041910 (2009).
[CrossRef] [PubMed]

Walheim, S.

S. Walheim, E. Schaffer, J. Mlynek, and U. Steiner, “Nanophase-separated polymer films as high-performance antireflection coatings,” Science 283(5401), 520–522 (1999).
[CrossRef] [PubMed]

Wan, D. H.

C. C. Yu, Y. T. Chen, D. H. Wan, H. L. Chen, S. L. Ku, and Y. F. Chou, “Using one-step, dual-side nanoimprint lithography to fabricate low-cost, highly flexible wave plates exhibiting broadband antireflection,” J. Electrochem. Soc. 158(6), J195–J199 (2011).
[CrossRef]

Wang, C.

Wang, W.

Y. Wang, N. Lu, H. Xu, G. Shi, M. Xu, X. Lin, H. Li, W. Wang, D. Qi, Y. Lu, and L. Chi, “Biomimetic corrugated silicon nanocone arrays for self-cleaning antireflection coatings,” Nano Res. 3(7), 520–527 (2010).
[CrossRef]

Wang, Y.

Y. Wang, N. Lu, H. Xu, G. Shi, M. Xu, X. Lin, H. Li, W. Wang, D. Qi, Y. Lu, and L. Chi, “Biomimetic corrugated silicon nanocone arrays for self-cleaning antireflection coatings,” Nano Res. 3(7), 520–527 (2010).
[CrossRef]

Xu, H.

Y. Wang, N. Lu, H. Xu, G. Shi, M. Xu, X. Lin, H. Li, W. Wang, D. Qi, Y. Lu, and L. Chi, “Biomimetic corrugated silicon nanocone arrays for self-cleaning antireflection coatings,” Nano Res. 3(7), 520–527 (2010).
[CrossRef]

Xu, K.

Xu, M.

Y. Wang, N. Lu, H. Xu, G. Shi, M. Xu, X. Lin, H. Li, W. Wang, D. Qi, Y. Lu, and L. Chi, “Biomimetic corrugated silicon nanocone arrays for self-cleaning antireflection coatings,” Nano Res. 3(7), 520–527 (2010).
[CrossRef]

Xue, Y.

Yang, H.

W. Zhou, M. Tao, L. Chen, and H. Yang, “Microstructured surface design for omnidirectional antireflection coatings on solar cells,” J. Appl. Phys. 102(10), 103105 (2007).
[CrossRef]

Yu, C. C.

C. C. Yu, Y. T. Chen, D. H. Wan, H. L. Chen, S. L. Ku, and Y. F. Chou, “Using one-step, dual-side nanoimprint lithography to fabricate low-cost, highly flexible wave plates exhibiting broadband antireflection,” J. Electrochem. Soc. 158(6), J195–J199 (2011).
[CrossRef]

Yu, J. S.

Zhang, B.

Zhou, W.

W. Zhou, M. Tao, L. Chen, and H. Yang, “Microstructured surface design for omnidirectional antireflection coatings on solar cells,” J. Appl. Phys. 102(10), 103105 (2007).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

Y. M. Song, E. S. Choi, G. C. Park, C. Y. Park, S. J. Jang, and Y. T. Lee, “Disordered antireflective nanostructures on GaN-based light-emitting diodes using Ag nanoparticles for improved light extraction efficiency,” Appl. Phys. Lett. 97(9), 093110 (2010).
[CrossRef]

C. Haase and H. Stiebig, “Thin-flm silicon solar cells with efficient periodic light trapping texture,” Appl. Phys. Lett. 91(6), 061116 (2007).
[CrossRef]

S. Mokkapati, F. J. Beck, A. Polman, and K. R. Catchpole, “Designing periodic arrays of metal nanoparticles for light-trapping applications in solar cells,” Appl. Phys. Lett. 95(5), 053115 (2009).
[CrossRef]

J. Appl. Phys.

W. Zhou, M. Tao, L. Chen, and H. Yang, “Microstructured surface design for omnidirectional antireflection coatings on solar cells,” J. Appl. Phys. 102(10), 103105 (2007).
[CrossRef]

J. Electrochem. Soc.

C. C. Yu, Y. T. Chen, D. H. Wan, H. L. Chen, S. L. Ku, and Y. F. Chou, “Using one-step, dual-side nanoimprint lithography to fabricate low-cost, highly flexible wave plates exhibiting broadband antireflection,” J. Electrochem. Soc. 158(6), J195–J199 (2011).
[CrossRef]

J. Opt. Soc. Am.

Jpn. J. Appl. Phys.

D. W. Kang, S. H. Kuk, K. S. Ji, S. W. Ahn, and M. K. Han, “Highly transparent and high haze bilayer Al-doped ZnO thin film employing oxygen-controlled seed layer,” Jpn. J. Appl. Phys. 49(3), 031101 (2010).
[CrossRef]

Macromol. Rapid Commun.

S. J. Choi and S. Y. Huh, “Direct structuring of a biomimetic anti-reflective, self-cleaning surface for light harvesting in organic solar cells,” Macromol. Rapid Commun. 31(6), 539–544 (2010).
[CrossRef] [PubMed]

Nano Res.

Y. Wang, N. Lu, H. Xu, G. Shi, M. Xu, X. Lin, H. Li, W. Wang, D. Qi, Y. Lu, and L. Chi, “Biomimetic corrugated silicon nanocone arrays for self-cleaning antireflection coatings,” Nano Res. 3(7), 520–527 (2010).
[CrossRef]

Nanotechnology

P. Lalanne and G. M. Morris, “Antireflection behavior of silicon subwavelength periodic structures for visible light,” Nanotechnology 8(2), 53–56 (1997).
[CrossRef]

Z. Jehl, J. Rousset, F. Donsanti, G. Renou, N. Naghavi, and D. Lincot, “Electrodeposition of ZnO nanorod arrays on ZnO substrate with tunable orientation and optical properties,” Nanotechnology 21(39), 395603 (2010).
[CrossRef] [PubMed]

Nature

M. I. Elhaj and M. Schadt, “Optical polymer thin films with isotropic and anisotropic nano-corrugated surface topologies,” Nature 410(6830), 796–799 (2001).
[CrossRef] [PubMed]

Opt. Commun.

L. Escoubas, J. J. Simon, M. Loli, G. Berginc, F. Flory, and H. Giovannini, “An antireflective silicon grating working in the resonance domain for the near infrared spectral region,” Opt. Commun. 226(1-6), 81–88 (2003).
[CrossRef]

Opt. Express

R. Bouffaron, L. Escoubas, V. Brissonneau, J. J. Simon, G. Berginc, P. Torchio, F. Flory, and P. Masclet, “Spherically shaped micro-structured antireflective surfaces,” Opt. Express 17(24), 21590–21597 (2009).
[CrossRef] [PubMed]

S. S. Lo, D. Haung, and D. J. Jan, “Haze ratio enhancement using a closely packed ZnO monolayer structure,” Opt. Express 18(2), 662–669 (2010).
[CrossRef] [PubMed]

Y. M. Song, H. J. Choi, J. S. Yu, and Y. T. Lee, “Design of highly transparent glasses with broadband antireflective subwavelength structures,” Opt. Express 18(12), 13063–13071 (2010).
[CrossRef] [PubMed]

J. M. Park, S. G. Lee, H. R. Park, and M. H. Lee, “Self-collimating photonic crystal antireflection structure for both TE and TM polarizations,” Opt. Express 18(12), 13083–13093 (2010).
[CrossRef] [PubMed]

Y. H. Ko and J. S. Yu, “Design of hemi-urchin shaped ZnO nanostructures for broadband and wide-angle antireflection coatings,” Opt. Express 19(1), 297–305 (2011).
[CrossRef] [PubMed]

Y. M. Song, G. C. Park, S. J. Jang, J. H. Ha, J. S. Yu, and Y. T. Lee, “Multifunctional light escaping architecture inspired by compound eye surface structures: From understanding to experimental demonstration,” Opt. Express 19(S2), A157–A165 (2011).
[CrossRef] [PubMed]

W. Ge, C. Wang, Y. Xue, B. Cao, B. Zhang, and K. Xu, “Tunable ultra-deep subwavelength photolithography using a surface plasmon resonant cavity,” Opt. Express 19(7), 6714–6723 (2011).
[CrossRef] [PubMed]

Opt. Lett.

Phys. Rev. E Stat. Nonlin. Soft Matter Phys.

O. Deparis, N. Khuzayim, A. Parker, and J. P. Vigneron, “Assessment of the antireflection property of moth wings by three-dimensional transfer-matrix optical simulations,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 79(4 Pt 1), 041910 (2009).
[CrossRef] [PubMed]

Proc. SPIE

R. Bouffaron, L. Escoubas, J. J. Simon, Ph. Torchio, F. Flory, G. Berginc, Ph. Masclet, C. Perret, and P. Schiavone, “Design and fabrication of infrared antireflecting bi-periodic micro-structured surfaces,” Proc. SPIE 6992, 69920H (2008).
[CrossRef]

J. Jonsson and F. Nikolaje, “Investigation of optical properties of injection molded subwavelength gratings,” Proc. SPIE 4779, 23–30 (2002).
[CrossRef]

Science

S. Walheim, E. Schaffer, J. Mlynek, and U. Steiner, “Nanophase-separated polymer films as high-performance antireflection coatings,” Science 283(5401), 520–522 (1999).
[CrossRef] [PubMed]

Small

Y. M. Song, S. J. Jang, J. S. Yu, and Y. T. Lee, “Bioinspired parabola subwavelength structures for improved broadband antireflection,” Small 6(9), 984–987 (2010).
[CrossRef] [PubMed]

Sol. Energy Mater. Sol. Cells

J. Y. Chen and K. W. Sun, “Enhancement of the light conversion efficiency of silicon solar cells by using nanoimprint anti-reflection layer,” Sol. Energy Mater. Sol. Cells 94(3), 629–633 (2010).
[CrossRef]

Other

S. L. Chuang, Physics of optoelectronic devices, (John Wiley & Sons. Inc. 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Calculated electric fields of light propagating from air to the (a) sapphire SGS (width: 300 nm, height: 300 nm) and (b) sapphire MGS (width: 2 μm, height: 2 μm) with parabolic shapes.

Fig. 2
Fig. 2

(a) Contour plot of the calculated total transmittance spectra as a function of OT for the sapphire MGS with W M G S = 2 μm, H M G S = 2 μm, and P = 0.5 μm and (b) calculated average total transmittance as a function of OT. The insets of (b) show the corresponding computational geometries of the sapphire MGSs for OT = 1 and 2.3.

Fig. 3
Fig. 3

(a) Contour plot of the calculated total transmittance spectra as a function of W M G S for the sapphire MGS with H M G S = 2 μm, OT = 2.3, and P = 0.5 μm and (b) calculated average total transmittance as a function of W M G S .

Fig. 4
Fig. 4

(a) Contour plot of the calculated total transmittance spectra as a function of H M G S for the sapphire MGS with W M G S = 2.5 μm, H M G S = 2 μm, and P = 0.5 μm and (b) calculated average total transmittance as a function of H M G S . The insets of (b) show the corresponding computational geometries of the sapphire MGSs for H M G S = 2 μm, 5 μm, and 10 μm.

Fig. 5
Fig. 5

(a) Contour plot of the calculated total transmittance spectra as a function of P for the sapphire MGS with OT = 2.3, W M G S = 2.5 μm, and H M G S = 5 μm and (b) calculated average total transmittance as a function of P.

Fig. 6
Fig. 6

(a) Contour plot of the calculated total transmittance spectra as a function of H S i O 2 for the SiO2/sapphire MGS with OT = 2.3, W M G S = 2.5 μm, H M G S = 5 μm, and P = 0.5 μm and (b) calculated average total transmittance as a function of H S i O 2 . The inset of (b) shows the refractive index profile of a cross-sectional view in the computational geometry.

Fig. 7
Fig. 7

Measured (solid lines) and calculated (dash lines) total transmittance spectra for sapphire, sapphire MGS, and 500 nm SiO2/sapphire MGS. The insets show the cross-sectional SEM images of the sapphire MGS and 500 nm SiO2/sapphire MGS.

Fig. 8
Fig. 8

Measured diffuse transmittance spectra of the sapphire, sapphire MGS, and 500 nm SiO2/sapphire MGS at normal incidence. The inset shows the photographic images of the sapphire and SiO2 sapphire MGS and the top-view SEM image of the SiO2/sapphire MGS.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

k x , m s a p p h i r e = k x a i r + m 2 π Λ ,
sin θ i + m ( λ Λ ) = n s a p p h i r e sin θ t , m ,
z = ( r W M G S 2 ) O T + H M G S a n d x 2 + y 2 = r 2 ( 0 z H M G S ) ,

Metrics